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ABSTRACT: Air pollution in New Delhi, India, is a significant environmental
and health concern. To assess determinants of variability in air pollutant con-
centrations, we develop land use regression (LUR) models for fine particulate
matter (PM2.5), black carbon (BC), and ultrafine particle number concentrations
(UFPN). We used 136 h (39 sites), 112 h (26 sites), 147 h (39 sites) of PM2.5,
BC, and UFPN data respectively, to develop separate morning (0800−1200) and
afternoon (1200−1800) models. Continuous measurements of PM2.5 and BC
were also made at a single fixed rooftop site located in a high-income residential
neighborhood. No continuous measurements of UFPN were available. In
addition to spatial variables, measurements from the fixed continuous monitoring
site were used as independent variables in the PM2.5 and BC models. The median
concentrations (and interquartile range) of PM2.5, BC, and UFPN at LUR sites
were 133 (96−232) μg m−3, 11 (6−21) μg m−3, and 40 (27−72) × 103 cm−3

respectively. In addition (a) for PM2.5 and BC, the temporal variability was higher
than the spatial variability; (b) the magnitude and spatial variability in pollutant concentrations was higher during morning than during
afternoon hours. Further, model R2 values were higher for morning (for PM2.5, BC, and UFPN, respectively: 0.85, 0.86, and 0.28) than
for afternoon models (0.73, 0.69, and 0.23); (c) the PM2.5 and BC concentrations measured at LUR sites all over the city were strongly
correlated with measured concentrations at a fixed rooftop site; (d) spatial patterns were similar for PM2.5 and BC but different for
UFPN; (e) population density and road variables were statistically significant predictors of pollutant concentrations; and (f) available
geographic predictors explained a much lower proportion of variability in measured PM2.5, BC, and UFPN than observed in other LUR
studies, indicating the importance of temporal variability and suggesting the existence of uncharacterized sources.
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1. INTRODUCTION
Air pollution has been an environmental and health concern in
New Delhi, the Indian capital, for decades. Fine particles (PM2.5
or particulate matter with aerodynamic diameter da ≤ 2.5 μm)
have been consistently associated with adverse health out-
comes.1−4 Ambient PM2.5 frequently exceeds regulatory stand-
ards in New Delhi, with annual average concentrations of 123 ±
87 μg m−3 between 2008 and 2011 across seven regulatory
monitoring stations.5 Those concentrations are an order of
magnitude higher than the guideline value of 10 μg m−3 (annual
mean) set by the World Health Organization.6 For comparison,
annual average PM2.5 concentrations in New York City were
around 11 μg m−3 in 20097 and ∼100 μg m−3 or in Beijing in
2010.8 Black carbon (BC) and ultrafine particles (UFP,
< 0.1 μm diameter) are constituents of PM2.5. BC is an indicator
of incomplete combustion, e.g., from biomass burning andmotor
vehicles.9 Apart from adverse health effects due to inhalation,
BC absorbs sunlight and is a climate forcing agent.10 Elevated BC
levels have been associated with regional climate effects across
India and China.11 Recent research also indicates that BC may
be a more specific marker than PM2.5 for health effects.

12 Sources
of UFP include emissions from internal combustion engines,
power plants, incinerators, forest fires, and cooking.13 UFP have
also been associated with adverse health effects.13−15

Ambient PM2.5 pollution is understood to be one of the
leading risk factors for premature mortality in South Asia,
resulting in more than 750 000 premature deaths in 2010.16 Poor
air quality in New Delhi is an important public health issue for
the city’s 16.7 million people,17−24 yet epidemiologic studies25,26

have been limited by the quality, duration and spatial coverage
of the urban air quality monitoring network. New Delhi has six
continuous monitoring stations for PM2.5. Better coverage may
be required to assess the spatial variability of PM2.5 and, hence,
the variation in human exposure. In the absence of more detailed
monitoring data, land use regression (LUR) models can be an
effective tool for assessing within-city variability of air pollu-
tion.27 LUR and results are useful for epidemiologic studies, risk
assessments, and prioritizing air quality management.28

LUR was developed as an alternative to dispersion models and
as a means to assess small-scale spatial variation of air pollutants
within urban areas. LUR models have been developed for many
cities in North America and Europe.28,29 Models may be used to
assign population exposure for epidemiologic studies. In brief, a
statistical relationship is established between land use character-
istics and pollutant concentrations measured by targeted
sampling at a limited number of sites, and then, the relationship
is used to predict pollutant concentrations at unmeasured
locations throughout a given domain. Generally, LUR has been
used to estimate mean annual concentrations of a pollutant,
using one to two week sampling at 20−100 sites.28 Land use,
road network, population density, and traffic flow variables are
typically used as inputs to the models, though LUR models have
been reported to perform well even in the absence of traffic
flow data as an input.30 The site selection processes vary,30−33

but in general a minimum number of spatially dispersed sites
characterizing different land uses that are able to capture the
spatial variation of a pollutant for a given domain are required.
A small number of sites and a large number of predictor variables
can lead to inflated R2 values.34

Air pollution in Indian cities likely has a wider range of sources
than air pollution in the European and North American cities
where LUR has been previously applied: not just traffic and
industry, but also small-scale, distributed sources such as biomass

burning for cooking and heat, open burning of solid waste,
and diesel generators for backup power.35−37 In the case of
New Delhi, there is also substantial seasonal variation in absolute
concentrations of PM2.5 and percentage contributions from
different sources.24,38,39

There is also substantial variation in PM2.5 concentrations
during daylight hours (diurnal variation).5 To capture this trend,
we sought to develop separate LUR models for morning and
afternoon periods. Specifically, PM2.5 and BC models were
developed to predict the spatial distribution of pollutants
over time, using data from a fixed continuous monitoring site.
The models are thus spatiotemporal rather than simply spatial.
These models could be used to obtain estimates for any given
time interval within the study period. For example, hourly
concentration estimates can be obtained if we input hourly
pollutant concentration in a model equation. As no continuous
UFPN measurements were available, the UFPN models only
describe spatial variability in the morning and afternoon hours
for the duration of the study.

