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h i g h l i g h t s
< We estimate satellite-based surface NO2 concentrations from the OMI sensor.
< We compare OMI estimates with ground-based in situ measurements in a large urban area.
< Within-urban spatial signature of surface NO2 is well resolved by OMI column measurements.
< OMI provides a useful dataset for exploring the epidemiological impact of urban air pollution.
< OMI measurements may be a useful tool for exploring NO2 variability between urban locations.
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a b s t r a c t

Remote sensing may be a useful tool for exploring spatial variability of air pollution exposure within an
urban area. To evaluate the extent to which satellite data from the Ozone Monitoring Instrument (OMI)
can resolve urban-scale gradients in ground-level nitrogen dioxide (NO2) within a large urban area, we
compared estimates of surface NO2 concentrations derived from OMI measurements and US EPA ambient
monitoring stations. OMI, aboard NASA’s Aura satellite, provides daily afternoon (w13:30 local time)
measurements of NO2 tropospheric column abundance. We used scaling factors (surface-to-column
ratios) to relate satellite column measurements to ground-level concentrations. We compared 4138 sets
of paired data for 25 monitoring stations in the South Coast Air Basin of California for all of 2005. OMI
measurements include more data gaps than the ground monitors (60% versus 5% of available data,
respectively), owing to cloud contamination and imposed limits on pixel size. The spatial correlation
between OMI columns and corrected in situ measurements is strong (r¼ 0.93 for annual average data),
indicating that the within-urban spatial signature of surface NO2 is well resolved by the satellite sensor.
Satellite-based surface estimates employing scaling factors from an urban model provide a reliable
measure (annual mean bias: �13%; seasonal mean bias: <1% [spring] to �22% [fall]) of fine-scale surface
NO2. We also find that OMI provides good spatial density in the study region (average area [km2] per
measurement: 730 for the satellite sensor vs. 1100 for the monitors). Our findings indicate that satellite
observations of NO2 from the OMI sensor provide a reliable measure of spatial variability in ground-level
NO2 exposure for a large urban area.

Published by Elsevier Ltd.
1. Introduction including cardiopulmonary mortality (Beelen et al., 2008), lung
Urban air pollution is one of the top 15 causes of death and
disease globally (top 10 for high-income countries), responsible for
an estimated 1 million deaths annually (Mathers et al., 2009).
Nitrogen dioxide (NO2) is an important component of urban air
pollution and a precursor to ground-level ozone, particulate matter,
and acid rain. Epidemiological studies have linked NO2 to several
adverse health effects (Brauer et al., 2008; Kim et al., 2004),
x: þ1 (612) 626 7750.

Ltd.
cancer (Filleul et al., 2005), and asthma exacerbations (Castellsague
et al., 1995; Gauderman et al., 2005). The lifetime of NO2 against
oxidation in the troposphere is short (whours), leading to large
spatial variability near sources (Hoek et al., 2008; Liang et al., 1998;
Madsen et al., 2011; Marshall et al., 2008; Novotny et al., 2011).
Quantifying the spatial variability in surface NO2 concentrations
provides valuable information for air pollution exposure assess-
ment and environmental justice. Here we examine how well
satellite-based measurements of NO2 from the Ozone Monitoring
Instrument (OMI) can resolve spatial variability in ground-level
concentrations within a large urban area, and to what degree
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scaling factors (surface-to-column ratios) from local or global
chemical transport models provide an additional constraint.

The spatial resolution of ground-based measurements is con-
strained by the limited number of monitors and their proximity.
High quality in situ measurements are frequently lacking in devel-
oping countries. Remote sensing of air pollution can supplement
existing ground-based monitors and provide coverage where
ground-based data are unavailable (Brauer et al., 2012; van
Donkelaar et al., 2010). Satellite observations of tropospheric NO2
column abundance have been conducted since 1995 (Burrows et al.,
1999) and have been improving in spatial and temporal resolution
(Martin, 2008). Methods to relate these remotely sensed column
abundances to surface concentrations are necessary for satellite
measurements to inform discussions on air pollution and attribut-
able health effects. Ground-level NO2 concentrations obtained from
OMI on the basis of surface-to-column ratios simulated with
a chemical transport model (CTM) have been shown to agree well
with corrected in situ measurements in the US and Canada (Lamsal
et al., 2008, 2010). Thatfinding suggests thatOMI candetect regional
variability in NO2. Much of the research comparing satellite and
ground-levelmeasurements ofNO2 has focusedon temporal (Ghude
et al., 2011; Kramer et al., 2008; Meng et al., 2010; Petritoli et al.,
2004; Russell et al., 2010) or spatio-temporal (Boersma et al.,
2009; Lamsal et al., 2008, 2010; Ordoñez et al., 2006) patterns,
and focused on large spatial scales (Blond et al., 2007; Duncan et al.,
2010) and/or rural locations. Studies that have focused on urbanNO2
are limited to a single monitor (Boersma et al., 2009; Ghude et al.,
2011; Petritoli et al., 2004) or a spatial average (Kramer et al.,
2008; Russell et al., 2010) for the urban areas examined. Limited
work has been done to evaluate the ability of OMI or other current
satellite sensors to detect gradients of surface NO2 within a single
urban area. In addition, modeled NO2 is susceptible to biases in
coarse-resolution chemical transport models, owing to non-line-
arity in NO2 chemistry. Valin et al. (2011a) found that a model
resolution of 4e12 km is necessary to predict NO2 column abun-
dance with 10% accuracy. To our knowledge no research has evalu-
ated the role of model resolution in estimating surface-to-column
ratios for interpreting satellite measurements. See Table S1 in the
Online Supplemental Information (SI) for a summary of articles
comparing satellite and ground-level measurements of NO2.

Here, we compare satellite and ground-based measurements of
NO2 in California’s South Coast Air Basin (SoCAB) to evaluate the
spatial fidelity of OMI measurements in a large urban area. We
evaluate three potential scaling factors (i.e., surface-to-column
ratio) e a “constant” factor, based on typical urban conditions;
and, spatio-temporally varying factors based on global- (GEOS-
Chem) and urban-scale (CAMx) chemical transport models. We
compare the resulting satellite-derived estimates to in situ
measurements of surface concentrations in order to evaluate the
ability of OMI to capture gradients of ground-level NO2 within
a large urban area, and to assess the role of model resolution in
deriving estimates of surface NO2 from satellite data. The South
Coast provides a logical study location because of the large number
of NO2 monitors, because chemical transport models such as CAMx
are well developed for this urban area, because of the generally
sunny climate (minimizing data contamination by clouds), and
because of the large population exposed to poor air quality.

