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ABSTRACT: E-bikes in China are the single largest adoption of alternative
fuel vehicles in history, with more than 100 million e-bikes purchased in the
past decade and vehicle ownership about 2× larger for e-bikes as for
conventional cars; e-car sales, too, are rapidly growing. We compare emissions
(CO2, PM2.5, NOX, HC) and environmental health impacts (primary PM2.5)
from the use of conventional vehicles (CVs) and electric vehicles (EVs) in 34
major cities in China. CO2 emissions (g km−1) vary and are an order of
magnitude greater for e-cars (135−274) and CVs (150−180) than for e-bikes
(14−27). PM2.5 emission factors generally are lower for CVs (gasoline or
diesel) than comparable EVs. However, intake fraction is often greater for CVs
than for EVs because combustion emissions are generally closer to population
centers for CVs (tailpipe emissions) than for EVs (power plant emissions).
For most cities, the net result is that primary PM2.5 environmental health
impacts per passenger-km are greater for e-cars than for gasoline cars (3.6× on average), lower than for diesel cars (2.5× on
average), and equal to diesel buses. In contrast, e-bikes yield lower environmental health impacts per passenger-km than the
three CVs investigated: gasoline cars (2×), diesel cars (10×), and diesel buses (5×). Our findings highlight the importance
of considering exposures, and especially the proximity of emissions to people, when evaluating environmental health impacts
for EVs.

■ INTRODUCTION
China’s rapid growth in income − annual GDP increases
averaged 9−10% during 1978−20091 − has many impacts,
including several with environmental health consequences.
Outdoor air pollution causes ∼300,000 premature deaths in
China each year.2 For several pollutants, including fine particles
(PM2.5), transportation is a significant and growing source of
emissions.3 Automobile ownership increased more than an
order of magnitude in one decade, from 3 cars per 1000 people
in 1998 to at least 39 cars per 1000 people in 2009.1,4 Encour-
aging motorized transportation is a national strategy for eco-
nomic and social development in China.5,6

This article’s focus on electric vehicles (EVs: electric cars
[e-cars] and electric two-wheelers including electric bicycles
and light electric scooters [e-bikes]) in China is motivated in
part by their unprecedented rise in popularity (Figure 1). While
conventional vehicle (CV) ownership and electricity consump-
tion in China are both increasing rapidly − annual growth rates
during the past decade were ∼25% and ∼10%, respectively −
e-bike ownership is skyrocketing: 86% annual growth during
the past decade (doubling time: ∼13 months). Ten years ago,
e-bikes were nearly unheard of, with vehicle ownership rates
26× lower for e-bikes than for CVs. Today, e-bikes outnumber
CVs 2:1. E-bikes in China are the single largest adoption
of alternative fuel vehicles in history, with over 100 million

vehicles purchased in the past decade, more than all other
countries combined.7,8
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Figure 1. Motorization and electricity use in China normalized to
population. During the past decade, e-bike ownership has grown from
near-zero to ∼2× greater than CVs.
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For EVs, combustion emissions occur where electricity is
generated rather than where the vehicle is used.9−11 In China,
85% of electricity production is from fossil fuels, of which
∼90% is from coal. Most electricity generating units (EGUs) in
China lack advanced pollution controls. Compared to typical
vehicle emissions, EGUs are often located further from
population centers; therefore, the exposure and health impacts
per mass emitted tend to be lower for EGUs than for CVs.12−15

The net result for China is that it is unclear a priori whether
EVs are an environmental health benefit or disbenefit relative
to CVs.
Prior research on environmental impacts of EVs in China9,16

and elsewhere17−21 generally compares emission factors or
greenhouse gas emissions,22−25 not exposures, intakes, or
health effects. Our article works to address this important
knowledge gap. We evaluate five vehicle types (gasoline and
diesel cars, diesel buses, e-bikes, e-cars) and consider how
environmental impacts (emissions, intakes, mortality risks) vary
depending on the emission location. Our approach considers
China’s 34 largest cities and uses an intake-, rather than
concentration-, based risk assessment for primary PM2.5. Our
results underscore differences among EVs (e-cars and e-bikes)
and the importance of fuel type (here, mostly coal) when
evaluating CO2 and primary PM2.5 health impacts of EVs and
variability in EV impacts among locations (34 cities, 15 regional
electricity grids).

■ METHODS
Our investigation follows a conventional risk assessment
framework but is based on pollutant intake (mass inhaled)
rather than concentration. Methods are summarized next, with
details provided in the Supporting Information. Key steps are in
Figure 2. We present emissions for several pollutants but focus

on health effects of primary PM2.5 because of the strong
epidemiological evidence for that pollutant, because prior
research suggests that PM2.5 often dominates total air pollution
health and economic impacts per mass emitted,26 because
primary PM2.5 is relatively nonreactive, thereby simplifying the
requirements for fate and transport modeling, and because
peer-reviewed literature provides the information needed for
analyses here. Secondary PM2.5, also with important health
effects, is explored briefly in the Results but is not a focus
of this paper. Our health risk assessment only includes com-
bustion emissions, though we discuss the relative magnitude
of fuel life cycle emissions in the Results and Supporting
Information. Our investigation considers five vehicle tech-
nologies and 34 vehicle-use locations covering all of China’s
urbanized provinces. We estimate exposure from emissions
generated at more than 1000 fossil EGUs. Our primary results
employ point estimates for input parameters. We then conduct
a Monte Carlo simulation to identify the sensitivity of
our results to variability and uncertainty. In the discussion,

we illustrate an example of the policy significance of our re-
search by considering a deployment scenario for one city
(Shanghai). We explore distributional aspects in terms of urban/
rural differences in exposures and health impacts attributable to
urban use of EVs.

Emissions. In this study, we focus on station-to-wheel
emissions and their health impacts. We also present well-to-
station emission (coal mining and processing for EVs; oil
extraction and refining for CVs). Here, a station is a fueling
station (CV) or an EGU (EV). We do not estimate health
impacts from well-to-station emissions since location and
population information are unavailable for those activities.
For CVs, combustion emission factors are taken from the

literature and emission standards.16,27−31 For EVs, EGU
emission factors are estimated based on electricity generation
rates32 and modeled total EGU emissions.33 Power-sector EGU
emission factors vary by an order of magnitude among regional
electricity grids in China (Figures S1 and S2; Table S4),34

owing to differences in fuels (fossil versus renewable), fuel
quality, combustion conditions, and emission controls. On
average, EGU emission factors are higher in the Northeast and
lower in the South. Our EV emission factors incorporate loss
rates from electricity transmission and distribution.4 Average
well-to-station emissions are taken from the literature for CVs
and EVs.35−37

Intake fraction. Intake fraction (iF) is the proportion of an
emitted pollutant inhaled by the population:12

=iF
Total intake

Total emissions (1)

