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ABSTRACT: Land use regression (LUR) models typically investigate

3,
within-urban variability in air pollution. Recent improvements in data g"(’m

Annual NO2

quality and availability, including satellite-derived pollutant measurements, | E »o-1
support fine-scale LUR modeling for larger areas. Here, we describe NO, %;2
and PM,, LUR models for Western Europe (years: 2005—2007) based on |-«

[ >40-60

>1500 EuroAirnet monitoring sites covering background, industrial, and
traffic environments. Predictor variables include land use characteristics,
population density, and length of major and minor roads in zones from
0.1 km to 10 km, altitude, and distance to sea. We explore models with and
without satellite-based NO, and PM, as predictor variables, and we
compare two available land cover data sets (global; European). Model
performance (adjusted R*) is 0.48—0.58 for NO, and 0.22—0.50 for PM,,.
Inclusion of satellite data improved model performance (adjusted R*) by,
on average, 0.05 for NO, and 0.11 for PM,,. Models were applied on a
100 m grid across Western Europe; to support future research, these data
sets are publicly available.

I s

1. INTRODUCTION

Land use regression (LUR) has rapidly become a standard
approach for estimating spatial variability in air pollution, for
example during exposure assessment in epidemiological studies.
Since the inception of LUR, many studies have explored how well

employ data from existing monitors; this approach is well suited
to modeling broad geographic extents. Examples include
individual European countries,""'® continental USA,'®!”
Canada,'® and Western Europe."”

Here we develop NO, and PM,, LUR models for Western

LUR can estimate within-city spatial variability in pollutant
concentrations.” Recent attention has focused on comparing
LUR to other methods such as interpolation and dispersion
modeling;** applying LUR to specific constituents (e.g., soot) and
elements of PM,.*” and specific organic compounds (e.g,
PAHs);*® and evaluating the transferability of models to other
spatial and temporal contexts.””'*

LUR models are often derived from measurements made
specifically to build the LUR. An alternative approach is to

-4 ACS Publications  © Xxxx American Chemical Society

Europe. Only one Europe-wide LUR has previously been
published.'” We improve on that investigation by offering
2 orders of magnitude improvement in spatial resolution

(1 km? [prior'®] versus 0.01 km? [here]) and by including
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Figure 1. Map and profile plots of NO, concentration in 2005 using satellite data; scatterplot of modeled vs measured NO, at evaluation sites.

Table 1. Summary Statistics for Mean Annual Concentrations (#g/m®) at All Monitoring Sites with >75% Annual Data

Capture”
year N min 5% 95%
NO,
2005 2010 0.8 7.1 60.8
2006 2099 0.9 79 61.8
2007 2236 0.3 7.5 58.7
2005—2007 1670 0.9 8.0 57.9
PMj
2005 1487 7.8 14.8 44.9
2006 1584 7.7 15.7 45.7
2007 1664 3.6 15.2 44.1
2005—-2007 1151 7.7 16.1 43.5

“GM = geometric mean; GSD = geometric standard deviation (unit less).

max mean SD GM GSD
1123 29.3 16.5 24.5 1.9
121.3 29.8 16.8 25.1 1.9
106.5 28.8 159 24.3 19
108.5 28.5 15.5 24.2 19
70.9 26.6 9.2 25.2 1.4
71.7 27.7 92 26.3 1.4
774 26.7 8.7 254 14
61.7 26.7 8.3 25.5 14

satellite-derived estimates of ground-level air pollution. Inves-
tigations with large populations and geographic extents, including
epidemiological studies of air pollution and traffic-related air
pollution, environmental injustice studies, and health risk
assessment, would benefit from continental-scale models with a
finer spatial resolution.

We investigate whether satellite-derived pollution measure-
ments improve fine-scale concentration estimates in European-
wide LURs. Our approach incorporates GIS-derived land
use, topographic data, and satellite-derived estimates of ground-
level concentrations for NO, and PM, ;. We benefit from the
large number of regulatory monitoring stations (EuroAirnet)

operating in Western Europe, facilitating independent evalua-
tion with reserved sites.