2. MATERIALS AND METHODS

2.1. Site Selection.We undertook field measurements of air
quality in New Delhi during February−May 2010, encompassing
the local spring and summer seasons. We employed a site
selection approach similar to what Brauer et al.40 employed for the
TRAPCA study in three European cities with about 40 sites in
each city. We used local knowledge, Google Earth, and city maps
(1:5500 to 1:12 500) to classify neighborhoods based on the
following criteria: population density, distance to the city center
(Connaught Place), residential or commercial type, density of
the road network, and green spaces. Sites were allocated to
neighborhoods that captured maximum variation in these
variables. We made minor adjustments to site locations during
the monitoring campaign on the basis of preliminary site visits;
adjustments were less than 10 m in magnitude and were made to
ensure that a spot was available to leave monitoring devices
undisturbed at normal breathing height for the sampling period.

2.2. Instrumentation and Field Measurements. Data
collection occurred in parallel with fieldwork for a companion
study of urban and in-vehicle exposure to particulate matter in
New Delhi.41 The air quality sampling instruments, protocols,
and postprocessing techniques have been described previously.41

Continuous monitoring of PM2.5 and BC was conducted at
a fixed rooftop site located in a high-income residential
neighborhood in southern New Delhi (Figure 1). The rooftop
provided a background site that was relatively free from the
influence of local traffic and point sources, so that data from this
site could be used to characterize citywide diurnal and seasonal
trends. Sampling at LUR sites was divided into morning and
afternoon sampling periods. At each site, measurements were
collected for 1−3 h during the morning (0800−1200) and/or
afternoon (1200−1800). Given equipment limitations, only one
LUR site (plus the one fixed-location) was sampled at a time.
Sampling at LUR sites was conducted close to normal breathing
height, in contrast to regulatory monitoring which is often on
rooftops.

2.2.1. GPS and Meteorological Data.We used a GPS device
(GPSMap 60CSx, Garmin Inc.) with an accuracy of ±3−5 m to
record the spatial coordinates of all sites at the time of data
collection.We recordedmeteorological data (temperature, relative
humidity, wind speed, wind direction, and rainfall; all recorded
at 5 min intervals) via a weather station (Model PWS-1000TD,
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Zephyr Instruments, East Granby, CT) at the fixed (i.e., central
rooftop) location.
2.2.2. PM2.5 Data Collection. Fine particulate matter was

measured using two TSI DustTrak 8250 aerosol monitors (TSI
Inc., Shoreview, MN, USA) fitted with PM2.5 impactor inlets.
The DustTrak infers particle mass concentrations based on 90°
light scattering measured by a laser photometer. This detection
method is subject to error because relative humidity (RH) and
particle properties (i.e., density, shape, size, refractive index)
influence particle light scattering.41−43 To account for the RH
effect, we applied an empirical correction equation42 to the raw
DustTrak measurements using 5 min average RH measurements
from the rooftop fixed site. The regular sampling program of
DustTrak measurements was supplemented with ∼35 colocated,
time-integrated (∼1−4 h) gravimetric measurements of PM2.5
collected with a single-stage impactor, from which a nonlinear
gravimetric calibration curve was developed.41 The final PM2.5
mass determination was obtained by applying this gravimetric
calibration to the time-resolved RH-corrected DustTrak
observations.44

During each measurement session, PM2.5 data collection was
carried out simultaneously at the central rooftop location and at
one of the LUR sites. PM2.5 data were collected at 48 LUR sites
(44 afternoon sessions, 22 morning sessions; Figure 1). Nine
afternoon sites and three morning sites were later dropped from
the analysis because population and road network data were
not available in geographic information system (GIS) format at
those locations. This could have been avoided if the availability
of these data (in GIS format) was verified before the sampling.
We employed a time resolution for measurements of 30 s
(rooftop site) and 1 s (LUR sites).
2.2.3. Black Carbon Data Collection. Similar to PM2.5, BC

data collection was carried out simultaneously at the central
rooftop location and at one of the LUR sites. Concentrations were
measured using portable aethalometers (model AE-51 micro-
Aeth, Magee Scientific, Berkeley, CA). A previously developed

empirical correction factor45 was validated for use in New Delhi41

and then applied to raw BC data to correct for underestimation of
BC concentrations with increasing aethalometer filter loadings.45,46

Five-minute moving averages were used to remove sharp,
consecutive negative, and positive concentrations peaks that can
reflect measurement artifacts.41,47 Overall, BC concentrations were
measured at 30 LUR sites (29 afternoon sessions and 20 morning
sessions). Four afternoon sessions and threemorning sessions were
dropped from the analysis because population and road network
data were unavailable in GIS format at those locations.