2. Methods

2.1. OMI data

The OMI sensor (Levelt et al., 2006) aboard the Earth Observing
System (EOS) Aura satellite provides daily global measurements of
tropospheric NO2 column abundance. The satellite follows a sun-
synchronous orbit, passing over each location at w13:30 local
time (Schoeberl et al., 2006). OMI takes 60 cross-track measure-
ments along a 2600 km swath with nadir resolution up to
13 � 24 km2. The OMI nadir pixel observes the same location every
16 days; the center point and pixel size at a given location differs by
day during this cycle. Adjacent OMI pixels along the flight path also
exhibit slight overlap at the edges of the swath, so the effective
spatial resolution of OMI observations increases with temporal
averaging. We use the OMI Standard Product (Version 1.0.5,
Collection 3) from the NASA Goddard Earth Sciences Data and
Information Services Center (GES DISC) (available: http://disc.gsfc.
nasa.gov/Aura/OMI/omno2_v003.shtml). We use data from 2005,
when emission inventories for CAMx are available (Ospital et al.,
2008). Details regarding the OMI NO2 Standard Product are avail-
able elsewhere (Boersma et al., 2002; Bucsela et al., 2006; Celarier
et al., 2008). Briefly, retrievals rely on the determination of slant
column densities calculated by differential optical absorption
spectroscopy in a spectral window specific to NO2 (405e465 nm). A
background (stratospheric) NO2 field is determined by applying
masks over areas with high tropospheric NO2 column abundance,
smoothing the remaining data, and performing a zonal planetary
wave analysis up to wave-2. Slant columns are then converted to
tropospheric vertical column densities using a tropospheric air
mass factor (AMF) that accounts for vertical profiles of temperature
and NO2 (the latter based on an annual average profile as simulated
by GEOS-Chem), viewing geometry, and the pressure and reflec-
tivity from clouds and terrain. Cloud top height and cloud fraction
are obtained from OMI using the O2eO2 algorithm (Acarreta et al.,
2004).

The main sources of error in determining tropospheric NO2
columns are associated with uncertainties in surface albedo, aero-
sols, cloud parameters, and the NO2 vertical profile (Martin et al.,
2002; Boersma et al., 2004). Recent work employing high spatial
and temporal resolution terrain, albedo, and profile inputs suggest
that the coarse resolution of these inputs in the standard OMI
product lead to an overestimation of tropospheric NO2 (w30%) for
relatively clean regions and an underestimation (w8%) for urban
regions (Russell et al., 2011). Additional errors arise in resolving
stratospheric from tropospheric NO2, resulting in an estimated
overall error in tropospheric NO2 column density of up to 30% for
clear scenes and up to 60% for scenes in the presence of clouds or
haze (Boersma et al., 2002). Lamsal et al. (2008, 2010) also found
that the OMI Standard Product exhibits a seasonal bias, owing to the
use of an annual average NO2 profile to calculate the AMF. The re-
ported amplitude of the seasonal bias is larger for rural locations
(74% [summer] versus �6% [winter]) (Lamsal et al., 2010) than for
urban locations (�17% [summer/fall] versus �36% [winter/spring])
(Lamsal et al., 2008). To minimize errors associated with cloud
cover, we use here only cloud-free scenes (cloud radiance fraction
<0.3). To reduce spatial averaging near the swath edge, we only use
pixels with footprint area<1200 km2. We eliminate measurements
with a root mean square error of fit greater than 0.0003, with solar
zenith angle greater than 85�, and according to data-quality flags
provided with the data product.

2.2. Surface-to-column scaling factors

Determining ground-level concentrations of NO2 from OMI
tropospheric column abundance requires knowledge of the local
vertical profile of NO2. Lamsal et al. (2008, 2010) showed that the
NO2 vertical profiles obtained from a global three-dimensional
chemical transport model (GEOS-Chem) can be used to estimate
ground-level NO2 concentrations from OMI tropospheric NO2
columnobservations,with significant temporal correlation (r¼0.3e
0.8 across theUSandCanada) versus observations.Here,we focus on
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evaluating the extent to which OMI can resolve fine-scale NO2
gradients within a large urban area. We start with a single assumed
typical urbanprofile as a straightforwardbaselinemethod to convert
column measurements to surface estimates. We also employ more
detailed approaches, with urban (CAMx) and global (GEOS-Chem)
models providing spatially and temporally -specific estimates of the
NO2 vertical profile. Spatial precision is 2 � 2 km2 for CAMx and
2 � 2.5� (roughly 220 � 230 km2 in the SoCAB) for GEOS-Chem.
While the global-scale model provides no significant spatial infor-
mation on the scale of the SoCAB, we include it here to assess
whether the temporal information provided (day-to-day variability
in scaling factors) offers an improvement relative to the single-
profile approach.

2.2.1. GEOS-Chem model
We use the GEOS-Chem global three-dimensional model of

atmospheric chemistry (version 8, http://www.geos-chem.org) to
provide a global-scale simulation of NO2 and its vertical distribu-
tion. GEOS-Chem uses GEOS-5.2.0 assimilated meteorological data
from the NASA Goddard Earth Observing System, which have 6-h
temporal resolution (3-h for surface variables and mixing
depths), 0.5 � 0.667� horizontal resolution, and 72 vertical layers.
For computational expediency we degrade the horizontal resolu-
tion here to 2� 2.5� and the vertical resolution to 47 vertical layers.
The model includes detailed ozoneeNOxeVOC chemistry coupled
to aerosols, with 120 species simulated explicitly. Boundary layer
mixing in GEOS-Chem uses the non-local scheme of Lin and
McElroy (2010). Further details regarding the model simulation
for NO2 and related species, including evaluation against aircraft
and surface data, are provided elsewhere (Hudman et al., 2007).
Anthropogenic emissions over the US are from the Environmental
Protection Agency (EPA) 1999 National Emission Inventory (US EPA,
2008), with adjustments described by Hudman et al. (2007, 2008)
to account for recent reductions. We use GEOS-Chem output
averaged during a 3-h window (12:00e15:00 local time) corre-
sponding with the Aura overpass for each day.
Fig. 1. Study region in Southern California. The green shaded region is the South Coast air qu
Chem grid cell (2 � 2.5�). The red line shows the outline of the South Coast air basin (SoCAB)
are illustrated in the lower left corner of the domain). Blue circles designate the 25 EPA moni
interpretation of the references to color in this figure legend, the reader is referred to the
2.2.2. CAMx model
We use the Comprehensive Air-Quality Model with extensions