We use a dynamic one-compartment model to estimate iF of
emissions in urban areas. The one-compartment model
estimates concentrations based on a mass-balance, assuming
that the air is well mixed within the urban area and is vertically
mixed up to the atmospheric mixing height. Prior research for
urban areas in the US13 and Mexico38 suggests that the one-
compartment model yields similar results as more detailed
models. Main input variables for the one-compartment model
are urban population and land area, average breathing rate,
atmospheric mixing height, and average wind speed over the
mixing height. Population and land-area data for urban areas are
from the Chinese Bureau of Statistics.1 Meteorological data
(wind speed, mixing height; years 2005−2007) are from
NASA’s Global Modeling and Assimilation Office (http://disc.
sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl). The meteorolog-
ical data set provides hourly estimates at 0.5°−0.667° spatial
resolution; our one-compartment model simulates three years
of air dispersion, using 0.1-min time steps. To avoid discon-
tinuities in modeled meteorological data, we linearly interpo-
lated the hourly raw data to 0.1-min increments. A merit of the
dynamic one-compartment model is fine-scale temporal
resolution; a weakness is lack of information about within-
urban spatial variability. The one-compartment model is a
screening approach and typically more reliable for relative
comparisons (e.g., as applied here, for multiple technologies
and locations) rather than for absolute values. As a result, our
findings should be considered suggestive rather than definitive.
For EGU iFs, we employ the regression approach of Zhou

et al.39 This model was developed specifically for iF of EGU
emissions in China. Intake fraction is estimated based on the
population within specific radii of EGUs. We apply the
regression models on all known EGUs (∼1000 EGUs) in
China.32

Figure 2. Summary of intake-based health risk assessment employed
here.

Environmental Science & Technology Policy Analysis

dx.doi.org/10.1021/es202347q | Environ. Sci. Technol. 2012, 46, 2018−20242019

http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl
http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl


Dose−Response (Toxicity). We employ a mortality
dose−response function based on the American Cancer
Society (ACS) cohort.40 We convert the published
concentration-based toxicity (average 4% increase in mortality per
10 μg m−3) into an intake-based toxicity (5.3 deaths per
kilogram inhaled), by assuming a population-average breathing
rate41 of 14.5 m3 d−1 person−1 and Chinese baseline annual
mortality of 7 deaths per 1,000 persons.42 Details are in the
Supporting Information. Our approach applies the ACS finding
that PM2.5 exhibits, at the population level, a linear no-threshold
dose response.

■ RESULTS
Emissions. Emission factors (Figure 3 and S2; Tables S3

and S4) vary by vehicle, fuel, and region. We not only focus on
station-to-wheel emission factors but also report average well-
to-station emissions in the Supporting Information. Figure 3
compares emission between vehicle types.
The order-of-magnitude variability in EGU emission factors

by region (Figures S1 and S2) yields the same degree of
variability in EV emission factors and with the same spatial
pattern (highest in the Northeast because of heavy reliance on
coal). EV emission factors vary by the city they are in (Table S4);
we estimate that an e-car (180 Wh km−1)43 in Beijing emits
220 gCO2 km−1, equivalent to a gasoline car with a fuel
economy of 9 L (100-km)−1 (or 26 mi gal−1 [mpg]), whereas in
Chengdu the same e-car would emit only 135 gCO2 km−1,
equivalent to a gasoline car with a fuel economy of 5.6 L
(100-km)−1 (or 42 mpg).
Compared to a new (Euro IV) gasoline car, average e-car

emission factors are about the same for CO2 and 19× greater
for PM2.5. That finding reflects, in part, China’s heavy reliance
on coal. E-bikes outperform cars, motorcycles, and buses on
most emission metrics. That finding reflects, in part, the lighter
weight and therefore lower energy requirements for e-bikes as
for other passenger vehicles. Well-to-station emissions
represent a larger proportion of total emissions for CVs
relative to EVs for many pollutants.
Intake Fraction. Estimated iFs for PM2.5 (Figure 4) are

6−117 per million for urban emissions (CVs) and 4−8 per
million for EGU emissions (EVs). For PM2.5, urban iF values
range from less than the EGU iF to more than an order of
magnitude greater than the EGU iF, with a population-
weighted mean difference of 5× (for unweighted median: 2.4×)
greater iF for urban emissions than EGUs. (For comparison,
the mean urban-rural iF difference in the US is about an order
of magnitude,44,45 which is consistent with the proportion of
the population that is rural being greater in China than in the
US.) For PM2.5, spatial variability is greater for urban iFs
(maximum:minimum ratio, 19:1) than for regionally aggregated
EGU iFs (maximum:minimum ratio, 2:1).
Health Impacts. Table 1 provides example calculation and

results of health impacts from station-to-wheel primary PM2.5
emissions, based on parameter point estimates, for one city
(Shanghai). In this example, emissions are greater for e-cars
than gasoline cars, but the reverse holds for iF values; the net
result for Shanghai is a higher PM2.5 environmental health
impact for e-cars than for gasoline cars. Here and below,
comparisons employ a basis of 1010 km y−1 (e.g., 106 vehicles,
each traveling 104 km y−1) and employ units of ppm (parts per
million) for iF.
Results for all cities are in Figure 5. The bus/e-bike plot

(Figure 5f) may provide a useful counterfactual for individuals

who do not own a car; for all cities considered, e-bikes yield
lower impacts than buses. The car/e-car plots (Figure 5a,b)
may provide a useful counterfactual for car owners.
In general, based on Figure 5, e-cars typically perform better

than diesel cars, worse than gasoline cars, and comparably to
diesel buses; e-bikes perform much better than diesel cars and
buses but are comparable to or slightly better than gasoline
cars. Available surveys indicate that many e-bike users would
switch to bus (50−65%) or car-based modes (20−25%) if the
e-bike became unavailable.46

A useful aspect of Figure 5 is investigation of the variability
among cities and therefore of the robustness of the com-
parisons to spatial differences. In some cases (Figure 5e,f),
comparisons yield the same results for all cities. In other cases,
variability among cities is large: in Figure 5c,d, the cities are

Figure 3. Emission factors for EVs and CVs (g person-km−1), for four
pollutants. Large circle icons indicate CVs. Small noncircle icons
indicate EVs (e-car: triangle-icon; e-bike: plus-icon), with emission
factors that vary among the 15 electricity grids. Large noncircle icons
indicate the arithmetic mean of the 15 values per EV. Lines from icons
indicate magnitude of well-to-station emissions; diamond end points
of lines indicate well-to-wheel emission factors. (Missing lines indicate
indistinguishable impacts.) Assumed average passenger load factors are
car: 1.5, bus: 50, motorcycle: 1, e-bike: 1.
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split roughly evenly (60/40) as to which vehicle-type has lower
public health impacts. Figure 5 compares total health impacts
but without consideration for who is exposed (see urban-rural
comparison in the Discussion).

Sensitivity Analysis. In the previous sections, analyses
employed point estimates for input variables. Here we develop
a Monte Carlo simulation to explore variability and uncertainty
in input variables (Table S2) and their propagation through our
analyses to a range of outcomes (Figure S3). The shapes of the
regions in Figure S3 are similar to Figure 5, though the range is
larger. The proportion “P” (for which EVs have lower mortality
risk than CVs) is similar (on average, higher) in the sensitivity
analysis (Figure S3) than in Figure 5. Figure S3 simulates each
city individually. A similar analysis (Figure S4) simulating the
population-weighted average (the asterisk in Figure 5) reveals
similar results but with less variance because of averaging; in
that analysis, impacts for e-cars are always higher than for
gasoline cars and lower than for diesel cars.