2.2.4. UFPN Data Collection. Ultrafine particle concen-
trations were measured using a Condensation Particle Counter
(CPC, model CPC 3007, TSI Inc., Shoreview, MN). Although
this instrument provides the total number count of all particles in
the size range 10 nm < dp < 1 μm, this result closely approximates
UFPN (dp < 100 nm) under the conditions encountered in this
study. Concentrations were measured at 1 Hz. Because UFPN
concentrations often exceeded the upper measurement limit
(105 particles cm−3) of the CPC,41 we employed a custom-built
dilutor, which reduced inflow concentrations by a factor of 5.5. In
addition, we applied the empirical correction factor ofWesterdahl
et al. (2005)48 to account for particle coincidence errors when
diluted UFPN concentrations exceeded 105 particles cm−3.
Sampling for UFPN was conducted at LUR sites only, because

a second CPC was not available. We measured UFPN con-
centrations at 48 LUR sites (46 afternoon sessions and 21
morning sessions). UFPN data for nine afternoon sites and two
morning sites were dropped from the analysis because popula-
tion and road network data were unavailable in GIS format.

2.2.5. Data Reduction and Quality Control. Processed data
for all pollutants were used to obtain hourly medians for the LUR
sites. Any hour with less than 15 min of data was discarded. The
arithmetic mean of these medians for morning or afternoon
hours was assigned to an LUR site as its concentration for
morning or afternoon hours, respectively.
For the rooftop site, 10th percentile concentrations were

computed for each hour, and any hour with less than 15 min of
data was discarded. The 10th percentile was selected to approxi-
mate the urban background diurnal profile and to be free from
the influence of short-duration peaks due to local sources. The
arithmetic mean of the hourly 10th percentile concentrations
corresponding to the sampling period at an LUR site was
computed for each LUR site. The natural logarithm of this value
was used as an independent variable in the model building
processes for PM2.5 and BC and is hereafter called ln(ROOF).

2.3. Spatial and Socioeconomic Variables.We usedmaps
in a GIS to generate 14 spatial variables related to land use and
demographics (Table 1). Shape files were converted into rasters
of 5 m cells using ESRI ArcGIS 9.3. Separate rasters were created
for major roads, minor roads, and green spaces. The road rasters
were used to estimate road length around each LUR site for
chosen radii and to estimate the shortest distance from each LUR
site to the nearest major and minor roads. A green-space raster
was used to obtain area of green-space around each LUR site for
chosen radii.
We use Indian Census data to generate independent socio-

economic variables (Table 1) as possible surrogates for sources
such as domestic wood and waste burning. Census data were
based on the 2001 census by the Government of India, available
at the ward level for New Delhi. A ward is an electoral unit for
the local municipal government, with a total of 156 wards in
New Delhi. Population attributes per ward were assigned to the
ward centroids and the Spatial Analyst feature in ArcGIS was

Figure 1. Land use regression sites and rooftop site overlaid on major
road network.
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used to obtain smoothed density surfaces30 for the total
population and for two indicators of low socioeconomic status:
illiterate population and Scheduled Caste and Scheduled Tribe
population. Scheduled Caste and Scheduled Tribe are defined in
Articles 341 and 342, respectively, of the Indian Constitution and
are generally considered to be socioeconomically disadvantaged
groups.49 In total, 14 variables were considered in LUR model
development.
2.4. Model Building. Air pollutant concentrations are

typically log-normally distributed.50We used the natural logarithm
of the mean of measured hourly medians at each LUR site as
the dependent variable in each model, following verification with
the Kolmogorov−Smirnov test51 in the R statistical software
package.52 Eligible independent variables included the land
use and socioeconomic variables (Table 1) for all models and
ln(ROOF) for the PM2.5 and BC models.
For PM2.5 and BC models, we assumed that the pollutant

concentrations were associated with a multiplicative combina-
tion of a background temporal component (from the rooftop
site) and the spatial components. We also assumed that (a) the
temporal component was spatially invariant and (b) the spatial
components were temporally invariant. The first assumption is
supported by the existence of a strong temporal correlation
between measurements at the LUR sites and the rooftop site.
The second assumption is reasonable given that changes in the
spatial variables would be small over the modeling period. For
example, we do not expect that the patterns of population density
changed over the 13-weeks of sampling.
We generated two temporal models per pollutant, each

based on log hourly median concentrations: morning models
(observations 0800−1200) and afternoonmodels (1200−1800).
We used a model-building algorithm similar to the one
developed by Henderson et al.,30 which was designed to produce
a parsimonious model in which the influence of individual
variables is interpretable and consistent with a priori assumptions
about determinants of spatial variability in air pollution. A
statistical relationship was established between the observed
pollutant concentrations at the LUR sites, the potentially pre-
dictive land use and socioeconomic variables, and the rooftop
concentration variables (for PM2.5 and BC). These relationships

were used to predict pollutant concentrations throughout the
spatial domain. The model-building algorithm is as follows:

1. Each variable was ranked based on its correlation with the
log of hourly median concentration.

2. The top-ranking variable in each subcategory (e.g., major
roads) was identified.

3. Variables in each subcategory that had a correlation of 0.6
or higher with the top-ranking variable (step 2) were
dropped.

4. Remaining variables were included in robust linear
regression models.

5. Variables that were not significant at a 90% confidence
level or that had a coefficient with a counterintuitive sign
were dropped.