(CAMx, http://www.camx.com/) to provide an urban-scale
(2 � 2 km2 grid cells) simulation of year-2005 NO2. We employ
hourlymeteorological data fromMM5 (http://www.mmm.ucar.edu/
mm5/) mesoscale meteorological model, generated using four
dimensional data assimilation and National Weather Service model
initializations. We employ the MATES III emissions inventory,
developed by the South Coast Air Quality Management District
(SCAQMD). A detailed description of the meteorological inputs and
emissions inventory can be found elsewhere (Ospital et al., 2008).
CAMx includes8vertical layers fromthesurface (1000hPa) tow2km
(800 hPa). Vertical mixing in CAMx is driven by the Eulerian conti-
nuity equation closed by K-theory. We employ Carbon Bond Mech-
anism IV for gas-phase chemistry mechanisms. Boundary and initial
conditionswere obtained from the 2005 annual simulations used for
the SCAQMD’s 2007 Air Quality Management Plan compliance
demonstration (SCAQMD, 2007). Of particular relevance for our
application is thevertical boundaryatop theCAMxdomain,which for
NO2 is constant at 0.02 ppb. Aswith GEOS-Chem,we averaged CAMx
hourly NO2 concentrations to correspond with Aura/OMI overpass
(12:00e15:00 local time).

2.3. Ambient monitoring station data

We employ publicly available hourly in situ NO2 measurements
from the US EPA. We calculate the average over the satellite over-
pass time (12:00e15:00 local) for each of the 25 ground-level NO2
monitors located in the study region (Fig. 1). All monitors employ
chemiluminescence analyzers, which measure NO2 indirectly as
the difference between alternating measurements of nitric oxide
(NO) and nitrogen oxides (NOx h NO þ NO2) (US EPA, 1975). The
reaction of NO with ozone produces a characteristic chem-
iluminescence that allows for the direct measurement of NO in the
sample. NOx is then measured in the same way after passing the
incoming air over amolybdenum converter that reduces NO2 to NO.
ality Management District (SCAQMD). The blue line shows the outline of a single GEOS-
, as employed in the CAMx modeling domain (9000 grid cells, 2 � 2 km2 each; grid cells
tors. White pluses and labels (aef) correspond to the vertical profiles in Fig. 2 (aef). (For
web version of this article.)

http://www.geos-chem.org
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Owing to interference from other reactive nitrogen species (NOz),
measurements of NOx, and consequently NO2, are often over-
estimated with this technique (US EPA, 1975; Steinbacher et al.,
2007). The main interfering species are peroxyacetyl nitrate
(PAN), nitric acid (HNO3), and organic nitrates (Steinbacher et al.,
2007). Dunlea et al. (2007) found that such interferences can
account for up to 50% of afternoon NO2 measured by chem-
iluminescence in Mexico City, but amount to less than 10% for more
typical urban conditions (Boersma et al., 2009) where NOx is a large
portion of total reactive nitrogen (NOy).

Lamsal et al. (2008) developed a method to estimate the NOz

interference for chemiluminescence analyzers based on modeled
concentrations of the main interfering species. We apply this
method here, using the CAMx model to estimate the interference
and correct for it in the in situ measurements. The annual mean
interference for all monitors in the SoCAB is 24% (inter-quartile
range, 13e32%); annual mean interference is typically lower near
major sources (see Fig. 2). Monitor interference is highest in the
summer (seasonal mean interference for all monitors is 30%) and
lowest in thewinter (15%) owing to the longerNOx lifetime inwinter.

EPAmonitoring data provide minimum detection limits for each
of themonitors in the study region. However, a numeric estimate of
the concentration is provided by EPA even when the value is below
the nominal detection limit. Measurements below the monitor
detection limit (which occurred during 14% of the measurements)
were included unmodified in our analysis. Replacing those values
with the detection limit value yielded almost no change in our
results.

Comparisons below exclude data from one monitor, located
upwind of the Los Angeles International Airport (LAX). For this
monitor, the satellite and model pixels include the nearby airport,
but the monitor, being upwind of the airport, likely is not strongly
influenced by airport emissions.
2.4. Estimating surface concentrations

We use the GEOS-Chem and CAMx models to derive local NO2
vertical profiles for the SoCAB. Fig. 1 shows the CAMx modeling
domain (9000 grid cells, 150 � 240 km2) and the GEOS-Chem grid
cell (w220 � 230 km2) that covers the study region. Differences in
the spatial resolution of the models e grid cell area is four orders of
magnitude larger for GEOS-Chem (w220� 230 km2) than for CAMx
Fig. 2. Map of NOz interference for chemiluminescence analyzers for the SoCAB as
simulated by CAMx. Pluses indicate the 25 EPA monitors.
(2 � 2 km2) e will result in differences in model output owing to
nonlinearities in chemistry and dilution rates. GEOS-Chem assumes
emissions from Los Angeles are instantly mixed throughout a large
land area; CAMxmakes physically similar assumptions but at much
smaller spatial scales. The modeled NO2 vertical profiles are influ-
enced by the degree of mixing; differences in vertical mixing
schemes employed by each model will also contribute to differ-
ences in model output. Our focus here is not on modelemodel
comparison, but on assessing the information provided by the
models for resolving within-urban air pollution gradients based on
satellite data. Fig. 3 provides the NO2 vertical profile from CAMx for
several locations, and from GEOS-Chem.