Secondary PM2.5. Results above investigate primary PM2.5
(i.e., emissions). As a sensitivity analysis, we also explored
two types of secondary PM2.5: ammonium nitrate (from NOx
emissions) and ammonium sulfate (from SO2 emissions). For-
mation rates depend on emissions from CVs or EVs, plus envi-
ronmental conditions such as temperature and extant ambient
concentrations. For both types of secondary PM2.5, we employ
two approaches. First, we apply the Zhou et al.39 model to
emissions from EVs and CVs. A main limitation of this approach
is that it applies an EGU model to ground-level (vehicle)
emissions. Second, we used recently published global-average
iF values for archetypal urban, rural, and remote environ-
ments;47 a main limitation is the use of global-average, rather
than China-specific, values. Results (not shown), though pre-
liminary, suggest that for some locations and mode comparisons,
secondary PM2.5 may be equally or more important than pri-
mary PM2.5 for estimating environmental health impacts. We
conclude that, while this article focuses on primary PM, robust
exploration of secondary PM is warranted.

■ DISCUSSION

Electric vehicles are often proposed as a “sustainable” approach
for increasing urban mobility and economic development.

Figure 4. Intake fraction for primary PM2.5 in the 34 urban areas
considered here. The area of each icon is proportional to population.
The population-weighted average value is indicated with an asterisk.
For reference, dashed lines show constant urban/EGU iF ratios.

Table 1. Example Calculation: Health Effects of PM2.5 in
Shanghaia

gasoline
car diesel car bus e-car e-bike

emission factor
(mg [person-km]−1)

3 30 12 58 9

kilometers traveled
(km y−1)

1010 1010 1010 1010 1010

intake fraction (ppm) 51 51 51 8.2 8.2
unit dose (g death−1) 188 188 188 188 188
total excess deaths per
year

9 90 32 26 3

(8, 10) (70, 111) (15, 67) (11, 38) (2, 5)
aLoad factors are listed in the caption for Figure 3. The values in
parentheses are the 5th and 95th percentiles of Monte Carlo
simulation results.

Figure 5. PM2.5 mortality risk per 10
10 passenger-km, for the 34 cities considered. Icon size is proportional to city population. In each plot, “R” is the

population-weighted average ratio between x- and y-axes, “P” is the proportion of the population (among the 34 cities) for which the mortality risk is
lower for EVs than for CVs. For reference, dashed lines are 1:1 lines. The population-weighted average value is indicated with an asterisk. Passenger
load factors are listed in the caption for Figure 3.

Environmental Science & Technology Policy Analysis

dx.doi.org/10.1021/es202347q | Environ. Sci. Technol. 2012, 46, 2018−20242021



An implicit assumption is that air quality and health impacts are
lower for EVs than for CVs. Our research aims to test that
assumption for primary PM2.5.
In several cases, our findings (Figure 5) exhibit strong spatial

variability among locations. We find that using emission factors
rather than intakes to compare vehicle-types is suboptimal for
health comparisons: because electricity generation typically
occurs farther from people than do tailpipe emissions, iF values
are often lower for EVs than for CVs. For example, comparing
PM2.5 averages per passenger-km, emissions are 5× higher for
an e-car than for a bus, but health impacts from primary PM2.5
are about equal between the two modes. Comparing averages
for e-bikes and buses, based on PM2.5 emissions the two modes
are similar (30% higher for buses) but based on PM2.5 mortality
rates, impacts are 7× greater for buses as for e-bikes. E-bikes
perform well compared to CVs in terms of PM2.5 emissions and
health impacts.
For the first time at such a large scale, vehicle emissions are

being transferred to power plants, potentially yielding dramatic
exposure reduction. In some but not all cases, this transfer of
emissions is expected to improve overall public health. However,
this shift also transfers impacts to nonusers of the urban EVs,
including potentially to low-income rural populations. Specifi-
cally, CV emissions and intakes generally occur within the urban
area where the vehicle is used. With CVs, urban residents
produce emissions and also bear the impacts (though causing
within-urban distributional impacts).48−50

To explore the impact of EGUs on urban versus rural popu-
lations, we repeated the intake calculations above but distin-
guishing urban versus rural intakes of EGU primary PM2.5
emissions using the population in China’s 660 classified cities.1

We find that, on average, ∼ half (52%) of urban EV emissions
are inhaled by nonurban populations. Figure 6 and Figure S5
shows this parameter by electric grid (range: 19−64%). An

important context underlying this shift (i.e., that pollution from
urban activities is exported to rural locations) is the large and
growing income disparity between urban and rural populations:
the rural-urban difference in average income per person increased
from 2.8× in 2000 (2240 RMB [$336] rural versus 6280 RMB
[$941] urban) to 3.3× in 2009 (5200 RMB [$780] versus 17175
RMB [$2573]).1

An important aspect of any technology comparison is
substitution: how the use of one technology impacts the use
of other technologies. China’s rapidly evolving motorization
trends challenge traditional mode-substitution models. Here we
provide an illustrative comparison based on available data;
similar scenarios could be developed for other technologies or
locations. In 2007, Shanghai had ∼1,000,000 registered e-bikes,
each averaging ∼5,000 vehicle-km y−1.46 Calculations similar to
those in Table 1 yield an estimate for air pollution excess
mortality of 2 deaths y−1 from e-bike use. Surveys indicate that
of e-bike users, about 70% are displaced bus riders, 20% are
displaced bicycle riders, and 10% are displaced gasoline car
drivers.16,46 For this simple illustration, we assume a 1:1 rela-
tionship between mode choice and trip distance, which is close
to stated mode/trip distance responses for urban trip-making
in Shanghai (i.e., each 100 vehicle-km by an e-bike displaces
70 passenger-km by bus, 20 vehicle-km by bicycle, and 10
passenger-km by gasoline car),46 and we restrict consideration
to sufficiently large shifts that added bus demand would be met
with added bus capacity. If e-bikes did not exist (for example if
they were banned, as many cities have proposed) and e-bike
riders redistributed to stated best alternative modes, the excess
mortality would increase from 2 y−1 to 12 y−1, most of which is
a result of the shift toward the bus. This example highlights that
in some cases banning e-bikes could worsen air pollution and
environmental health.

Figure 6. Portion of primary PM2.5 health impacts from EGUs experienced by rural versus urban populations. Icon area is proportional to PM2.5
emission factor (g km−1) for an EV in that power grid. Numbers identify nonurban mortality impact proportions, i.e., of the total mortality impacts
attributable to primary PM2.5 from electricity generation − here, owing to urban use of EVs. Urban use of EVs rather than CVs typically moves the
emissions (and, exposures and health impacts) to more rural locations. In general, a substantial proportion − on average, about half − of the
emissions from urban use of EVs are inhaled by nonurban populations.
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Our research has several important limitations. As such,
results should be considered suggestive rather than conclusive.
We used a simple one-compartment model for urban iF, which
provides excellent temporal resolution while capturing impor-
tant meteorological variables but without incorporating within-
urban variability in concentrations or accounting for reactive
pollutants. Our iF estimates reflect ambient concentrations only
and do not consider microenvironments.51 Average EGU emis-
sion factors were employed here for EV charging; however, EV
emissions can be sensitive to temporal (time-of-day; seasonal)
charging patterns;19,52,53 at present, this information is unavail-
able for China. Our approach implicitly assumes that PM2.5

emissions from electricity generation and from CVs tailpipe
exhaust are equally toxic. We focus on one pollutant (primary
PM2.5) and one outcome (mortality) and therefore have
quantified only a fraction of total health impacts. Prior analyses
considering multiple pollutants and health outcomes indicate
that results of the pairing we employed (PM2.5; mortality)
generally dominates comparative analyses.26,54