2. METHODS

We develop land use regression (LUR) models for Western
Europe (17 contiguous countries; Figure 1). Our dependent
variables are ambient concentrations of NO, and PM,,
obtained from regulatory monitoring. Our independent
variables include several GIS-derived measures of land use
and topography (100 m grids) and satellite-derived estimates of
surface concentrations of NO, and PM, 5 (not PM,; despite
the availability of satellite-derived PM, 5 estimates, there is an
insufficient number of ground-based monitoring sites to
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Table 2. GIS Predictor Variables

data set

OMI derived NO, (ppb): ~10 km surface NO, concentration

Terra derived PM, 5 (ug/m®): ~10 surface PM, 5 concentration
km

Corine land cover® (% area) continuous urban fabric - high density

buffer® or point

variable” code estimate
SNO2 point
SPM point
Hdr buffer

discontinuous urban fabric - low density Ldr

industry Ind

ports Port

urban green Urbgr

total built up (Res + Ind + Port + transport infrastructure, airports, mines, dumps and Tbu

construction sites)

seminatural land Nat

residential (Hdr + Ldr) Res
global land cover (% area) impervious surface Isurf buffer

tree canopy Tree
EuroStreets roads (length in m) major roads Majrd buffer

minor roads Minrd
modeled population (N) population Pop buffer
topography: 90 m SRTM DTM altitude - transformed? Talt point
modeled distance to sea (m) distance to sea - transformed® Tsea point
coordinates (m) XY coordinates for 100 m cell centroids Xcoord point

Ycoord

“Prespecified direction of effect is negative for: Urbgr, Nat, Tree, Talt, and Ycoord for both pollutants; and Tsea for PM,. b«Buffer” zone distances
(m): 0; 100; 200; 300; 400; S00; 600; 700; 800; 1000; 1200; 1500; 1800; 2000; 2500; 3000; 3500; 4000; S000; 6000; 7000; 8000; 10000. “Original
Corine classes: Hdr: class 111; Ldr: class 112; Ind: class 121; Port: class 123; Urbgr: class 141—142; Tbu: class 111—133; Nat: class 311—423; Res:

class 111—112. “Transformed altitude is calculated as
calculated as 4/(minimum distance/max(minimum distance)).

(nalt/max(nalt)), where nalt = altitude — min(altitude). “Transformed distance to sea is

support modeling PM, ;). We next describe the input data and
then our modeling approach.

2.1. Data. 2.1.1. Ground-Based Monitoring Data. We use
annual mean NO, and PM;, concentrations (years 2005—
2007) from EuroAirnet, the regulatory air pollution monitoring
network in Europe. EuroAirnet comprises sites from national
networks™ and is publicly reported in AirBase (version $).*!
NO, is monitored by chemiluminescence. PM,, is monitored
by various methods including Tapered Element Oscillating
Microbalance (TEOM), Beta Attenuation, and Gravimetric
methods.””> The network includes “background”, “industrial”,
and “traffic” sites; all site types are included here. Urban
background sites are representative of the exposure of the
general urban population while rural background are sited away
from major sources of air pollution.”® Annual measurements are
excluded if a site captured <75% of the total hours (NO,) or
days (PM,,). Table 1 presents summary statistics for retained
monitoring sites. For each year, monitoring data are randomly
stratified (by country and site type) into five groups, each with
20% of sites. Subset 1 (20%) is used for model evaluation; the
remaining four subsets (80%) are combined and used for
model building. As a sensitivity analysis, we apply a S-fold cross-
validation procedure in which the 20% evaluation subset is
rotated, thereby creating four additional models. We a priori
designate the first subset to model evaluation, reverting to the
next subset only if spatial autocorrelation is detected. We
further evaluate models developed using 100% of the
monitoring sites and undertake a sensitivity analysis including
country to investigate potential differences in the national
networks comprising AirBase.

2.1.2. Satellite-Derived Estimates of Ground-Level Con-
centrations. We employ satellite-derived estimates of ground-
level NO," and PM, ;.** Tropospheric NO, columns are from

the OMI (Ozone Monitoring Instrument) instrument onboard
the Aura satellite.>® Aerosol optical depth (AOD) retrieved
from the MODIS (Moderate Resolution Imaging Spectroradi-
ometer)®® and MISR (Multiangle Imaging Spectroradiome-
ter)”” instruments onboard the Terra satellite is used to
estimate PM, ;. As described elsewhere,'”***® satellite column-
integrated retrievals were related to surface concentrations at
0.1° X 0.1° resolution (~10 km grid) using scaling factors
interpolated from the GEOS-Chem chemical transport model
(www.geos-chem.org) that account for the local vertical
distribution and scattering properties of each pollutant. Annual
satellite-derived estimates for NO, were made for years 2005,
2006, and 2007. Satellite-derived humidity-corrected PM, g
estimates for 2001—2006 were aggregated to improve accuracy
by enabling sufficient data capture; estimates for grid cells with
<50 daily AOD measurements over the 6 years were removed.”*
In Europe, PM, ; represents a large fraction (40—80%) of PMj,
mass in ambient air,”>>° motivating the use of satellite-derived
PM, 5 as an independent variable in a PM;, LUR.