6. Repeat steps 4 and 5 to convergence.

Steps 1 and 2 of the model-building algorithm provide ordered
sets of the most predictive variables, and step 3 avoids collinearity
between independent variables from the same subcategory.
Diagnostic plots in step 4 showed a few high leverage points in
almost all models. Robust linear regression was used to prevent
the undue influence of the high leverage points on coefficient
estimates.53 Steps 4 and 5 were repeated to convergence, and the
resulting models had those variables only that were statistically
significant at 90% confidence level. Here, we present the regular
linear regression coefficients and statistics for the independent
variables selected using this model-building algorithm. Robust
linear regression coefficients and statistics are presented as
Supporting Information (Table S1). For models with more than
one independent variable, we also report the square of partial
correlation for each independent variable. Squared partial
correlation reflects the contribution of an independent variable
as a fraction of the model R2 and can be used as an estimate of
effect size for each individual variable.54,55

2.5. Model Evaluation. Models were evaluated with
diagnostic plots and leave-one-out cross validation.56 We used
ESRI ArcGIS9.3 to obtain Moran’s I statistic to check for
presence of spatial autocorrelation57 in the LUR models. For the
PM2.5 and BC models, Moran’s I was calculated for every two
week period, in the morning and afternoon models. For UFPN
models, Moran’s I was calculated for the morning and afternoon
models for the complete duration of the study. All models were

Table 1. Potentially Predictive Independent Variables

variable description median (IQRa)

DIST.J1 shortest distance to the nearest major road from a cell (m) 65 (24−130)
DIST.J2 shortest distance to the nearest minor road from a cell (m) 37 (14−77)
RD1.100 major road length in a buffer of 100, 250, and 500 m radii, respectively (m) 200 (0−271)
RD1.250 672 (467−103)
RD1.500 2.2 × 103 (1.3 × 103−3.5 × 103)
RD2.100 minor road length in a buffer of 100, 250, and 500 m radii respectively (m) 247 (42−459)
RD2.250 1.3 × 103 (586−2.7 × 103)
RD2.500 5.6 × 103 (3.1 × 103−11.3 × 103)
GREEN.100 area of green space in a buffer of 100, 250, and 500 m radii, respectively (m2) 0 (0−2.1 × 103)
GREEN.250 2.4 × 103 (0− 18.4 × 103)
GREEN.500 31.7 × 103 (981−98.2 × 103)
SC.5000 density of Scheduled Caste and Scheduled Tribe population (persons/hectare) obtained using density analysis

with 5000 m radius
25 (17−44)

ILL.5000 density of illiterate population (persons/hectare) obtained using density analysis with 5000 m radius 50 (27−86)
POP.5000 density of population (persons/hectare) obtained using density analysis with 5000 m radius 177 (97−289)
ln(ROOF) log of mean hourly 10th percentile concentrations from the rooftop site 4.4 (4−5) PM2.5

1.6 (1.1−2.7) BC
aInterquartile range.
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also checked for temporal autocorrelation usingDurbin−Watson
test.58

2.6. Regression Mapping. We rendered the regression
models as concentration maps for the study domain using the
Spatial Analyst feature in ArcGIS. We used coefficient estimates
obtained in the model building process to predict pollutant
concentrations for each cell.

3. RESULTS

Median (interquartile range) concentrations for PM2.5, BC,
and UFPN across all LUR sites were, respectively, 133 (96−232)
μg m−3 PM2.5, 11 (6−21) μg m−3 BC, and 40 (27−72) × 103

particles cm−3 (Table 2). These pollutant concentrations are
substantially higher than those reported in other LUR studies.28

The correlation between the hourly median concentrations of
PM2.5 and the corresponding BC concentrations at LUR sites was
0.79. At the LUR sites the coefficient of correlation between the
hourly median concentrations of PM2.5 and UFPN was 0.42, and
for BC and UFPN the correlation was 0.51. The coefficient of
correlation between hourly medians at the fixed rooftop site and the
corresponding hourly medians at the LUR sites was 0.84 for PM2.5
and 0.85 for BC. Average temperatures recorded during the
sampling campaign were as follows: 20 °C for February, 28 °C for
March, 36 °C for April, and 37 °C for the first week of May.
Values of Moran’s I confirmed the presence of spatial auto-

correlation, such that sites with higher concentrations were more
likely to be closer to other sites with higher concentrations.
No evidence of temporal autocorrelation was found using the
Durbin−Watson test. Monthly diurnal variation plots for PM2.5
and BC have been included in the Supporting Information
(Figure S1 and S2).
3.1. PM2.5 Models. The morning PM2.5 model (Table 3,

Figure 2a) explained 85% of the variability in measured con-
centrations. The explanatory variables were population density,

distance to nearest major road, and ln(ROOF), which accounts
for citywide day-to-day and diurnal variation. Coefficient
estimates indicate that the predicted concentrations increased
with population density and decreased as the distance to nearest
major road increased. The squared partial correlation indicated
that the ln(ROOF) explained more variability than the land use
variables.
The afternoon PM2.5 model (Table 3, Figure 2a) was more

poorly fit than the morning model. The explanatory variables
were population density and ln(ROOF). To understand the
relative importance of temporal and spatial variation, we dropped
the ln(ROOF) term from both the morning and afternoon
models. No useful models were obtained, suggesting a dominant
role of temporal variation in predicting the PM2.5 measurements.