For the electricity sector in China, future changes in emis-
sions are uncertain. Zhao et al.55 developed three emission
control scenarios for coal power plants to predict future
emissions changes: base (no improvement), normal (inefficient
EGUs are decommissioned and replaced with efficient EGUs),
and strict (aggressive emission abatement). Based on their
scenarios, by 2020, total suspended particulate (TSP) emission
intesity (g kWh−1) could be reduced by 42% (base), 68%
(normal), or 75% (strict) relative to current conditions. SO2

and NOX emission rates would also decrease under these
scenarios. EV emission factors would follow EGU emission
trends, improving over time (accounting for temporal charging
patterns19,52,53). On-road vehicle emissions usually degrade as
a car ages, though new-vehicle emissions will likely improve
following adoption of tighter new-vehicle emission standards
and cleaner fuels. Transitioning to a new bus fleet may reduce
emission factors dramatically. For example, PM emissions from
new (Euro III) buses will be 6× lower than on-road buses.
Improved CV and EGU emission technology should reduce
impacts per vehicle-km for both CVs and EVs; potential
increases in total travel distance may also be important.
China provides a useful case study because of the large

number of EVs (in 2009, 100 million EVs) and because of
government policies aimed at increasing the number of EVs.
Unique aspects of China include the large population and coal-
heavy electricity system. Our findings show that replacing gaso-
line cars with e-cars will result in increased CO2 from combus-
tion emissions and all-cause mortality risk from primary PM2.5

in most cities. Health risks attributable to other pollutants,
including secondary PM2.5, are uncertain. Lightweight EV’s
such as e-bikes can have environmental and health benefits
because of their energy efficiency. Chinese policy makers
should carefully proceed with deployment of plug-in vehicles
and consider aggressive improvements in the power sector to
realize anticipated gains in emissions and health.
Future research could explore whether results presented here

hold for other countries and could model impacts of secondary
PM2.5. We highlight one distributional aspect of CV versus EV
emissions (urban-rural exposure differences), leaving for future
research a more significant exploration of environmental justice.
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There are two sections in this online Supporting Information document that parallel the 

main article: 

Supporting Information – Methods 

Supporting Information – Results 

The results of the analyses are detailed for the 34 cities analyzed in this paper, 

including estimation of emission rates, intake fraction, excess mortality, and rural/urban 

distributional impacts. Table S1 provides regression coefficients for EGU iF estimation. 

Table S2 provides information about input variables and distributions for Monte Carlo 

simulation. Table S3 presents estimated average emission factors for EVs and CVs.  

Emission factors for non-PM2.5 pollutants for EVs in 34 cities are in Table S4. Table S5 

gives iF values for urban areas and EGUs. Table S6 illustrates excess mortality 

estimation based on assumed person-km traveled by vehicles and cities, based on the 

simulation. Table S7 illustrates the health analysis of PM2.5 for Shanghai. Figure S1 

presents a map of average emission factors of CO2 and PM2.5 for regional electricity grids. 

Figure S2 graphically illustrates different e-car CO2 and PM2.5 emission factors for 

electricity grids. The results of Monte Carlo simulation of PM2.5 mortality risk per 1010 

passenger-km for all 34 cities with the number of simulations per city proportional to 

population is shown in Figure S3. Figure S4 illustrates the Monte Carlo simulation of 

weighted average of 34 cities PM2.5 mortality risk per 1010 passenger-km. Figure S5 is the 

scatter plot for PM2.5 emission factors and proportion of risks to rural population from 

urban EV electricity use for each electricity grid. 
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Supporting Information - Methods 

Emission Factors 

To estimate EVs station-to-wheel emission factors, we identify two metrics. First, we 

use electricity generation and total emissions to estimate emission intensities of the power 

sector. These values are estimated by regional power sector, using the CARMA database1 

to track yearly electricity generation and CO2 emissions. The NASA INTEX-B2 dataset 

reports total emissions of conventional pollutants, including BC, CO, NOX, PM2.5, PM10, 

SO2, and VOC throughout China and is used in conjunction with the CARMA database to 

estimate emission intensity of electricity generation in grams per kilowatt hour (g kWh-1). 

Second, the energy use of EVs (kWh km-1), including transmission loss rates, is coupled 

with average emission intensity from the power sector (g kWh-1). The product of 

electricity generation emission intensity and electricity use from vehicles results in 

station-to-wheel emission factors from EVs (g km-1). In the process of estimating station-

to-wheel emission factors, estimated energy requirements of EVs are obtained for several 

types of battery EVs such as existing Chinese e-bikes (average energy efficiency1.8 kWh 

100km-1) and a compact e-car (average energy efficiency 18 kWh 100km-1).3, 4 These 

energy requirements are reported as the energy required from station-to-wheel, namely 

the recharger or motor efficiency losses are included in the energy use rate. Moreover, we 

consider approximately 14% transmission and in-plant use loss in China.5, 6 The average 

station-to-wheel emission factors of these pollutants are estimated for 16 relatively 

independent power grids in China.7 For sake of this analysis, we assume that cities are 

served by power plants in the grid in which they are located. Data are unavailable for 

Tibet.  
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Intake Fraction (iF) 

One-compartment model for urban iF. The one-compartment iF model estimates 

exposure of air pollution over a city that occupies a compartment bounded by the borders 

of the city and the atmospheric mixing height. This model is treated as an approximate 

method to estimate pollution exposure in urban areas. A one-compartment model may 

provide an acceptably accurate evaluation of spatially averaged concentrations in an 

urban area.8, 9 The compartment model used here is static and is suitable for estimating iF 

for non-reacting or slowly reacting pollutants. The expression is as follows: 

AuH
BPiF tcompartmen =  

Where, B is the population average breathing rate (m3 person-s-1) 14.5 based on 

metabolic activity studies;10 P is the urban population for the designated city; H is the 

atmospheric mixing height (m); u is wind speed averaged over the mixing height (m s-1); 

A is urban land area (m2). 

Regression Model for EGUs iF. Intake fraction of EGU emissions can be calculated 

based on previous multivariate regression analyses of many EGUs in China.11 The 

following relationships between iF and population in Table S1 is used to predict iF of 

EGUs emission in China. The population living in the radii of 100km, 500km, 1000km 

and farther than 1000km from more than 1000 fossil EGUs in China are estimated using 

GIS, based on the EGUs location presented in the CARMA database and county-level 

Chinese population data from the 2000 Census.12 The coefficients in Table S1 and related 

population are applied to estimate iF from EGU emissions using the following 

relationships: 
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iFj
k = αi

kPi
i=1

n

∑  

Here, iFj
k  is the iF of pollutant k from EGU j. Pi is the population in each i radius from 

the EGU; α i
k is the parameter estimate for pollutant k on the pollution in each i radius of 

the EGU. The α i
k  parameters are given in Table S1. Intake fraction of pollutants from 

each EGUs is estimated and the capacity-weighted average iF of all EGUs in a grid is 

applied to develop an average iF parameter for each electricity grid. Zhou et al.11 only 

predicted the coefficient for iF of PM1 and PM3 based on their atmospheric dispersion 

modeling results. We interpolate the iF calculated from PM1 and PM3 relationships to 

estimate PM2.5 iF.  