2.1.3. Predictor Variables. Predictor variables are integrated
into a 100 m raster GIS database using ArcGIS10, employing
the European reference grid (ETRS Lambert Azimuthal Equal
Area 52 10). Satellite-derived pollution measurements and
global land cover data are first resampled using nearest
neighbor assignment; altitude is resampled using bilinear
interpolation (used for continuous data). Variables, described
below, are computed either as point estimates or zones. Zones
of increasing radius (hereafter referred to as “buffers”) from
0.1 km to 10 km are computed using the Focalsum command
with the circle option. Table 2 summarizes the predictor variables.

Two land cover data sets are available: the 100 m European
Corine Land Cover’' and coarser global data sets including
500 m tree canopy’~ and 1 km impervious surfaces.”® On the
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basis of the 44 land classes available in Corine, we define six
main groups, represented by individual classes (Hdr, Ldr, Ind,
Port; see Table 2) or aggregations of classes (Urbgr, Nat). We
define two additional classes based on further aggregation of
the urban classes (Res, Tbu). For both data sets (European;
global), the percent area within in each buffer is computed for
each land cover category. Population counts per grid cell are
based on the European Environment Agency 1 km* population
density grid.***°

We use the 1:10,000 EuroStreets digital road network
(version 3.1, based on TeleAtlas MultiNet TM for year-2008)
to derive road density variables. EuroStreets includes 9 road
classes, which we aggregate into major roads (motorways, main
roads, and other major roads) and minor roads (secondary and
four types of local roads). Nonmotorized tracks and paths are
excluded. We intersect the road data with a 100 m base polygon
and then calculate total length per grid cell and for each buffer.
Consistent traffic-volume data are not available for Europe.

We use altitude data from the SRTM Digital Elevation
Database version 4.1.%° The resolution of the SRTM data is 3
arc second (approximately 90 m), with vertical error <16 m.
SRTM is available for most of the study area, up to 60°N
latitude. For northern Scandinavia we use 1 km resolution
Topo30 data. Distance to sea, a measure of continentality,
differentiates coastal from inland areas which are not, for
example, influenced by coastal recirculation patterns and
particulates from sea spray. We compute this variable as the
distance between centroids of a 1 km grid and the open ocean
25 km offshore as defined by Corine land cover. Distance (in m)
is then assigned to the 100 m grid using inverse distance weighed
(1/d) interpolation. Interpolated distance was validated against
direct calculation of distance to sea, using NEAR, at the
monitoring sites (r = 99). Following Beelen et al,'” we apply a
nonlinear transformation to altitude and distance to sea (see
Table 2). We also include X and Y coordinates for the cell
centroids to reflect broad scale trends in background air pollution
concentrations.”""

2.2. Modeling Approach. LUR model development
follows the ESCAPE supervised stepwise selection to derive
the multiple linear regression equation.’”** Monitoring data
(dependent variable), which are log-normally distributed, are
log-transformed prior to modeling. We exclude potential
predictor variables with >90% null values. Univariate
regressions of the natural logarithm (LN) of annual mean
concentrations and all available potential predictors variables
are first developed, and the predictor with the highest adjusted
R? retained. In subsequent steps, the remaining predictor
variables are evaluated in turn; the variable offering the highest
increase in adj-R? is retained if (1) the coefficient conforms to
the prespecified direction of effect (see Table 2), (2) each
additional predictor variable increases the adj-R* by at least
0.01, and (3) the direction of effect for predictors already
included in the model does not change. Post hoc, variables with
p-value >0.10 or variance inflation factor (VIF) >S are
removed.'” When required, post hoc “ring” (i, annulus)
variables are calculated by differencing the component buffers,
and the model is rerun to derive the final coefficients.'"** We
apply standard diagnostic tests for ordinary least-squares
regression, including checks on the normality of residuals,
heteroscedasticity, spatial autocorrelation of residuals using
Moran’s I, and influential observations using Cook’s D.