We infer surface NO2 concentrations from the satellite observa-
tions by calculating a scaling factor (ratio of surface concentration to
column abundance) for each satellite pixel. As our baseline approach
we employ a constant scaling factor (1.0 � 10�15 ppb cm2 molec�1),
calculated as the ratio of average in situ surface NO2 to average OMI
column abundance for coinciding measurements in the SoCAB.
Because of theway the scale factor is constructed, using the EPAdata,
comparisons using this baseline approach are meaningful only in
terms of correlation statistics and not for comparing absolute
concentrations. We also obtain the temporally varying modeled
scaling factors from the GEOS-Chem grid cell in the study region. For
theCAMxscaling factors, the surface concentration reflects themodel
grid cell for each individual monitor, while the column abundance
reflects an average over allmodel grid cellswithin each satellite pixel.
The CAMx scaling factors assume a constant concentration above
2 km equal to the model boundary condition (0.02 ppb). Scaling
factors from the CAMxmodel are, on average, larger than those from
GEOS-Chem (median [inter-quartile range] in 10�16 ppb cm2

molec�1: 6.3 [4.9e8.1] for CAMx, 3.4 [2.9e3.9] for GEOS-Chem).
Spatial variability, defined here as the coefficient-of-variability
among monitoring-station locations, is lower for the CAMx scaling
factors (21e38% for monthly mean values) compared to in situ and
CAMx modeled surface concentrations (48e61%) and OMI column
measurements (43e60%). Scaling factors from the CAMx model do
not exhibit temporal patterns of note. GEOS-Chem scaling factors are
lowest in the summerandhighest inwinter (median[units: 10�16ppb
cm�2 molec�1]; 2.9 [summer], 4.3 [winter]). We apply these scaling
factors to theOMIpixels to obtaindaily surfaceNO2estimates foreach
monitor location. For each day we pair coinciding satellite and
ground-level measurements (N ¼ 4138).

3. Results

Data gaps were more prevalent for the OMI measurements than
for EPA monitors (60% vs. 5%, respectively, of potentially available
data from the OMI and EPA datasets). Because overlap at swath
edges can potentially result in multiple OMI observations for
a single monitor-day, only 47% (rather than 60%) of monitor-days
lack corresponding satellite data (see Table S2). EPA monitors
exhibit no statistical (p < 0.001) difference in NO2 concentrations
between days with or without satellite measurements, suggesting
that excluding days with substantial cloud cover and/or haze does
not bias our results. Summary statistics for each surface NO2 esti-
mation method are presented in Table 1. OMI-derived NO2 and in
situ measurements exhibit temporal correlation (r ¼ 0.4e0.8) that
is consistent with the findings of Lamsal et al. (2008) with the
exception of one monitor (r ¼ 0.18 [OMI] to 0.33 [CAMx]) located at
the eastern edge of the study region. Pearson and Spearman
correlation statistics (r ¼ 0.73, rs ¼ 0.77; Fig. 4a, FigureS1a,b) and
quartile-based kappa statistics (k ¼ 0.37, linear-weighted-k ¼ 0.57;
Figure S1c,d) demonstrate a strong relationship between OMI
column measurements and corrected EPA ground-level data
(Figures S3eS5 provide pairwise scatter plots). This result indicates



Fig. 3. Comparison of average NO2 vertical profile estimates from (aef) individual CAMx grid cells (see Fig. 1), (g) The GEOS-Chem grid cell, and (h) all CAMx cells within the GEOS-
Chem grid cell (spatially averaged). Gray shading indicates the inter-quartile range. X-axis scales differ among plots. Number in each plot indicates surface-to-column ratio (units:
10�16 ppb cm2 molec�1) for that location.
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that the within-urban spatial signature of ground-level NO2 is well
represented in the OMI data. A similar relationship (r ¼ 0.71,
rs ¼ 0.76, k ¼ 0.36, weighted-k ¼ 0.55; Fig. 4a, Figure S1aed) is
observed for OMI þ GEOS-Chem surface estimates. Thus, employ-
ing the temporally varying GEOS-Chem-modeled scaling factors
does not improve the ability of the satellite measurements to
resolve fine-scale NO2 gradients within a large urban area beyond
the baseline approach using a constant scaling factor. The
OMI þ CAMx method exhibits a modest improvement over the
baseline approach (r ¼ 0.77, rs ¼ 0.83, k ¼ 0.44, weighted-k ¼ 0.64;
Fig. 4a, Figure S1aed). Correlation and kappa statistics do not
demonstrate strong seasonal patterns (Figure S2aed).

In addition to capturing spatial patterns of variability, for many
air pollution exposure applications it is important for satellite-
based methods to provide reliable absolute estimates of surface
concentration. Fig. 5 shows that corrected measurements from EPA
ground-level monitors are, on average, higher than the model and
satellite-derived concentrations. The annual mean bias for satellite-
based surface estimates is �50% and �13% for OMI þ GEOS-Chem
and OMI þ CAMx methods respectively (Fig. 4b, Figure S1g). Both
methods exhibit seasonal variation in bias, ranging from �37% in
winter to�60% in summer for OMIþ GEOS-Chem, and from<1% in
spring to �22% in fall for OMI þ CAMx (Figure S2g). In general, bias
is lower in the winter/spring than in the summer/fall (Figure S2g);
this pattern in the seasonal bias differs from the pattern reported by
Lamsal et al. (2008, 2010).

The low average difference and bias for OMI þ CAMx (Fig. 4b,c)
imply that this method provides a reliable measure of fine-scale
within-urban gradients of surface NO2. To highlight this finding,
Fig. 6 shows concentrations along a 160 km transect. A comparison
Table 1
Summary of 2005 annual average NO2 estimates by method.

NO2 estimate method Mean (ppb) St. Dev. (ppb)

EPA monitor 14.7 12.4
OMI þ CAMx 10.1 8.3
CAMx only 11.9 8.6
OMI þ GEOS-Chem 5.4 4.8
of annual average estimates at each monitor over the study period
reveals higher correlation and kappa statistics (Figure S1aed)
relative to the statistics for the ensemble of paired coincident
measurements. Thus temporal averaging improves the spatial
information content of the satellite-based estimates. Additional
comparisons can be found in the online supplement (Tables S3eS9
and Figures S1eS5).