Table S1. Regression Coefficient for EGU iF Estimation11 

 R2 Pop. <=100 km 100km<Pop.<500km 500km<Pop.<1000km Pop.>=1000 km 

SO2 0.95 9.5E-8** 
(3.9E-8) 

1.2E-8** 
(4.6E-9) 

2.5E-9 
(2.3E-9) 

1.4E-9** 
(7.0E-10) 

PM1 0.95 1.3E-7* 
(8.2E-8) 

2.0E-8** 
(9.8E-9) 

9.8E-9** 
(4.8E-9) 

2.9E-9** 
(1.5E-9) 

PM3 0.89 1.2E-7* 
(7.9E-8) 

1.3E-8** 
(9.4E-9) 

4.5E-9 
(4.6E-9) 

1.5E-9** 
(1.4E-9) 

PM7 0.88 9.1E-8** 
(4.7E-8) 

7.1E-9* 
(5.7E-9) 

2.1E-9 
(2.8E-9) 

7.8E-10* 
(8.5E-10) 

PM13 0.87 6.4E-8** 
(2.6E-8) 

3.6E-9 
(3.1E-9) 

5.6E-10 
(1.5E-9) 

4.5E-10 
(4.7E-10) 

SO4 0.93 1.5E-8 
(4.2E-8) 

6.0E-9* 
(5.1E-9) 

5.9E-9** 
(2.5E-9) 

1.8E-9** 
(7.6E-10) 

NO3 0.86 2.9E-8 
(5.0E-8) 

9.6E-9** 
(6.0E-9) 

2.0E-9 
(2.9E-9) 

1.3E-9** 
(9.1E-10) 

1. ** Parameter estimate significant at 0.05 level. 
2. * Parameter estimate significant at 0.10 level. 
3. Numbers in parenthesis are the standard error of parameter estimates. 
4. PMx= particulate matter with diameter precisely equal to x µm. 
5. Population variable in millions of people. 
6. No intercept term is used in the above regression models and R-square is not corrected for the 

mean. 
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Public Health Impacts 

While there are many different types of pollution emitted from CVs and buses and 

EVs, this paper focuses on primary PM2.5 because of its well-documented health effects. 

It is important to note however that omission of other pollutants does not minimize their 

impact.13 The mortality risks due to PM2.5 and chronic cancer risk owing to diesel 

particulate matter (DPM) present the largest concern associated with diesel vehicle 

emissions. Because most PM emissions from diesel engines are smaller than 1 μm in 

diameter, it is acceptable to consider all DPM as PM2.5.14 The value of the unit dose, or 

the total amount of PM2.5 inhaled for each case of premature mortality, is estimated from 

the American Cancer Society (ACS) cohort.15 Their research concludes that, with each 10 

µg m-3 increase in average PM2.5 ambient concentrations, the risk of all-cause mortality 

will increase approximately 4%. Chinese death rate is approximately 7 deaths (1000 

people)-1 year-1 in 2009.16 Therefore, in China, a 4% increase in the death rate is 0.28 

deaths (1000 people)-1 year-1. Assuming a breathing rate is 14.5 m3 person-1 day-1 - namely 

5292.5 m3 person-1 year-1, exposure to 10 µg m-3
 PM2.5 concentration elevation would lead 

to an inhalation intake rate of 52925 µg person-1 year-1, or equivalently 5.3 deaths kg-1, or 

188 g death-1. The mortality risk is calculated based on a 1-year exposure periods. We 

consider primary PM2.5 station-to-wheel emission factors from gasoline cars, diesel cars, 

and diesel buses using on-road empirical estimates. 

Sensitive Analysis 

    Monte Carlo simulation is employed to conduct sensitivity analysis. The distribution 

type and boundaries for each input variable depend on observations from peer-reviewed 

literature and authors’ professional judgment. The details are shown in Table S2.  
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Table S2. Input Variables and Distributions for Monte Carlo Simulation  

Variable Mode Base-case 
value 

Distribution used in Monte 
Carlo simulations Units 

Energy 
Efficiency1 

E-bike 1.8 Triangular (1.2, 2.1) kWh  
100km-1 E-car 18 Triangular (11, 25) 

Station-to-
wheel PM2.5  

Emission 
Factor2 

Gasoline Car 5 Triangular (1, 10) 

mg km-1 Diesel Car 50 Normal (50, 5.5) 

Diesel Bus 600 Triangular (200, 1000) 

Intake Fraction 

E-bike iF*3 Normal (iF*, 2.3)5 

ppm 
E-car iF* Normal (iF*, 2.3) 

Gasoline Car iF**4 Triangular (0.5iF**, 1.5iF**) 
Diesel Car iF** Triangular (0.5iF**, 1.5iF**) 
Diesel Bus iF** Triangular (0.5iF**, 1.5iF**) 

Load Factor7 

E-bike 1 (Constant)  
person 

vehicle-1 
E-car 1.5 Uniform (1.3, 1.7) 

Gasoline Car 1.5 Uniform (1.3, 1.7) 
Diesel Car 1.5 Uniform (1.3, 1.7) 
Diesel Bus 50 Uniform (25, 75)  

    Dose 
Response8      Mortality         4%          Triangular (1%, 20%)  

 

 

Notes: 
1. E-bike energy efficiency source: lower bound17 and upper bound3; E-car energy 
efficiency source: lower bound18 and upper bound19.  
2. Gasoline car PM2.5 emission factor source: lower bound20 and upper bound21; diesel 
car PM2.5 emission factor source.22  
3. iF* is the point estimate for the EGU iF for EVs in a specific city. 
4. iF** is the point estimate for the tailpipe iF for a CV in a specific city. 
5. Normal (iF*, 2.3) indicates a normal (Gaussian) distribution, with mean = iF* and 
standard deviation = 2.3 ppm. The value for the standard deviation (2.3 ppm) is the 
model residual standard deviation for EGU iF source.11 
6. The distribution of intake fraction of CVs is based on: Zhou et al.23. 
7. Passenger car load factor source: lower bound24 and upper bound 25. 
8. Dose response source.15, 23, 24, 26, 27 The value indicates the percentage increase in 
mortality rate per 10 µg m-3

 increase in PM2.5.  
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Supporting Information – Results 

Well-to-station emissions include fossil energy extraction, refining, storage, and 

transportation processes. We use previous energy life cycle analyses for CVs and EVs in 

China to estimate average well-to-station emissions (Table S3). Well-to-station emissions 

are lower for motorcycle, e-bike and diesel bus than for cars. Compared to a new (Euro 

IV) gasoline car, average e-car emissions are about 4× lower for CO, 2× lower for NOx, 

4× lower for HC, 3× lower for SO2, 15× lower for CO2 and 2× greater for PM2.5 and 

PM10. This finding reflects, in part, that oil production and refining can generate greater 

HC, CO2, NOx and SO2 per kilometer driven (but lower PM) than electricity generation. 

In general, well-to-station fuel emissions constitute a small portion (<20%) of total well-

to-wheel emissions for EVs and diesel cars. However, well-to-station emissions can 

constitute a large portion of total well-to-wheel emissions for several gasoline car 

pollutants.  