For models testing the inclusion of satellite-based measure-
ments, that predictor variable is forced into the model as the

first variable, and the model is built according to the procedure
above. Partial R* values are recomputed and reported after the
final model is derived. Models are evaluated against the
independent subset of 20% sites reserved for this purpose; R?,
root mean squared error (RMSE), error, and bias'’ are
reported here.

3. RESULTS

3.1. Measured Concentrations from Ground-Based
Monitoring. Variability in annual mean NO, and PM,,
concentrations measured at the Airbase monitoring sites is
relatively consistent across the three years (Table 1). For both
pollutants, the number of sites available for modeling (>75%
annual data capture) increases each year, owing to network
growth, improvements in data capture, or both. The number of
sites measuring continuously over the 3-year period is lower
than the number of sites for any individual year (23% [17%]
less for NO, [PM,,], relative to 200S5). Given the longer
temporal period of the PM, g satellite data, we also include LUR
models based on the 3-year average concentrations. For both
pollutants, the largest share of monitoring sites, with ~100—
400 each, are in Austria, Italy, Spain, Germany, and France (see
Supplementary Table S1). Most countries have either a
consistent number or experienced an increase in number of
sites by year. Great Britain is an exception, with a 60% (30%)
reduction in NO, (PM,,) site number in year-2007 relative to
2006. Spain also exhibits a dip in monitor numbers for both
pollutants in 2006. Expansion in the network is greatest for
Italy, with a 65% (86%) increase in NO, (PM,,) sites from
2005 to 2007. For both pollutants, Pearson’s correlation
between the ground- and satellite-based measurements ranges
from 0.33—0.37. The agreement between observed PM,, and
satellite-derived PM, g is likely decreased by differences in
sampling period, spatial representation, and aerosol size but is
sufficient to suggest applicability as a LUR predictor.
Correlation is higher with background sites, which are expected
to be more representative of the larger area covered by each
satellite grid cell. Scatterplots are in Supplementary Figures S1
and S2.

3.2. Model Comparison. Table 3 compares the models on
the basis of coefficient of determination (R*), mean error, and
bias. For both pollutants, models with satellite data out-
performed the respective model without satellite data, achieving
higher model building and evaluation R* and lower error and
bias. Increases in adj-R® attributable to including satellite
estimates are 0.02—0.06 for NO, and 0.07—0.13 for PM,,.
Selection of land cover data set (Corine vs global) yielded
modest (at most 0.04) impacts to adj-R’.

The addition of satellite data did not substantially alter the
structure of the NO, models (Table 3): road and land cover
variables remain largely unchanged; other variables (altitude,
population density, and distance to sea) only enter the models
when satellite data is not included. By comparison, the PM,,
model structure is less stable both across and within years; a
consistent pattern in variables entering models with and
without satellite data is not apparent.

Model results are mapped in Figures 1 and 2 (models with
satellite-derived pollution estimates) and Figures S3 and S4
(models without satellite-derived pollution estimates). For both
pollutants, the models generally resolve expected patterns in air
pollution, with higher concentrations in urban areas and near
roadways. There are detectable differences, however, in the
specific spatial patterns for cities (see map insets and profiles),
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Figure 2. Map and profile plots of PM;, concentration in 2007 using satellite data; scatterplot of modeled vs measured PM,, at evaluation sites.

because of differences in the overall structure of the models. At the
European scale, the maps show that known hotspots with
frequently elevated regional background levels (e.g., the Ruhr area,
Po valley, and western Netherlands) are better captured in models
that include satellite-derived pollution estimates. Table S2 presents
model evaluation by region. A striking example from that table is
for the Italy + Greece region (PM,, # = 309 monitors), R* is 0.07
without satellite data, 0.45 with satellite data.

The sensitivity analysis of 80:20 subsets for annual models
reveals that models are robust to changes in the evaluation
subset; differences in adj-R* are slight (<0.02 for NO, and
<0.04 for PM,,: see Table S3). Table S3 also shows the
evaluation subset used to derive the models presented in Table 3.
All models, for both pollutants, show no spatial autocorrelation in
the residuals. Models based on 100% sites were similar in structure
and performance (Tables S4 and S5). Including country indicators
generally improved models, although not all indicators were
statistically significant. Furthermore, to avoid the introduction of
step changes in concentrations at country borders, we do not use
country in our final models. Improvement was marked, up to
~20%, for some of the PM,, models. This improvement, in part, is
likely attributed to differences in PM monitoring equipment and
may also reflect differences in calibration®* and of site selection of
the various countries.