3.2. Black Carbon Models. The morning BC model
(Table 3, Figure 2b) explained 86% of the variability in measured
BC concentrations. The explanatory variables were population
density and ln(ROOF). The afternoonmodel (Table 3, Figure 2b)
explained 69% of the variability in the measurements. For both
morning and afternoon BC LUR models, distance from the
nearest major road was chosen as model variable using the robust
linear regression selection algorithm (Table S1), but its
coefficients were not statistically significant in the regular linear
regression models. That finding suggests that robust regression
can improve the performance of LUR models. The morning
BC LUR model was a better fit than the afternoon model. To
understand the relative importance of temporal and spatial
variation, we tried dropping the ln(ROOF) term from both BC
models; as with PM2.5, no useful models were obtained.

3.3. UFPN Models. Unlike the PM2.5 and BC models, the
UFPN models did not include measurements from the fixed
rooftop site as an independent variable. The morning model
(Table 3, Figure 2c) had population density as the only statistically
significant predictor. The afternoon model (Table 3, Figure 2c)

Table 2. Descriptive Statistics for Hourly Median Concentrations of Fine Particulate Matter (PM2.5), Black Carbon (BC), and
Ultrafine Particle Number (UFPN) at the Land Use Regression Sites

species GM (GSD) median min P10 P25 P75 P90 max N (sites, h)

PM2.5 (μg m
−3) 140 (1.8) 133 40 61 96 232 335 680 39 136

BC (μg m−3) 12 (2.6) 11 2 4 6 21 43 140 26 112
UFPN (103 cm−3) 43 (2.0) 40 7 18 27 72 113 190 39 147

Table 3. Final Spatiotemporal LURModel Specifications and Results for Fine Particulate Matter (PM2.5), Black Carbon (BC), and
Ultrafine Particle Number (UFPN)

model terms and coefficients: log-median concentrationa

model constant ln(ROOF) POP.5000 DIST.J1 RD2.500 R2 b LOOEc

PM2.5 (morning) 1.22** 0.77** 2.0 × 10−3** −8.2 × 10−4** 0.85 0.25
N = 19d (0.83)e (0.53) (0.32)
PM2.5 (afternoon) 0.01 0.98** 1.5 × 10−3** 0.73 0.29
N = 35 (0.72) (0.22)
BC (morning) 0.80** 0.73** 2.2 × 10−3** −7.2 × 10−4 0.86 0.34
N = 17 (0.85) (0.41) (0.15)
BC (afternoon) 0.37 0.83** 1.5 × 10−3** −1.0 × 10−3 0.69 0.44
N = 25 (0.67) (0.14) (0.11)
UFPN (morning) 10.35** 3.3 × 10−3** 0.28 0.59
N = 18
UFPN (afternoon) 9.79** 2.3 × 10−3* 4.7 × 10−5* 0.23 0.72
N = 37 (0.10) (0.09)

aSpatiotemporal LUR models predict the natural log of the hourly median concentration at each fixed site. bModel coefficient of determination (R2).
cLeave-one-out cross-validation error. dN is the number of sites. eSquared partial correlation. **Statistically significant at 95% confidence level.
*Statistically significant at 90% confidence level.
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included population density and minor road length in a buffer of
500 m as statistically significant predictor variables.

4. DISCUSSION

This study documents the first PM2.5, BC, and UFPN LUR
models developed for New Delhi, India, and among the first
developed for highly polluted locations in rapidly developing
economies.59,60 The PM2.5 and BC models are spatiotemporal61

in nature, leveraging data from a fixed continuous monitoring
site. As such, the PM2.5 and BC models can be used to predict

pollutant concentrations for smaller time periods (∼1 h periods,
which is in contrast to the annual averages predicted by most
conventional LUR models). We developed separate models for
morning and afternoon hours because of the strong diurnal
patterns. For all three pollutants, the spatial patterns were widely
different for morning and afternoon hours. Spatial patterns of
PM2.5 and BC were similar at both times of day, and both were
different from UFPN. Our LUR models predicted higher
concentrations for, and high variability during, morning hours.
Predicted pollutant levels (Figure 3) along an arbitrary transect

Figure 2. Predicted average fine particulate matter (PM2.5), black carbon (BC), and ultrafine particle number concentration (UFPN) spatial variation for
the duration of the study. Transect for Figure 3 displayed in part (a).
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for morning and afternoon models illustrate this point. This
observation (concentrations are more uniform during afternoon
than during morning) is likely attributable to more rapid
meteorological dispersion in the afternoon.5,39,44,62 Concen-
trations of BC, and spatial autocorrelation in modeled BC
concentrations, are higher in morning than in afternoon. The
UFPN model also showed greater spatial autocorrelation in
morning than in afternoon.
High correlation between measurements at the LUR sites and

measurements at the fixed site indicate the important role of
temporal variability and urban background concentrations. The
high correlation between BC and PM2.5 measurements at LUR
sites and the similar spatial patterns suggest that similar factors
(sources and/or meteorology) may be driving both concen-
trations. Different spatial patterns and weaker correlation
between UFPN and the other pollutants indicate that the factors
influencing UFPNmay be different from those for PM2.5 and BC.
The observed correlation between PM2.5 measurements at LUR
sites and PM2.5 measurements at the fixed site is higher than the
reported correlation in a similar study in Massachusetts that used
a similar modeling approach.63