 

Figure S1. Average station-to-wheel emission factors for CO2 (left plot) and PM2.5 
(right plot) for China’s 15 electricity grids. 
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Figure S2. Average e-car station-to-wheel emission factors for CO2 and PM2.5 for 
China’s 15 electricity grids. In general, points in the lower left represent grids in the 
southwest and points on the upper right represent grids in the northeast. 
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Table S3. Midpoint Emission Factors of EVs and CVs (g person-km-1) 

 CO NOX HC SO2 PM2.5 PM10
6 CO2 

Euro III Diesel Car 
(17 km l-1) 

0.43 
(0.19) 

0.33 
(0.05) 

0.04 
(0.001) 

- 
(N/A) 

0.03 
 

- 
(0.004) 

104 
(22.6) 

Euro III Gasoline Car 
(12.8 km l-1) 

1.23 
(0.04) 

0.14 
(0.14) 

0.05 
(0.04) 

- 
(0.09) 

0.003 
 

- 
(0.008) 

121 
(54.1) 

Euro IV Gasoline Car 
(12.8 km l-1) 

0.27 
(0.04) 

0.04 
(0.14) 

0.02 
(0.04) 

- 
(0.09) 

0.003 
 

- 
(0.008) 

121 
(54.1) 

Electric Car (E-car) 
(18 kWh (100 km)-1) 

0.09 
(0.01) 

0.36 
(0.06) 

0.04 
(0.01) 

0.74 
(0.03) 

0.058 
 

0.10 
(0.015) 

125 
(3.7) 

Motorcycle 
(40 km l-1) 

1.25 
(0.12) 

0.15 
(0.03) 

12.55 
(0.001) 

- 
(N/A) 

0.1 
 

- 
(0.003) 

55 
(14.4) 

Electric Bike (E-Bike) 
(1.8 kWh (100 km)-1) 

0.014 
(0.001) 

0.05 
(0.01) 

0.005 
(0.001) 

0.11 
(0.01) 

0.009 
 

0.015 
(0.002) 

18.8 
(0.6) 

Bus 

(2.2 km l-1) 

0.16 
(0.04) 

0.27 
(0.01) 

0.02 
(0.0002) 

0.002 
(0.001) 

0.012 
 

- 
(0.001) 

25.5 
(5.2) 

1. Values without parenthesis are station-to-wheel emission factors. Values in parenthesis are average 
well-to-station emission factors. 

2. Midpoint Car (diesel, gasoline, e-cars) load factors assume 1.5 persons, bus load factor assumes 50 
people and motorcycle and e-bike load factors assume 1 person. The vehicle emission factor is 
averaged over all passengers to estimate emissions per person kilometer. 

3. Average station-to-wheel emission factors of various pollutants for EVs are weighted by electricity 
generation in each electricity network. 

4. Motorcycle emission factors reported in Meszler28 
5. Several studies measure bus emission factors with comparable fuel quality, engine technology and 

exhaust treatments as those in China. Emission factors of PM2.5 range from 0.2-1.0 g km-1with a 
mean of 0.6 g km-1 3, 29, 30 or 0.012 g person-km-1. 

6. The well-to-station emission factors of PM10 include emissions of PM2.5 and PM10. 
7. In the process of estimating well-to-station emissions for coal-based electricity generation, we 

employ 0.404 as energy conversion factor, meaning generation of 1 kWh electricity will require 
0.404 kg standard coal.31 
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Table S4. Station-to-wheel Emission Factors of EVs with Representative Energy 
Efficiency (g 100km-1) 

City Vehicle PM2.5 PM10 SO2 NOX VOC BC CO CO2 

Beijing E-bike 0.80  1.34  11.46  5.38  0.56  0.02  1.38  2183  
E-car 7.97  13.36  114.57  53.84  5.58  0.21  13.80  21828  

Changchun E-bike 1.93  3.19  12.16  10.02  1.00  0.03  2.47  2741  
E-car 19.29  31.90  121.62  100.21  10.01  0.26  24.73  27414  

Changsha E-bike 0.88  1.46  11.40  5.68  0.59  0.03  1.45  1593 
E-car 8.79  14.60  114.00  56.80  5.86  0.31  14.50  15926 

Changzhou E-bike 0.78  1.32  8.89  5.36  0.58  0.02  1.44  1817 
E-car 7.77  13.20  88.90  53.60  5.84  0.16  14.40  18167 

Chengdu E-bike 0.75  1.27  16.60  4.59  0.45  0.03  1.11  1351 
E-car 7.48  12.70  166.00  45.90  4.50  0.31  11.10  13508 

Chongqing E-bike 1.18  1.99  22.30  7.03  0.68  0.05  1.69  2189 
E-car 11.80  19.90  223.00  70.30  6.82  0.49  16.90  21886 

Dalian E-bike 1.93  3.19  12.16  10.02  1.00  0.03  2.47  2741  
E-car 19.29  31.90  121.62  100.21  10.01  0.26  24.73  27414  

Foshan E-bike 0.57  0.95  5.62  3.34  0.38  0.01  0.93  1608 
E-car 5.67  9.54  56.20  33.40  3.76  0.06  9.28  16085 

Guangzhou E-bike 0.57  0.95  5.62  3.34  0.38  0.01  0.93  1608 
E-car 5.67  9.54  56.20  33.40  3.76  0.06  9.28  16085 

Guiyang E-bike 0.50  0.85  16.50  3.37  0.36  0.01  0.88  1687 
E-car 5.01  8.47  165.00  33.70  3.56  0.12  8.80  16868 

Hangzhou E-bike 0.78  1.32  8.89  5.36  0.58  0.02  1.44  1817 
E-car 7.77  13.20  88.90  53.60  5.84  0.16  14.40  18167 

Harbin E-bike 1.93  3.19  12.16  10.02  1.00  0.03  2.47  2741  
E-car 19.29  31.90  121.62  100.21  10.01  0.26  24.73  27414  

Huai'an E-bike 0.78  1.32  8.89  5.36  0.58  0.02  1.44  1817 
E-car 7.77  13.20  88.90  53.60  5.84  0.16  14.40  18167 

Jinan E-bike 0.73  1.24  14.20  5.44  0.56  0.03  1.39  2121 
E-car 7.34  12.40  142.00  54.40  5.62  0.31  13.90  21209 

Kunming E-bike 0.58  1.03  10.80  4.45  0.47  0.02  1.17  1444 
E-car 5.80  10.30  108.00  44.50  4.74  0.16  11.70  14437 

Lanzhou E-bike 0.98  1.69  11.60  4.97  0.55  0.01  1.35  1789 
E-car 9.80  16.90  116.00  49.70  5.46  0.12  13.50  17891 

Nanjing 
E-bike 0.78  1.32  8.89  5.36  0.58  0.02  1.44  1817 

E-car 7.77  13.20  88.90  53.60  5.84  0.16  14.40  18167 
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Ningbo E-bike 0.78  1.32  8.89  5.36  0.58  0.02  1.44  1817 
E-car 7.77  13.20  88.90  53.60  5.84  0.16  14.40  18167 

Putian E-bike 0.62  1.03  4.24  3.15  0.38  0.01  0.94  1662 
E-car 6.15  10.30  42.40  31.50  3.79  0.08  9.36  16619 