3.3. Final Models. NO,. The best-performing NO, models
by year are in Table S6. The variables in each NO, model are
consistent across years: in addition to satellite-derived surface
NO,, all models include the length of minor roads in an
intermediate buffer (1500 or 1800 m) and in the outer ring to

10 km, major road length in a 100 m buffer, and total built up
land from Corine in a 300 m buffer. The models also all contain
Corine seminatural land with a negative coefficient in a 500 or
600 m buffer. Minor roads in the intermediate buffer contribute
59—65% to the model predictive power (partial R*: 0.3—0.4),
followed by satellite-based NO, at 17—23% (partial R*: 0.1).
Those findings underscore the utility of satellite-based NO,
concentrations for NO, LUR.

Overall, the final NO, models explain 55—60% of the
variation in log-transformed NO, at the more than 400 reserved
evaluation sites distributed across Europe (Table S8; Figure SS).
Expressed and mapped as concentrations (ug/m?®), the
explained variation is 50—56%. Error and bias are relatively
similar across years, with highest error + bias in year-2007:
error (—1.3 — —1.8 ug/m®); absolute error (8.1-8.5 ug/m?);
mean bias (11—18%); and absolute bias (34—41%). Minor road
length and satellite estimates of NO, are consistently the two
most important predictors.

PM . The best-performing model for PM,, by year is shown
in Table S7. The variables in the final PM;, models varied by
year, with the global land cover models performing better than
Corine in 2005 and 2007. All models contain satellite-based
PM,, the Y coordinate indicating the general decreasing trend
in concentrations from south to north, and major roads in the
intermediate buffer. As with NO,, for PM,, the satellite
measurement is consistently the first or second variable to enter
the model. Distance to sea enters all but the 2007 model, which
instead has the altitude variable. The 2005, 2006, and 2005—
2007 models include land cover classes representing both built
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up areas and remote areas. The structure of the 2007 model
is rather different and includes minor roads in both a local
(200 m) and intermediate (200—2500 m) buffer and percent
tree canopy as the only land cover variable. Satellite-based
PM, and the Y coordinate each contribute ~30—35% to the
model predictive power in each year (see Table S7; partial
R%* 0.1-02).

Based on model R? the year-2007 model explains ~47% of
the variation in measured concentrations (~50% of the
variation in log-transformed NO,) at the sites reserved for
model evaluation; models for earlier years explain 38—44% of
variation in measured concentrations (Table S8; Figure S6).
Error and bias are relatively similar across years, with lower
error and bias in later years: error (—0.2 — —1.2 ug/m?);
absolute error (4.4—6.0 ug/m?®); mean bias (3—5%); absolute
bias (17—22%).

4. DISCUSSION

LUR models given here explain 46—56% (36—48%) of the
variation in annual mean NO, (PM,,) concentration at
independent sites. For both pollutants, satellite data are
consistently the first or second variable into the model, and
those data improve LUR model performance. Based on model
R?, satellite data contribute more to the PM,, models than the
NO, models, despite the difference in particle sizes (using
PM, ; satellite data to model PM,, measurements). This finding
is likely because the satellite data provide estimates averaged over a
~10 km grid and thus reflects regional background rather than
local variations in concentrations. Compared to NO,, ambient
concentrations of PM,, are much more affected by long-range
transport; that transport is detected by the PM, s satellite data.

The overall performance of the NO, model is better than for
PM,,, perhaps owing to other more local predictor variables,
consistent with observations in the ESCAPE study.>”**
Furthermore, in the EU methodological consistency of monitoring
is greater for NO, (chemiluminescence) than PM,, (multiple
methods). Recent spatiotemporal LURs for the USA reported an
R? of 0.78 for NO,"” and 0.63 for PM, .'® As indicated by our
models with country indicators (Tables S4 and SS) and the
evaluation by region (Table S2), however, there are differences
between countries which cannot be explained by the variables in
our final PM;, models. This perhaps points to the need for
regional models, especially for PMjj,.