Mapping the spatial variability of air pollutants is useful to
understand population exposures, and the results can complement
information obtained from the regulatory monitoring networks
used for air quality management and planning. LUR models
typically use one or two weeks of data collected simultaneously
at a number of sites.28 Such monitoring is resource intensive, with
the cost of a traditional PM2.5 LUR study (including ∼40 sites)
being approximately 30 000Euros, assuming that the air-monitoring

equipment is available to use.28 Purchasing the monitoring
equipment would roughly double the cost. These levels of funding
are often unavailable in developing countries. The spatiotemporal
approach used here is applicable in more resource-constrained
situations, and our results demonstrate that a reasonable under-
standing of spatiotemporal patterns of PM2.5 and BC can be
developed. Furthermore, we expect that performance of UFPN
LUR models will improve with the availability of continuous
monitoring data from a fixed site. This approach is similar to the
development of LUR models with mobile monitoring, which has
been explored elsewhere.64,65

There are other challenges to developing LUR models for
cities in developing countries. Socioeconomic data related to
the independent variables in LUR are often not available, or are
available at a coarse spatial resolution. For example, the models
for New Delhi show that higher levels of PM2.5, BC, and UFPN
are associated with higher population density. However,
population data were available at ward level only; the average
ward size is ∼100 000 people (Delhi: 16 M people, 156 wards).
Availability of population data at a finer scale may improve model
performance, as might data on other sources such as biomass
burning. The available geographic predictors explained a much
smaller proportion of variability inmeasured PM2.5, BC, andUFPN
than observed in other studies,28 indicating the importance of
temporal variability and the likelihood of uncharacterized sources
and sources that do not correlate with land-use. Performance of our
LUR models is in part limited by the influence of uncharacterized
sources such as biomass burning (sources that are not necessarily
correlated with land use) and the likely impact of a far greater
number of distributed sources compared with developed country
settings. We recognize the presence of spatial autocorrelation as
a limitation of our models. We did not include spatial clustering
in the predictions as it decreases interpretability by replacing
important but unknown predictors.
Ourmodeling was limited by the availability of geographic data

for constructing predictor variables. Other LUR models have
consideredmore than 100 variables to describe spatial contrasts,66

compared with the 14 available for this analysis. It is recognized
that a larger number of sampling sites can benefit validation of
LUR models and is recommended for future projects.67 Finally,
our models are only applicable from February through May,
which is when the measurements used here were conducted.
Separate models could be developed for other months using the
approach employed here.
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Straif, K.; Straney, L.; Thurston, G. D.; Tran, J. H.; Van Dingenen, R.;
van Donkelaar, A.; Veerman, J. L.; Vijayakumar, L.; Weintraub, R.;
Weissman, M. M.; White, R. A.; Whiteford, H.; Wiersma, S. T.;
Wilkinson, J. D.;Williams, H. C.;Williams,W.;Wilson, N.;Woolf, A. D.;
Yip, P.; Zielinski, J. M.; Lopez, A. D.; Murray, C. J. L.; Ezzati, M. A
comparative risk assessment of burden of disease and injury attributable
to 67 risk factors and risk factor clusters in 21 regions, 1990−2010: a
systematic analysis for the Global Burden of Disease Study 2010. Lancet
2012, 380, 2224−2260.
(17) Kandlikar, M. Air pollution at a hotspot location in Delhi:
Detecting trends, Seasonal cycles and oscillations. Atmos. Environ. 2007,
41, 5934−5947.
(18) Census Census of India. http://censusindia.gov.in/2011-prov-
results/prov_data_products_delhi.html (accessed November 7, 2011).
(19) Kathuria, V. Impact of CNG on vehicular pollution in Delhi: a
note. Transp. Res. D. 2004, 9, 409−417.
(20) Jayaraman, G. Nidhi. Air pollution and associated respiratory
morbidity in Delhi. Health Care Manage. Sci. 2008, 11, 132−138.
(21) Saksena, S.; Joshi, V.; Patil, R. S. Cluster analysis of Delhi’s
ambient air quality data. J. Environ. Monit. 2003, 5, 491−499.
(22) Shandilya, K. K.; Khare, M.; Gupta, A. B. Suspended particulate
matter distribution in rural-industrial Satna and in urban-industrial
South Delhi. Environ. Monit. Assess. 2007, 128, 431−445.
(23) Srivastava, A.; Jain, V. K. Seasonal trends in coarse and fine particle
sources inDelhi by the chemical mass balance receptor model. J. Hazard.
Mater. 2007, 144, 283−291.
(24) Guttikunda, S. K.; Gurjar, B. Role of meteorology in seasonality of
air pollution in megacity Delhi, India. Environ. Monit. Assess. 2011, 184,
3199−3211.
(25) Cropper, M. L.; Simon, N. B.; Alberini, A.; Arora, S.; Sharma, P. K.
The health benefits of air pollution control in Delhi. Am. J. Agric. Econ.
1997, 79, 1625−1629.

Environmental Science & Technology Article

dx.doi.org/10.1021/es401489h | Environ. Sci. Technol. XXXX, XXX, XXX−XXXH

http://pubs.healtheffects.org/view.php?id=315
http://pubs.healtheffects.org/view.php?id=315
http://censusindia.gov.in/2011-prov-results/prov_data_products_delhi.html
http://censusindia.gov.in/2011-prov-results/prov_data_products_delhi.html