Qingdao E-bike 0.73  1.24  14.20  5.44  0.56  0.03  1.39  2121 
E-car 7.34  12.40  142.00  54.40  5.62  0.31  13.90  21209 

Shanghai E-bike 0.78  1.32  8.89  5.36  0.58  0.02  1.44  1817 
E-car 7.77  13.20  88.90  53.60  5.84  0.16  14.40  18167 

Shenyang E-bike 1.93  3.19  12.16  10.02  1.00  0.03  2.47  2741  
E-car 19.29  31.90  121.62  100.21  10.01  0.26  24.73  27414  

Shijiazhuang E-bike 0.80  1.34  11.46  5.38  0.56  0.02  1.38  2183  
E-car 7.97  13.36  114.57  53.84  5.58  0.21  13.80  21828  

Suzhou E-bike 0.78  1.32  8.89  5.36  0.58  0.02  1.44  1817 
E-car 7.77  13.20  88.90  53.60  5.84  0.16  14.40  18167 

Taiyuan E-bike 0.80  1.34  11.46  5.38  0.56  0.02  1.38  2183  
E-car 7.97  13.36  114.57  53.84  5.58  0.21  13.80  21828  

Tangshan E-bike 0.80  1.34  11.46  5.38  0.56  0.02  1.38  2183  
E-car 7.97  13.36  114.57  53.84  5.58  0.21  13.80  21828  

Tianjin E-bike 0.80  1.34  11.46  5.38  0.56  0.02  1.38  2183  
E-car 7.97  13.36  114.57  53.84  5.58  0.21  13.80  21828  

Wuhan E-bike 0.88  1.46  11.40  5.68  0.59  0.03  1.45  1593 
E-car 8.79  14.60  114.00  56.80  5.86  0.31  14.50  15926 

Wuxi E-bike 0.78  1.32  8.89  5.36  0.58  0.02  1.44  1817 
E-car 7.77  13.20  88.90  53.60  5.84  0.16  14.40  18167 

Xi'an E-bike 0.98  1.69  11.60  4.97  0.55  0.01  1.35  1789 
E-car 9.80  16.90  116.00  49.70  5.46  0.12  13.50  17891 

Xiangfan E-bike 0.88  1.46  11.40  5.68  0.59  0.03  1.45  1593 

E-car 8.79  14.60  114.00  56.80  5.86  0.31  14.50  15926 

Zaozhuang E-bike 0.73  1.24  14.20  5.44  0.56  0.03  1.39  2121 
E-car 7.34  12.40  142.00  54.40  5.62  0.31  13.90  21209 

Zhengzhou E-bike 0.88  1.46  11.40  5.68  0.59  0.03  1.45  1593 
E-car 8.79  14.60  114.00  56.80  5.86  0.31  14.50  15926 

Zibo E-bike 0.73  1.24  14.20  5.44  0.56  0.03  1.39  2121 
E-car 7.34  12.40  142.00  54.40  5.62  0.31  13.90  21209 
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Table S5. Average iF Comparison – Urban vs. EGUs 

City 

iF-Urban 
(ppm) 

iF - EGUs (ppm) 
Station-to-wheel Emissions from EVs 

Non-reactive 
Station-to-wheel 

Emissions from CVs 
(including PM2.5) 

PM2.5 
(Interpolated) SO2 PM1 PM3 PM7 PM13 SO4 NO3 

Beijing 73.2 5.9 4.0 8.7 5.0 2.7 1.4 4.2 3.1 

Changchun 12.9 4.1 2.9 6.1 3.4 1.9 1.0 3.1 2.3 

Changsha 31.3 8.2 5.5 11.9 7.0 3.9 2.0 5.3 4.0 

Changzhou 12.1 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Chengdu 64.3 6.2 4.4 8.8 5.4 3.1 1.7 3.9 3.1 

Chongqing 11.4 7.4 5.2 10.4 6.5 3.8 2.1 4.4 3.5 

Dalian 12.7 4.1 2.9 6.1 3.4 1.9 1.0 3.1 2.3 

Foshan 116.8 7.4 5.1 10.5 6.4 3.7 2.0 4.6 3.5 

Guangzhou 31.7 7.4 5.1 10.5 6.4 3.7 2.0 4.6 3.5 

Guiyang 8.7 6.2 4.3 9.1 5.2 2.9 1.5 4.2 3.3 

Hangzhou 17.0 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Harbin 15.0 4.1 2.9 6.1 3.4 1.9 1.0 3.1 2.3 

Huai’an 6.5 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Jinan 25.7 7.6 5.4 10.9 6.6 3.7 2.0 4.7 3.9 

Kunming 21.9 4.5 3.1 6.8 3.8 2.1 1.1 3.5 2.5 

Lanzhou 15.4 4.8 3.2 7.2 4.0 2.2 1.1 3.7 2.5 

Nanjing 19.1 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Ningbo 15.0 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Putian 11.0 8.3 5.9 11.8 7.2 4.1 2.2 4.9 4.2 

Qingdao 26.9 7.6 5.4 10.9 6.6 3.7 2.0 4.7 3.9 

Shanghai 50.6 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Shenyang 22.2 4.1 2.9 6.1 3.4 1.9 1.0 3.1 2.3 

Shijiazhuang 52.0 5.9 4.0 8.7 5.0 2.7 1.4 4.2 3.1 

Suzhou 15.1 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Taiyuan 49.9 5.9 4.0 8.7 5.0 2.7 1.4 4.2 3.1 

Tangshan 11.1 5.9 4.0 8.7 5.0 2.7 1.4 4.2 3.1 

Tianjin 25.6 5.9 4.0 8.7 5.0 2.7 1.4 4.2 3.1 

Wuhan 38.2 8.2 5.5 11.9 7.0 3.9 2.0 5.3 4.0 
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Wuxi 16.0 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Xi’an 38.3 4.8 3.2 7.2 4.0 2.2 1.1 3.7 2.5 

Xiangfan 10.7 8.2 5.5 11.9 7.0 3.9 2.0 5.3 4.0 

Zaozhuang 6.3 7.6 5.4 10.9 6.6 3.7 2.0 4.7 3.9 

Zhengzhou 31.1 8.2 5.5 11.9 7.0 3.9 2.0 5.3 4.0 

Zibo 9.6 7.6 5.4 10.9 6.6 3.7 2.0 4.7 3.9 

Average 27.2 6.8 4.7 9.8 5.8 3.3 1.7 4.5 3.4 
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Figure S3. Monte Carlo simulation of PM2.5 mortality risk per 1010 passenger-km 
for all 34 cities considered. A total of n=10,000 Monte Carlo simulations was carried 
out, with the number of simulations per city proportional to population. In each 
plot, “P” is the proportion of the simulation outcomes for which the mortality risk is 
lower for EVs that for CVs. The dashed lines on each plot are 1:1 lines. The 
population-weighted average value is indicated with an asterisk. 
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Figure S4. Monte Carlo simulation of weighted average of 34 city PM2.5 mortality 
risk per 1010 passenger-km. Population-weighted average mortality risk is 
calculated from simulation of 34 cities (asterisk in Figure 6). Simulation totaled 
1,000 runs per city. This graph illustrates a random sample of calculated points. In 
each plot, “P” is the proportion of the simulation outcomes for which the mortality 
risk is lower for EVs that for CVs. The dashed lines on each plot are 1:1 lines.  
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Table S6. Excess Mortality per 1010 Person-km Traveled by Vehicle and City 
based on Monte Carlo Simulation 