Another attribute for comparison is spatial and temporal
coverage. OMI measurements are limited to the overpass time
(w12:00e15:00 local time), whereas ground-based monitors
provide 24-h coverage. Considering the region for which the CAMx
domain and the GEOS-Chem grid cell overlap, each ground-based
NO2 monitor covers, on average, 1100 km2 (i.e., total land area
[27,000 km2] divided by number of monitors [25]). On the other
hand, the footprint of the OMI pixel at nadir is 310 km2, and the
average pixel size in the SoCAB over the study period is 550 km2

(see Table 2). Considering gaps in the satellite data from clouds,
data quality, and our imposed limits on pixel size, OMI’s spatial
coverage (calculated as the total land area divided by the average
number of observations per day) is 730 km2 per measurement e
still more spatially precise than the ground monitors. While the
(temporally averaged) satellite coverage is approximately
geographically uniform, ground monitors are strategically placed
near people. For example, spatial coverage of monitors in only the
Los Angeles-Long Beach urban area (4400 km2; 15 monitors) is
290 km2 permeasurement. For urban areas (UAs) in the continental
US with at least one monitor, the average area per measurement is
460 km2. However, only 28% of US UAs have any NO2 monitors; for
all UAs the spatial coverage is 690 km2 per monitor measurement.
Of the 448 US Census UAs in the contiguous US (total urban pop-
ulation: 191million people), 20% (88 UAs, covering 29% of the urban
population [56 million people]) have an average area per NO2
monitor that is less than the average pixel size for OMI measure-
ments employed here (550 km2 measurement�1); in the remaining
80% of UAs (71% of the urban population), OMI provides more
spatial information than EPA monitoring stations. Further, OMI
provides the same spatial coverage in non-urban areas, where
ground-based monitors are sparse, as in UAs.



Fig. 5. Surface NO2 concentration at monitor locations within the study region. Values
shown are the mean (diamond), median (bar), 25th-75th percentiles (box), and 10th-
90th percentiles (whiskers).

Fig. 4. Comparison of in situ measurements and model þ OMI estimates of surface
NO2 concentrations. “Unpaired averages” is the annual average at each monitor for all
available data (n ¼ 8666 for EPA monitors; n ¼ 4575 for OMI measurements). “Paired
averages” employs the annual average at each monitor for days with coinciding
satellite and EPA monitor measurements (n ¼ 25 monitors). “All paired data” is the
daily value at each monitor for days with coinciding OMI and EPA monitor measure-
ments (n ¼ 4138). Error bars indicate the 95% confidence interval. Values shown in this
figure are also in Tables S3eS5. Certain comparisons, marked with an asterisk (*) are
blank: Because of the way the scale factor is constructed (using the EPA data),
comparisons using this baseline approach are meaningful for correlation statistics but
not for comparing absolute concentrations.
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4. Discussion

Column measurements from the OMI sensor provide a robust
measure of the ground-level NO2 gradient within a large urban area
(r ¼ 0.93 for paired annual average data, compared to r ¼ 0.83
for CAMx model estimates), suggesting that space-based NO2
measurements could be a useful tool for exploring the spatial
variability of urban air pollution exposure. An important finding is
that OMI column measurements (without modeled scaling factors)
outperform a well-developed urban-scale model (CAMx) at
tracking the spatial variability of ground-level NO2 in the SoCAB.
The modeled local scaling factors used here provided little
improvement in spatial correlation or kappa statistics relative to
ground-based observations; however, scaling factors are necessary
to estimate absolute surface concentrations from the satellite
product. The correlations shown here between satellite-based NO2
(OMI þ CAMx, OMI þ GEOS-Chem, and OMI columns) and cor-
rected in situ measurements are generally higher than those
previously reported. The OMI þ GEOS-Chem surface estimates
exhibit a larger negative bias than previously reported by Lamsal
et al. (2008, 2010) for urban and suburban locations; this finding
may suggest a regional difference in bias or differing performance
between large and small urban locations. The OMI-based surface
concentrations employing scaling factors from an urban-scale
model (CAMx) provide robust estimates of absolute concentration
(mean bias: �13%, versus 20% for CAMx-only estimates) and with
complete spatial coverage for the SoCAB. Despite the coarse reso-
lution of the OMI pixel relative to the CAMx urban-scale model, we
find that the NO2 signal from OMI can improve surface estimates
from CAMx, illustrating the utility of satellite data in urban air-
quality research, even for a region with a well-developed air
dispersion model and detailed emission estimates. The OMI Stan-
dard Product is known to suffer from a seasonal bias; the amplitude
of the seasonal bias found here is consistent with previous findings
for urban locations, suggesting that the seasonal variation in bias
may be less pronounced for urban than for rural locations (Lamsal
et al., 2008, 2010).

Satellite-based observations measure average concentrations
over a specific land area; ground-based observations represent
concentrations at a single location. Even if both approaches were
perfect, error-free records of concentrations, we would still expect
differences between the two approaches owing to these differing
spatial scales. Thus, the OMI versus ground-based comparisons
presented here should be considered corroboration among
approaches rather than a validation of either approach.

For applications such as environmental epidemiology, or
understanding broad compliance with ambient standards, the
spatial precision provided by the satellite data may be of particular
value. OMI observations provide good spatial coverage that is
comparable to (and in most UAs, better than) current ground-level
monitoring networks in urban areas, and better than the current
network in rural areas.Within-urban gradients in ground-level NO2
observed from the OMI sensor thus provide a useful dataset for
exploring epidemiological impacts of urban air pollution. These
measurements can also provide high-quality air pollution estimates
where monitoring data are lacking, or can be incorporated into
large-scale land use regression (LUR) models; LUR models can be
1e2 orders of magnitude more spatially precise than satellite data
alone (e..g, w10e20 km [satellite], w0.1 km [LUR]) (Hystad et al.,
2011; Novotny et al., 2011).



Fig. 6. Estimated annual average surface NO2 concentrations along the 160-km transect shown inset. EPA values for this figure correspond to those for the nearest monitor; the inset
map also shows monitor locations.

Table 2
Spatial coverage for OMI vs. ground-level monitors.