(26) Rajarathnam, U.; Sehgal, M.; Nairy, S.; Patnayak, R. C.; Chhabra,
S. K.; Kilnani; Ragavan, K. V. Time-series study on air pollution and
mortality in Delhi. Res Rep Health Eff Inst 2011, 47−74.
(27)Marshall, J. D.; Nethery, E.; Brauer, M.Within-urban variability in
ambient air pollution: Comparison of estimation methods. Atmos.
Environ. 2008, 42, 1359−1369.
(28) Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.;
Fischer, P.; Briggs, D. A review of land-use regression models to assess
spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42,
7561−7578.
(29) Novotny, E. V.; Bechle, M. J.; Millet, D. B.; Marshall, J. D.
National satellite-based land-use regression: NO2 in the United States.
Environ. Sci. Technol. 2011, 45, 4407.
(30) Henderson, S. B.; Beckerman, B.; Jerrett, M.; Brauer, M.
Application of land use regression to estimate long-term concentrations
of traffic-related nitrogen oxides and fine particulate matter. Environ. Sci.
Technol. 2007, 41, 2422−2428.
(31) Gilbert, N. L.; Goldberg, M. S.; Beckerman, B.; Brook, J. R.;
Jerrett, M. Assessing spatial variability of ambient nitrogen dioxide in
Montreal, Canada, with a land-use regression model. J. Air Waste
Manage. Assoc. 2005, 55, 1059−1063.
(32) Jerrett, M.; Arain, M. A.; Kanaroglou, P.; Beckerman, B.; Crouse,
D.; Gilbert, N. L.; Brook, J. R.; Finkelstein, N.; Finkelstein, M. M.
Modeling the intraurban variability of ambient traffic pollution in
Toronto, Canada. J. Toxicol. Env. Health Part A 2007, 70, 200−212.
(33) Kanaroglou, P. S.; Jerrett, M.; Morrison, J.; Beckerman, B.; Arain,
M. A.; Gilbert, N. L.; Brook, J. R. Establishing an air pollution
monitoring network for intra-urban population exposure assessment: A
location-allocation approach. Atmos. Environ. 2005, 39, 2399−2409.
(34) Basagaña, X.; Rivera, M.; Aguilera, I.; Agis, D.; Bouso, L.; Elosua,
R.; Foraster, M.; de Nazelle, A.; Nieuwenhuijsen, M.; Vila, J.; Künzli, N.
Effect of the number of measurement sites on land use regression
models in estimating local air pollution. Atmos. Environ. 2012, 54, 634−
642.
(35) Guttikunda, S. Air pollution in Delhi. Econ. Polit. Wkly. 2012, 47,
24−27.
(36) Guttikunda, S. K.; Jawahar, P. Application of SIM-air modeling
tools to assess air quality in Indian cities. Atmos. Environ. 2012, 62, 551−
561.
(37) Kandlikar, M.; Ramachandran, G. The causes and consequences
of particulate air pollution in urban India: a synthesis of the science.
Annu. Rev. Energy Environ. 2000, 25, 629−684.
(38) Chowdhury, Z.; Zheng, M.; Schauer, J. J.; Sheesley, R. J.; Salmon,
L. G.; Cass, G. R.; Russell, A. G. Speciation of ambient fine organic
carbon particles and source apportionment of PM2.5 in Indian cities. J.
Geophys. Res., Atmos. 2007, 112.
(39) Tiwari, S.; Srivastava, A. K.; Bisht, D. S.; Parmita, P.; Srivastava, M.
K.; Attri, S. D. Diurnal and seasonal variations of black carbon and PM2.5

over New Delhi, India: Influence of meteorology. Atmos. Res. 2013,
125−126, 50−62.
(40) Brauer, M.; Hoek, G.; van Vliet, P.; Meliefste, K.; Fischer, P.;
Gehring, U.; Heinrich, J.; Cyrys, J.; Bellander, T.; Lewne, M.;
Brunekreef, B. Estimating long-term average particulate air pollution
concentrations: Application of traffic indicators and geographic
information systems. Epidemiology 2003, 14, 228−239.
(41) Apte, J. S.; Kirchstetter, T. W.; Reich, A. H.; Deshpande, S. J.;
Kaushik, G.; Chel, A.; Marshall, J. D.; Nazaroff, W.W. Concentrations of
fine, ultrafine, and black carbon particles in auto-rickshaws in New
Delhi, India. Atmos. Environ. 2011, 45, 4470−4480.
(42) Ramachandran, G.; Adgate, J. L.; Pratt, G. C.; Sexton, K.
Characterizing indoor and outdoor 15 minute average PM2.5
concentrations in urban neighborhoods. Aerosol Sci. Technol. 2003, 37,
33−45.
(43) Arku, R. E.; Vallarino, J.; Dionisio, K. L.; Willis, R.; Choi, H.;
Wilson, J. G.; Hemphill, C.; Agyei-Mensah, S.; Spengler, J. D.; Ezzati, M.
Characterizing air pollution in two low-income neighborhoods in Accra,
Ghana. Sci. Total Environ. 2008, 402, 217−231.
(44) Both, A. F.; Balakrishnan, A.; Joseph, B.; Marshall, J. D.
Spatiotemporal aspects of real-time PM2.5: Low and middle-income