City E-bike E-Car Diesel Car 
(Euro III) 

Gasoline Car  
(Euro III) Bus 

Beijing 2.5 
(1.0) 

16.9 
(7.3) 

130.7 
(17.5) 

13.1 
(1.0) 

51.5 
(23.3) 

Changchun 4.1 
(2.4) 

27.1 
(17.1) 

23.0 
(3.1) 

2.3 
(0.2) 

9.1 
(4.1) 

Changsha 3.9 
(1.1) 

26.3 
(8.8) 

55.9 
(7.5) 

5.6 
(0.4) 

22.0 
(10.0) 

Changzhou 3.4 
(1.0) 

22.7 
(7.7) 

21.6 
(2.9) 

2.2 
(0.2) 

8.5 
(3.8) 

Chengdu 2.5 
(0.9) 

16.5 
(6.8) 

114.8 
(15.4) 

11.5 
(0.9) 

45.3 
(20.5) 

Chongqing 4.7 
(1.4) 

31.8 
(11.2) 

20.4 
(2.7) 

2.0 
(0.2) 

8.0 
(3.6) 

Dalian 4.1 
(2.5) 

27.6 
(17.6) 

22.7 
(3.0) 

2.3 
(0.2) 

8.9 
(4.0) 

Foshan 2.2 
(0.7) 

14.6 
(5.7) 

208.9 
(28.0) 

20.9 
(1.6) 

82.3 
(37.2) 

Guangzhou 2.2 
(0.7) 

15.0 
(5.5) 

56.6 
(7.6) 

5.7 
(0.4) 

22.3 
(10.1) 

Guiyang 1.6 
(0.6) 

11.1 
(4.6) 

15.5 
(2.1) 

1.5 
(0.1) 

6.1 
(2.8) 

Hangzhou 3.4 
(0.9) 

22.6 
(7.5) 

30.4 
(4.1) 

3.0 
(0.2) 

12.0 
(5.4) 

Harbin 4.2 
(2.4) 

28.8 
(17.5) 

26.8 
(3.6) 

2.7 
(0.2) 

10.6 
(4.8) 

Huai’an 3.4 
(0.9) 

22.5 
(7.7) 

11.5 
(1.5) 

1.2 
(0.1) 

4.5 
(2.1) 

Jinan 2.9 
(0.9) 

19.6 
(6.9) 

45.9 
(6.1) 

4.6 
(0.4) 

18.1 
(8.2) 

Kunming 1.4 
(0.7) 

9.2 
(5.3) 

39.1 
(5.2) 

3.9 
(0.3) 

15.4 
(7.0) 

Lanzhou 2.5 
(1.2) 

16.7 
(8.9) 

27.5 
(3.7) 

2.7 
(0.2) 

10.8 
(4.9) 

Nanjing 3.4 
(0.9) 

23.1 
(7.6) 

34.1 
(4.6) 

3.4 
(0.3) 

13.4 
(6.1) 

Ningbo 3.4 
(0.9) 

22.7 
(7.8) 

26.8 
(3.6) 

2.7 
(0.2) 

10.6 
(4.8) 

Putian 2.7 
(0.7) 

18.3 
(5.9) 

19.6 
(2.6) 

2.0 
(0.2) 

7.7 
(3.5) 

Qingdao 3.0 
(0.9) 

20.5 
(7.2) 

48.0 
(6.4) 

4.8 
(0.4) 

18.9 
(8.6) 

Shanghai 3.4 
(1.0) 

22.8 
(7.9) 

90.4 
(12.1) 

9.0 
(0.7) 

35.6 
(16.1) 

Shenyang 4.1 
(2.4) 

28.0 
(17.5) 

39.6 
(5.3) 

4.0 
(0.3) 

15.6 
(7.1) 
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Shijiazhuang 
 

2.5 
(1.0) 

16.7 
(7.3) 

92.9 
(12.4) 

9.3 
(0.7) 

36.6 
(16.5) 

Suzhou 3.4 
(1.0) 

22.7 
(7.9) 

27.0 
(3.6) 

2.7 
(0.2) 

10.6 
(4.8) 

Taiyuan 2.5 
(1.0) 

16.9 
(7.3) 

89.1 
(11.9) 

8.9 
(0.7) 

35.1 
(15.9) 

Tangshan 2.5 
(1.0) 

16.4 
(7.4) 

19.8 
(2.7) 

2.0 
(0.2) 

7.8 
(3.5) 

Tianjin 2.5 
(1.0) 

17.0 
(7.5) 

45.7 
(6.1) 

4.6 
(0.3) 

18.0 
(8.1) 

Wuhan 3.8 
(1.1) 

25.6 
(8.7) 

68.2 
(9.1) 

6.8 
(0.5) 

26.9 
(12.2) 

Wuxi 3.4 
(0.9) 

22.7 
(7.5) 

28.6 
(3.8) 

2.9 
(0.2) 

11.3 
(5.1) 

Xi’an 2.5 
(1.2) 

17.1 
(8.8) 

68.4 
(9.2) 

6.8 
(0.5) 

27.0 
(12.2) 

Xiangfan 3.8 
(1.1) 

25.4 
(8.7) 

19.1 
(2.6) 

1.9 
(0.1) 

7.5 
(3.4) 

Zaozhuang 3.0 
(0.9) 

19.9 
(7.4) 

11.2 
(1.5) 

1.1 
(0.1) 

4.4 
(2.0) 

Zhengzhou 3.8 
(1.1) 

25.6 
(8.8) 

55.5 
(7.4) 

5.6 
(0.4) 

21.9 
(9.9) 

Zibo 3.1 
(0.9) 

20.6 
(7.1) 

17.2 
(2.3) 

1.7 
(0.1) 

6.8 
(3.1) 

1.       Numbers in parenthesis are the standard deviation of results 
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Table S7. Public Health Analysis of PM2.5 in Shanghai 

 
Station-to-wheel 
Emission Factor  
(g person-km-1) 

Station-to-wheel 
Emission Factor 
Ratio (CV/EV) 

 
iF 

(ppm) 
 

iF 
Ratio 

Mortality Risk   
(per 1010 person-

km) 

Mortality 
Ratio 

Diesel Bus  
(50 Person) 0.012 1.5 50.6 6.2 32.2 9.6 

E-bike 0.008  8.2  3.4  

Diesel Car 0.033 0.6 50.6 6.2 89.5 4.0 

Gasoline Car 
(Euro IV) 0.003 0.06 50.6 6.2 9.0 0.4 

E-Car 0.058  8.2  22.5  

1. Car (diesel, gasoline, e-cars) load factors assume 1.5 persons, bus load factor assumes 50 people and 
motorcycle and e-bike load factors assume 1 person. The vehicle emission factor is averaged over all 
passengers to estimate emissions per person kilometer. 
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Figure S5. E-car PM2.5 station-to-wheel emission factors and proportion of impacts 
of urban EV use to non-urban populations. In general, urban use of EVs rather 
than CVs moves emissions and health impacts to rural locations. The data exhibit a 
weak negative relationship between emission factors and proportion of health 
impacts born by rural populations, implying that grids with higher emission factors 
are more urbanized.  
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