Mean area (km2)
per measurement

OMI pixel size at nadir 310
average for SoCAB 550
inter-quartile range for SoCAB 360e650

Land area per OMI
observationa

average for SoCAB 730
inter-quartile range for SoCAB 450e2400

Land area per EPA
monitorb

average for SoCAB 1100
average for Los Angeles urban area 290
average for all US urban areasc 690
average for US urban areas with
at least one monitorc

460

inter-quartile range for US urban
areas with at least one monitorc

160e670

average for continental US
excluding urban areas

45,000

a For the 279 days with satellite observations. Calculated as the ratio of land area
in the SoCAB to the average number of OMI pixels per day. This metric accounts for
gaps in satellite data from cloud cover and our own imposed limits on pixel size.

b Calculated as the ratio of land area in the SoCAB to the number of EPA monitors.
c The year-2000 US Census lists 448 Urban Areas in the continental US; of those,

29% (128 Urban Areas) have at least one monitor.
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The use of satellite observations to estimate surface concentra-
tions is not limited to NO2. Past studies have shown a close rela-
tionship between remotely sensed aerosol optical depth (AOD) and
ground-level particulate matter concentrations (Martin, 2008).
More recently, methods have been developed to infer surface PM10
(diameter < 10 mm) and PM2.5 (diameter < 2.5 mm) from satellite
observationsofAOD(Braueret al., 2012; Liuet al., 2004, 2005, 2007b;
van Donkelaar et al., 2006, 2010; Weber et al., 2010). Satellite-based
AODmeasurementshave alsobeen incorporated into temporallyand
spatially resolved LUR models for PM2.5 in the Northeast United
States (Klooget al., 2011, 2012a,b). Thecorrelation statisticswe report
in this work for ground-level NO2 are similar to those found for
regional- and national-scale comparisons between satellite-based
and in situ PM2.5 estimates (Liu et al., 2004, 2005; van Donkelaar
et al., 2006, 2010). A study that evaluated satellite-based estimates
of PM2.5 for a single urban area (St. Louis, MO) reported similar
correlation statistics (r¼ 0.71e0.79) and bias (�12% to�18%) as our
findings for ground-level NO2 (Liu et al., 2007a).

We have shown for the SoCAB that OMI provides a reliable
measure of spatial variability of ground-level NO2 within a large
urban area, and an accurate measure of ground-level NO2
concentrations when combined with an urban-scale model. Results
may differ among urban areas; for example, resolving urban-scale
spatial gradients may be more difficult for small urban areas.
While use of an urban-scale model is not practical for most urban
areas (robust urban-scale models may or may not have been
developed for any one specific urban area), we find that the OMI
column measurements can be a useful proxy for ground-level vari-
ability in NO2 concentrations. Our findings also suggest that OMI
measurements may be a useful tool for exploring NO2 variability
between urban locations, particularly for urban areaswith fewor no
ground-based monitors. Recent work has shown that OMI slant
column measurements using the super-zoom mode (13 � 3 km2

resolution) can capture spatial variability in NO2 at even finer scales
than is achievable with OMI’s operational footprint (13 � 24 km2

resolution) (Valin et al., 2011b). The Sentinel-5 Precursor mission
(expected launch 2015; http://esamultimedia.esa.int/docs/S5-prec_
Data_Sheet.pdf) will offer improved spatial resolution (w7� 7 km2

at nadir) and global daily coverage. Geo-stationary measurements
from TEMPO (http://www.nasa.gov/home/hqnews/2012/nov/HQ_
12-390_TEMPO_Instrument.html) and GEO-CAPE (http://geo-cape.
larc.nasa.gov/) are also expected to provide improved spatial reso-
lution (w4 � 4 km2 resolution, orw20� better than the OMI nadir
pixel) and near hourly coverage. Our findings here emphasize the
power of such measurements for quantifying spatial (as well as
temporal) gradients in ground-level NO2 within urban areas,
particularly those areas with limited in situ monitors.
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Table S1: Summary of articles comparing satellite and ground-level measurements of NO2 

Publication 
Satellite 

instrument 
Location & Time Summary 

Blond et al., 

2007. 
SCIAMACHY Western Europe; 2003 

Compared annual average surface NO2 measurements with SCIAMACHY tropospheric NO2 

and found low spatial correlation (r = 0.43, n = 176) when considering all monitors (urban, 

suburban, and rural), agreement improves when considering only rural surface monitors (r = 

0.90, n = 29).  

Boersma et al., 

2009. 

OMI & 

SCIAMACHY 

Six Isreali cities (Carmiel, 

Afula, Modiin, Rehovot, 

Beit Shemesh, and Beer 

Sheva); 2006 

Estimated boundary-layer NO2 from six surface NO2 monitors in Isreali cities using model NO2 

profiles from GEOS-Chem. Found good spatio-temporal correlation between estimated 

boundary-layer NO2 and tropospheric NO2 columns from OMI (r = 0.63) and SCIAMACHY (r 

= 0.46-0.54). 

Duncan et al., 

2010. 
OMI 

Continental US; Summer 

(June-August) 2005-2007 

Calculated surface ozone-precursor sensitivity as the ratio of OMI column formaldehyde to 

NO2 and gridded to 0.25° grid. The calculated ozone-precursor sensitivity was found to be 

broadly consistent with results from in situ and modeling studies, including those in the 

SoCAB. 

Ghude et al., 

2011.  
OMI 

Delhi, India; March 1996–

December 2007 

Compared 2-years of daily average surface NOx concentrations at a monitor located in Delhi, 

India with OMI tropospheric column NO2 averaged over a 1° × 1° grid cell centered at Delhi (r 

= 0.45, n = 522). 

Kramer et al., 

2008. 
OMI 

Leicester, England; 2005-

2006 

Compared OMI tropospheric NO2 with the spatial average of four background surface NO2 

monitors (r = 0.43). Developed an improved surface estimate by including measurements from 

a nearby rural monitor and performing an area-weighted concentration to account for the 

fraction of the urban area in the satellite field-of-view, the improved estimate exhibited an 

improved temporal correlation (r = 0.83 & r = 0.64 for spring and summer respectively). 