neighborhoods in Bangalore, India. Environ. Sci. Technol. 2011, 45,
5629−5636.
(45) Kirchstetter, T. W.; Novakov, T. Controlled generation of black
carbon particles from a diffusion flame and applications in evaluating
black carbon measurement methods. Atmos. Environ. 2007, 41, 1874−
1888.
(46) Jimenez, J.; Claiborn, C.; Larson, T.; Gould, T.; Kirchstetter, T.
W.; Gundel, L. Loading effect correction for real-time aethalometer
measurements of fresh diesel soot. J. Air Waste Manage. Assoc. 2007, 57,
868−873.
(47) Hansen, A. D. A.; Rosen, H.; Novakov, T. The aethalometer – An
instrument for the real-time measurement of optical absorption by
aerosol particles. Sci. Total Environ. 1984, 36, 191−196.
(48) Westerdahl, D.; Fruin, S.; Sax, T.; Fine, P. M.; Sioutas, C. Mobile
platform measurements of ultrafine particles and associated pollutant
concentrations on freeways and residential streets in Los Angeles.Atmos.
Environ. 2005, 39, 3597−3610.
(49) Dushkin, L. Scheduled caste policy in India: history, problems,
prospects. Asian Surv. 1967, 7, 626−636.
(50) Limpert, E.; Stahel, W. A.; Abbt, M. Log-normal distributions
across the sciences: Keys and clues. Bioscience 2001, 51, 341−352.
(51) Massey, F. J. The Kolmogorov-Smirnov test for goodness of fit. J.
Am. Stat. Assoc. 1951, 46, 68−78.
(52) R: A Language and Environment for Statistical Computing; R
Foundation for Statistical Computing: Vienna, Austria, 2011.
(53) Huber, P. J. Regression. In Robust Statistics; John Wiley & Sons,
Inc.: Hoboken, NJ, 2005; pp 153−198.
(54) Onwuegbuzie, A.; Leech, N.; Whitcome, J. A framework for
making quantitative educational research articles more reader-friendly
for practitioners. Qual. Quan. 2008, 42, 75−87.
(55) Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2ed.;
L. Erlbaum Associates: Hillsdale, N.J., 1988.
(56) Picard, R. R.; Cook, R. D. Cross-validation of regression models. J.
Am. Stat. Assoc. 1984, 79, 575−583.
(57) Getis, A. Reflections on spatial autocorrelation. Reg. Sci. Urban
Econ. 2007, 37, 491−496.
(58) Durbin, J.; Watson, G. S. Testing for serial correlation in least
squares regression. II. Biometrika 1951, 38, 159−177.
(59) Chen, L.; Bai, Z.; Kong, S.; Han, B.; You, Y.; Ding, X.; Du, S.; Liu,
A. A land use regression for predicting NO2 and PM10 concentrations in
different seasons in Tianjin region, China. J. Environ. Sci. 2010, 22,
1364−1373.
(60) Allen, R. W.; Gombojav, E.; Barkhasragchaa, B.; Byambaa, T.;
Lkhasuren, O.; Amram, O.; Takaro, T. K.; Janes, C. R. An assessment of
air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air
Quality, Atmos. Health 2011, 1−14.
(61) Rose, N.; Cowie, C.; Gillett, R.; Marks, G. B. Validation of a
spatiotemporal land use regression model incorporating fixed site
monitors. Environ. Sci. Technol. 2010, 45, 294−299.
(62) Tripathi, S. N.; Dey, S.; Tare, V.; Satheesh, S. K. Aerosol black
carbon radiative forcing at an industrial city in northern India. Geophys.
Res. Lett. 2005, 32, L08802.
(63) Clougherty, J.; Wright, R.; Baxter, L.; Levy, J. Land use regression
modeling of intra-urban residential variability in multiple traffic-related
air pollutants. Environ. Health 2008, 7, 17.
(64) Larson, T.; Su, J.; Baribeau, A.-M.; Buzzelli, M.; Setton, E.; Brauer,
M. A spatial model of urban winter woodsmoke concentrations. Environ.
Sci. Technol. 2007, 41, 2429−2436.
(65) Larson, T.; Henderson, S. B.; Brauer, M. Mobile monitoring of
particle light absorption coefficient in an urban area as a basis for land
use regression. Environ. Sci. Technol. 2009, 43, 4672−4678.
(66) Wang, R.; Henderson, S. B.; Sbihi, H.; Allen, R. W.; Brauer, M.
Temporal stability of land use regression models for traffic-related air
pollution. Atmos. Environ. 2013, 64, 312−319.
(67) Johnson, M.; Isakov, V.; Touma, J. S.; Mukerjee, S.; Özkaynak, H.
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Figure S.1: Diurnal variation of PM2.5 concentrations at the rooftop site by month 

 
 

 

 

Figure S.2: Diurnal variation of BC concentrations at the rooftop site by month 



 
 

 

 

 

 

 

 

 

 

 

 

 
Table S1: LUR models using robust regression 
Model Model terms and coefficients: log-median concentration 

a 
LOOE 

b
 

Constant ln(ROOF) POP.5000 DIST.J1 RD2.500  

PM2.5 (morning) 1.07 0.80 ** 2.0 × 10
-3 
** -7.5 × 10

-4 
**  0.25 

N = 19
c 

 
 

    

PM2.5 (afternoon)  -0.29 1.05 ** 1.4 × 10
-3 
**   0.29 

N = 35       

BC  (morning) 0.64* 0.75 ** 2.5 × 10
-3
 ** -6.7 × 10

-4
 *  0.34 

N = 17       

BC (afternoon) -0.03 0.97 ** 2.2 × 10
-3
 ** -1.1 ×10

-3
 **  0.45 

N = 25       

PN (morning) 10.38**  3.1 × 10
-3
 **   0.59 

N = 18       

PN (afternoon) 9.76**  2.3 × 10
-3
 **  4.9 × 10

-5 
** 0.72 

N = 37       
a 
Spatiotemporal LUR models predict the natural log of the hourly median concentration at each fixed site. 

b 
 Leave-one-out cross-validation error. 

c 
 N - number of sites 
 

 

 