We expect that meteorological conditions also play a role in
PM,, model performance. In Europe, for example, 2006 was a
year with several air pollution episodes including that associated
with the July heat wave. Here, unlike in our previous work,'**’
we did not specifically include coarse-scale meteorological
variables. We took this a priori decision because the effects of
meteorology are generally captured by the satellite-derived air
pollution data, yet at a higher spatial resolution than for
meteorological data. While daily meteorological variability is
incorporated into the satellite-derived PM, 5 estimates, year-to-
year variability, however, is not captured by the long-term mean
(2001—2006) we use in the PM;, LUR models. If year-to-year
model variation is in fact mainly driven by meteorological factors,
model performance may benefit from including meteorological
variables in the LUR models or, like NO,, using annual satellite
data.

In general, the models described here exhibit comparable
performance as previous LUR models at the European scale:
Beelen et al.'’ report validation R%s of 0.61 (0.45) for NO,
(PM;,) using a hybrid Kriging-LUR approach. Our NO,

models may explain less of the variation in measured
concentrations relative to the work of Beelen et al. in part
because we model all site types, including traffic, rather
than only background sites. We found that evaluation R’s
for independent monitoring sites is very similar to the model
R?, consistent with methodological work showing that model
R* can exceed independent evaluation R’ for small data
sets, but less so for large data sets such as the ones we use
here. **!

An important next step for this research would be to model
PM,;, a pollutant which is subject to recent EU guideline
limits* and, based on the Global Burden of Disease estimates,
is responsible for 3.2 million deaths and 76 million years of lost
healthy life worldwide.* Although site numbers for PM, 5 are
slowly increasing, for this time period and study area, too few
sites are available to derive reliable LUR models (146 and 195,
respectively, in year-2005 and 2007 with sufficient annual data
capture). A large fraction of the spatial variation of PM;, is
related to variation of PM,. The ESCAPE study reported an
average R* between spatial variation of PM;, and PM, 5 of 0.74
(range 0.44—0.95).%°

Modeling over large areas at fine spatial resolutions is an
attractive solution for a variety of applications with large study
populations, including health risk assessment. Given that LUR
models generally cannot be directly transferred to other spatial
domains,'>""'* our approach addresses a particular need for
reliable and consistent models at the continental level. From our
models we estimate the mean population-weighted exposure in
2007 was 27 (25) ug/m* for NO, (PM,,). Furthermore, we
estimate that 9% (NO,) and 1% (PM,,) of the European
population reside in areas exceeding the annual guideline limit of
40 pg/m® (current annual guidelines are the same for NO, and
PM,).>* Some caution is needed in interpretation of these results
given differences in model performance by region (Table S2).
These regional differences in model performance may in part be
attributable to known deficiencies in the monitoring network
(uneven distribution and clustering of sites in EuroAirnet, which is
an assembly of sites from existing country networks; use of
different PM,, monitoring methods and correction factors by
country) or discrepancies in the definition of land cover or road
classes across Europe.*

There are several challenges in producing suitable models for
air pollution exposure assessment across large areas. We aim
here for models at a spatial scale fine enough to estimate
within-city and near-roadway contrasts in pollution while also
accounting for long-range transport and other large scale
variability. Most studies evaluating exposures over large areas
use a vector-LUR approach whereby estimates are then made at
census centroids, a coarse mesh, or home addresses; should a
map or estimates at additional locations be required,
interpolation is then used to produce a continuous sur-
face.'”'8*74¢ A strength of our models is that we take a raster-
based LUR approach, which enables direct prediction at the
100 m grid (Figure 1 and 2). We thus eliminate the need for
interpolation which can oversmooth estimates. In this study, a
100 m resolution is justified given the quality and resolution of
the source information as well as the dense network of
monitoring sites distributed in different exposure environments
across Europe. Although not always reflected in the R* as a
performance measure, this attribute (large number of monitors,
located in diverse environments) is an important advance over
the previous models for Europe.'”
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As was previously demonstrated in Canada'® and the
USA,'*'7*” we show here that combining LUR models with
worldwide, satellite-based pollution measurements can offer
improved continental-scale exposure models for Europe. To
support future research, model results are publicly available.
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Table S1. Number of monitoring sites by year

NO, Sites PM;, Sites

Country 2005- 2005-

2005 2006 2007 2007 2005 2006 2007 2007
AT 146 145 151 138 107 109 127 98
BE 56 57 62 48 39 39 44 35
DE 394 409 419 358 371 400 417 329
DK 12 12 12 12 10 6 7 4
ES 352 321 372 261 260 236 241 171
FI 26 29 25 20 31 29 27 20
FR 456 463 456 399 305 299 289 211
GB 92 97 38 31 64 67 47 39
GR 16 20 23 15 6 7 13 4
HU 23 23 21 21 19 23 23 18
IE 6 8 7 4 8 8 11 5
IT 309 379 509 259 159 248 296 127
LT 8 12 12 6 12 12 13 10
LU 5 5 6 4 1 1 3 0
NL 42 50 51 37 36 38 36 33
PT 56 55 56 48 45 42 45 37
SE 11 14 16 9 14 20 25 10
Total 2010 2099 2236 1670 1487 1584 1664 | 1151