Lamsal et al., 

2008. 
OMI US and Canada; 2005 

Inferred ground-level NO2 concentrations from OMI tropospheric NO2 by applying modeled 

scaling factors derived from GEOS-Chem. Compared OMI-based surface NO2 with corrected 

in situ surface NO2 concentrations (bias -11%-36%), found good temporal correlation (up to r = 

0.86) with highest correlations in more polluted areas.  
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Lamsal et al., 

2010. 
OMI Southeast US; 2005-2006 

Calculated ground-level estimates of NO2 derived from OMI tropospheric columns using 

modeled surface-to-column ratios from GEOS-Chem. Compared OMI-based surface NO2 with 

in situ measurements at rural locations and found broadly consistent seasonal variation. Bias for 

the Standard OMI product (27%-43%) was found to be higher than for the DOMINO product 

(21%-33%), with the highest bias occurring in summer months (67%-74%). 

Meng et al., 

2010. 
OMI China; 2007-2008 

Calculated monthly average OMI tropospheric NO2 (using the 0.25° × 0.25° gridded product) 

for regional background and rural monitoring sites. Monthly mean OMI and in situ ground-

level measurementsexhibit significant temporal correlation for six of the ten monitors (r = 0.47 

– 0.75). 

Ordoñez et al., 

2006. 
GOME 

Lombardy region of 

northern Italy; 1996-2002 

Compared tropospheric GOME NO2 with 99 ground-level in situ NO2 monitors corrected for 

NOx interference, found good spatio-temporal correlation (r = 0.58 & r = 0.76 for winter-

autumn and spring-summer respectively). Estimated tropospheric NO2 from the in situ monitors 

using seasonal average scaling factors derived from modeled daily NO2 vertical profiles from 

MOZART. A weighted-orthogonal regression was conducted for each concentration quintile 

and found good spatio-temporal correlation (r = 0.67 – 0.80) with the best fit for slightly- and 

average-polluted monitors (2
nd

 and 3
rd

 quintile). 

Petritoli et al., 

2004. 
GOME 

Po valley in northern Italy; 

2000-2001 

Found that annual cycle in surface NO2 and some pollution episodes measured by a background 

monitor are well reproduced by GOME tropospheric NO2 measurements. Estimated tropspheric 

column NO2 from surface measurements assuming a well-mixed PBL, monthly correlations 

between estimated tropospheric NO2 and GOME NO2 show good agreement (r > 0.84 for each 

month).  

Russell et al., 

2010. 
OMI 

California (Sacremento 

County, San Francisco Bay 

Area, San Joaquin Valley, 

and the South Coast Air 

Basin); Summer (June-

August) 2005-2008 

Calculated monthly average OMI tropospheric NO2 binned to 0.025° grid for California. The 

spatial average of OMI tropospheric NO2 and in situ ground-level measurements are calculated 

for four regions in California. Day-of-week and annual trends for OMI and ground-based 

measurements exhibit similar patterns. 
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Table S2: Summary of removed and missing data 

 

All available 

data 

Monitoring 

days 

Total possible from OMI 14772 8564 

 % removed owing to our limitations on pixel size 33% 17% 

 % removed owing to cloud cover 19% 24% 

 % removed owing to flags and missing data 8% 7% 

Total possible from EPA -- 9125 

 % removed owing to missing data -- 5% 

Total coinciding -- 4258 

Total Used -- 4138 

 

Table S3: Comparison of model+OMI estimates of surface NO2 with in situ measurements 

(paired daily data) 

 Statistic 
OMI

a
 OMI + CAMx 

OMI + 

GEOS-Chem 
CAMx only 

Avg. difference (ppb) N/A -5.60 -9.29 -2.75 

Avg. absolute difference (ppb) N/A 6.24 9.51 5.74 

Avg. bias (%) N/A -13% -50% 20% 

Avg. absolute bias (%) N/A 50% 63% 60% 

Pearson’s correlation 0.73 0.77 0.71 0.74 

Spearman’s correlation 0.77 0.83 0.76 0.82 

Kappa 0.37 0.44 0.36 0.44 

Weighted-Kappa 0.57 0.64 0.55 0.63 
a
Assuming a constant scale factor of 1.0 × 10

-15
 ppb cm

2
 molec

-1
. Because of the way the scale factor is constructed 

(using the EPA data), comparisons using this baseline approach are meaningful only in terms of correlation statistics 

and not for comparing absolute concentrations. 

 

Table S4: Comparison of model+OMI estimates of surface NO2 with in situ measurements 

(paired annual average data) 

 Statistic 
OMI

a
 OMI + CAMx 

OMI + 

GEOS-Chem 
CAMx only 

Avg. difference (ppb) N/A -4.80 -9.45 -2.94 

Avg. absolute difference (ppb) N/A 5.03 9.45 4.22 

Avg. bias (%) N/A -31% -60% -15% 

Avg. absolute bias (%) N/A 33% 60% 26% 

Pearson’s correlation 0.93 0.89 0.91 0.83 

Spearman’s correlation 0.91 0.94 0.91 0.93 

Kappa 0.63 0.68 0.63 0.68 

Weighted-Kappa 0.75 0.81 0.75 0.81 
a
Assuming a constant scale factor of 1.0 × 10

-15
 ppb cm

2
 molec

-1
. Because of the way the scale factor is constructed 

(using the EPA data), comparisons using this baseline approach are meaningful only in terms of correlation statistics 

and not for comparing absolute concentrations. 
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Table S5: Comparison of model+OMI estimates of surface NO2 with in situ measurements 

(unpaired summer average data) 

 Statistic 
OMI

a
 OMI + CAMx 

OMI + 

GEOS-Chem 
CAMx only 

Avg. difference (ppb) N/A -4.17 -8.91 -1.79 

Avg. absolute difference (ppb) N/A 4.42 8.91 3.46 

Avg. bias (%) N/A -31% -61% -9% 

Avg. absolute bias (%) N/A 32% 61% 23% 

Pearson’s correlation 0.91 0.88 0.91 0.83 

Spearman’s correlation 0.87 0.93 0.86 0.91 

Kappa 0.63 0.57 0.63 0.63 

Weighted-Kappa 0.75 0.75 0.75 0.75 
a
Assuming a constant scale factor of 1.0 × 10

-15
 ppb cm

2
 molec

-1
. Because of the way the scale factor is constructed 

(using the EPA data), comparisons using this baseline approach are meaningful only in terms of correlation statistics 

and not for comparing absolute concentrations. 

 

Table S6: Comparison of model+OMI estimates of surface NO2 with in situ measurements 

(spring data, n=936) 

 Statistic 
OMI

a
 OMI + CAMx 

OMI + 

GEOS-Chem 
CAMx only 

Avg. difference (ppb) N/A -2.80 -7.71 -2.63 

Avg. absolute difference (ppb) N/A 5.30 8.02 5.47 

Avg. bias (%) N/A 0.5% -40% 32% 

Avg. absolute bias (%) N/A 51% 59% 71% 

Pearson’s correlation 0.69 0.75 0.72 0.73 

Spearman’s correlation 0.77 0.85 0.77 0.81 

Kappa 0.38 0.46 0.35 0.44 

Weighted-Kappa 0.58 0.64 0.55 0.61 
a
Assuming a constant scale factor of 1.0 × 10

-15
 ppb cm

2
 molec

-1
. Because of the way the scale factor is constructed 

(using the EPA data), comparisons using this baseline approach are meaningful only in terms of correlation statistics 

and not for comparing absolute concentrations. 

 

Table S7: Comparison of model+OMI estimates of surface NO2 with in situ measurements 

(summer data, n=1344) 

 Statistic 
OMI

a
 OMI + CAMx 

OMI + 

GEOS-Chem 
CAMx only 

Avg. difference (ppb) N/A -4.15 -9.05 -2.36 

Avg. absolute difference (ppb) N/A 5.33 9.12 4.71 

Avg. bias (%) N/A -13% -60% 16% 

Avg. absolute bias (%) N/A 50% 68% 56% 

Pearson’s correlation 0.69 0.75 0.64 0.75 

Spearman’s correlation 0.74 0.82 0.71 0.82 

Kappa 0.32 0.41 0.30 0.44 

Weighted-Kappa 0.53 0.62 0.51 0.62 
a
Assuming a constant scale factor of 1.0 × 10

-15
 ppb cm

2
 molec

-1
. Because of the way the scale factor is constructed 

(using the EPA data), comparisons using this baseline approach are meaningful only in terms of correlation statistics 

and not for comparing absolute concentrations. 
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Table S8: Comparison of model+OMI estimates of surface NO2 with in situ measurements 

(fall data, n=1221) 

 Statistic 
OMI

a
 OMI + CAMx 

OMI + 

GEOS-Chem 
CAMx only 

Avg. difference (ppb) N/A -5.84 -10.59 -2.55 

Avg. absolute difference (ppb) N/A 7.17 10.81 6.02 

Avg. bias (%) N/A -22% -52% 17% 

Avg. absolute bias (%) N/A 49% 63% 56% 

Pearson’s correlation 0.76 0.76 0.70 0.77 

Spearman’s correlation 0.80 0.84 0.78 0.82 

Kappa 0.40 0.46 0.39 0.44 

Weighted-Kappa 0.60 0.65 0.58 0.63 
a
Assuming a constant scale factor of 1.0 × 10

-15
 ppb cm

2
 molec

-1
. Because of the way the scale factor is constructed 

(using the EPA data), comparisons using this baseline approach are meaningful only in terms of correlation statistics 

and not for comparing absolute concentrations. 

 

Table S9: Comparison of model+OMI estimates of surface NO2 with in situ measurements 

(winter data, n=637) 

 Statistic 
OMI

a
 OMI + CAMx 

OMI + 

GEOS-Chem 
CAMx only 

Avg. difference (ppb) N/A -5.80 -9.60 -4.12 

Avg. absolute difference (ppb) N/A 7.77 10.04 7.78 

Avg. bias (%) N/A -16% -37% 18% 

Avg. absolute bias (%) N/A 53% 56% 63% 

Pearson’s correlation 0.75 0.79 0.79 0.67 

Spearman’s correlation 0.79 0.82 0.82 0.77 

Kappa 0.38 0.49 0.44 0.42 

Weighted-Kappa 0.58 0.65 0.62 0.60 
a
Assuming a constant scale factor of 1.0 × 10

-15
 ppb cm

2
 molec

-1
. Because of the way the scale factor is constructed 

(using the EPA data), comparisons using this baseline approach are meaningful only in terms of correlation statistics 

and not for comparing absolute concentrations. 
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Figure S1: For surface NO2 concentrations, comparison of in situ measurements and 

model+OMI estimates. “Unpaired average” is the annual average at each monitor for all 

available data (n=8666 for EPA monitors; n=4575 for OMI measurements). “Paired average” 

employs the annual average at each monitor for days with coinciding satellite and EPA monitor 

measurements (n=25). “All paired data” is the daily value at each monitor for days with 

coinciding OMI and EPA monitor measurements (n=4138). Error bars indicate the 95% 

confidence interval. Values shown in this figure are also in Tables S3-S5. Certain comparisons, 

marked with an asterisk (*) are blank: because of the way the scale factor is constructed (using 

the EPA data), comparisons using this baseline approach are meaningful for correlation statistics, 

not for comparing absolute concentrations. 
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Figure S2: For surface NO2 concentrations, comparison of in situ measurements and 

model+OMI estimates corresponding to spring (n=936), summer (n=1344), fall (n=1221), and 

winter (n=637). Error bars indicate the 95% confidence interval. Values shown in this figure are 

also in Tables S6-S9. Certain comparisons, marked with an asterisk (*) are blank: because of the 

way the scale factor is constructed (using the EPA data), comparisons using this baseline 

approach are meaningful for correlation statistics, not for comparing absolute concentrations. 
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Fig. S3. Pair-wise scatter plots for paired daily NO2 concentrations (ppb). Values in each box 

indicate Pearson correlation (r value). 
*
Assuming a constant scale factor of 1.0 × 10

-15
 ppb cm

2
 

molec
-1

. 
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Fig. S4. Pair-wise scatter plots for paired annual average NO2 concentrations (ppb). Values in 

each box indicate Pearson correlation (r value). 
*
Assuming a constant scale factor of 1.0 × 10

-15
 

ppb cm
2
 molec

-1
. 
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Fig. S5. Pair-wise scatter plots for unpaired annual average NO2 concentrations (ppb). Values in 

each box indicate Pearson correlation (r value). 
*
Assuming a constant scale factor of 1.0 × 10

-15
 

ppb cm
2
 molec

-1
. 

 