Countries: Austria (AT), Belgium (BE), Denmark (DK), Finland (FI), France (FR), Germany (DE), Greece (GR), Hungary
(HU), Ireland (IE), Italy (IT) Lithuania (LT), Luxembourg (LU), the Netherlands (NL), Portugal (PT), Spain (ES), Sweden
(SE), United Kingdom (GB)
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Table S2. Evaluation statistics by regions for best models (based on concentration (ng/m?))

A. Final NO, model, year 2005 (Corine + satellite vs. Corine only)

At Evaluation Sites” At All Sites
Reglons’ Smltll;te Without Satellite | smltlli]te Without Satellite |
R? | RMSE | R’ RMSE R> | RMSE [ R’ RMSE
Overall 0.56 | 1154 054 11.82 [ 398 | 0.51 | 11.80 | 0.49 12.04 | 2010
DK-FI-SE-LT | 0.73 8.63 | 0.75 847 | 11]0.62 828 | 0.58 9.51 57
BE-LU-NL 0.66 7.50 | 0.67 782 | 251053 1008 ] 0.54 9.16 [ 103
GB-IE 044 | 1641 ] 040 1686 | 19064 | 12.05] 0.61 12.15 98
DE 0.60 8.55 | 0.61 8.68 | 69 ] 0.58 9.79 | 0.65 8.99 | 394
FR 0.58 958 | 0.59 983 90050 1015 048 11.07 | 456
HU-AT 0.61 942 | 0.60 904 [ 26043 1170 | 0.46 11.13 | 169
PT-ES 0.63 9.71 | 0.61 995 93067 1025] 0.64 10.65 | 408
IT-GR 052 | 17.67] 0.50 1822 | 651043 1757 0.41 1825 | 325
B. Final PM;, model, year 2007 (Global + satellite vs. Global only)
At Evaluation Sites’ At All Sites
Regions® Sz:):]elltll;te Without Satellite N Smltll; te Without Satellite N
R> | RMSE [ R’ RMSE R?> | RMSE [ R’ RMSE
Overall 0.47 6.74 | 0.37 7.40 | 325 | 0.49 6.26 | 0.35 7.07 | 1664
DK-FI-SE-LT | 0.30 729 | 0.31 573 | 15]0.38 6.64 | 0.44 5.49 72
BE-LU-NL 0.38 338 | 048 3.64 [ 16 [ 0.32 428 | 0.34 432 83
GB-IE 0.00 520 | 0.03 597 | 10]0.57 440 | 053 5.25 58
DE 0.58 403 [ 054 410 [ 76 | 0.50 412 | 048 418 | 417
FR 0.32 554 | 0.26 582 | 55]0.23 527 | 0.16 5.66 | 289
HU-AT 0.06 5.16 [ 0.10 504 | 271026 494 | 035 497 [ 150
PT-ES 0.39 9.67 | 0.33 9.93 [ 66 [ 0.32 8.52 | 0.29 8.43 | 286
IT-GR 0.54 7.86 | 0.19 1035 | 60 | 0.45 8.02 | 0.07 11.00 [ 309

a. Regions listed north to south
b. Evaluation sites refers to the 20% sites not used in model building

Countries: Austria (AT), Belgium (BE), Denmark (DK), Finland (FI), France (FR), Germany (DE), Greece (GR), Hungary
(HU), Ireland (IE), Italy (IT) Lithuania (LT), Luxembourg (LU), the Netherlands (NL), Portugal (PT), Spain (ES), Sweden
(SE), United Kingdom (GB)
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Table S3. Sensitivity analysis - rotating 20% evaluation subsets

Model Evaluation®

Model
Year Model Subset” | Building® LN Concentration Decision
Concentration (ng/m’)
Adj-R? R’ R
NO,
2005 Corine with 1 0.58 0.58 0.56 | final model
satellite 2 0.58 0.58 0.39
3 0.59 0.53 0.45
4 0.58 0.60 0.54
5 0.58 0.60 0.52
2006 Corine with 1 0.56 0.52 0.41 | reject: spatial autocorrelation
satellite 2 0.55 0.55 0.50 | final model
3 0.56 0.52 0.42
4 0.55 0.54 0.47
5 0.54 0.60 0.50
2007 Corine with 1 0.55 0.59 0.50 | final model
satellite 2 0.56 0.56 0.41
3 0.57 0.50 0.43
4 0.56 0.54 0.43
5 0.55 0.58 0.52
PM;,
2005 Global with 1 0.35 0.41 0.44 | final model
satellite 2 0.36 0.34 0.36
3 0.36 0.37 0.38
4 0.36 0.33 0.35
5 0.36 0.29 0.30
2006 Corine with 1 0.35 0.40 0.38 | reject: spatial autocorrelation
satellite 2 0.36 0.32 0.34 | final model
3 0.38 0.30 0.30
4 0.34 0.44 0.43
5 0.38 0.29 0.32
2007 Global with 1 0.50 0.50 0.47 | final model
satellite 2 0.50 0.53 0.48
3 0.50 0.53 0.52
4 0.50 0.53 0.52
5 0.53 0.41 0.41

a. Model building based on natural logarithm of concentration (LN concentration) using 80% of monitoring sites
b. Model evaluation using 20% reserved monitoring sites
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Table S4. Sensitivity analysis - NO, models based on all monitoring sites

Model building®
Variables Partial
[ IQR B*IQR | VIF | dj-R?
2005 - Corine with satellite
Constant 2.245
Minor roads 1500m 4.37E-06 56158 025 | 2.6 0.37
Satellite-derived surface NO, 2005 | 6.46E-02 3.0 0.19 1.3 0.49
Major roads 100m 6.02E-04 0.0 0.00 | 1.1 0.53
Total built up land 300m 3.31E-03 55.2 0.18 | 2.2 0.56
Minor roads 1500-10000m 1.19E-07 981014 0.12 1.9 0.57
Semi-natural land 600m -4.03E-03 4.4 -0.02 | 1.6 0.58
2006 - Corine with satellite
Constant 2.35
Minor roads 2000m 2.49E-06 88596 022 | 2.7 0.34
Satellite-derived surface NO, 2006 | 4.30E-02 3.8 0.17 1.2 0.44
Semi-natural land 500m -4.85E-03 1.2 -0.01 1.6 0.48
Major roads 100m 6.55E-04 0.0 0.00 | 1.1 0.53
Total built up land 400m 3.44E-03 53.1 0.18 | 2.2 0.54
Minor roads 2000-10000m 1.07E-07 939846 0.10 1.9 0.55
2007 - Corine with satellite
Constant 2.28
Minor roads 1500m 4.35E-06 55676 0.24 2.5 0.33
Satellite-derived surface NO, 2007 | 6.51E-02 3.02 020 | 13 0.46
Major roads 100m 6.21E-04 0.00 0.00 | 1.0 0.50
Semi-natural land 600m -4.35E-03 4.42 -0.02 1.6 0.53
Total built up land 300m 3.20E-03 55.17 0.18 | 2.2 0.55
Minor roads 1500-10000m 1.02E-07 | 917706.00 009 | 1.8 0.56

a. Model building based on natural logarithm of concentration (LN concentration) using 100% of monitoring sites
b. All p-values < 0.000
Adj-R? including country dummy variables: 0.62 (year-2005), 0.61 (year-2006) and 0.62 (year-2007)



Table SS. Sensitivity analysis - PM;, models based on all monitoring sites

Model building®
Variables Partial
B° IQR | B*IQR | VIF | | dj-R?
2005 - Global with satellite
Constant 3.36
Tree canopy 500m -3.45E-03 7.5 -0.03 1.2 12
Satellite-derived surface PM, 52001-6 | 2.10E-02 7.1 0.15| 1.1 .20
Y coordinate -1.93E-07 | 775844 -0.15 1.1 .30
Impervious surface 800m 2.71E-03 40.5 011 ] 1.2 .34
2006 - Corine with satellite
Constant 3.47
Satellite-derived surface PM, s2001-6 | 2.23E-02 6.9 0.15 1.1 13
Y coordinate -1.82E-07 | 778267 -0.14 1.2 25
Semi-natural land 1000m -3.04E-03 104 -0.03 1.2 31
High density residential 1500m 3.04E-03 13.1 004 | 12 34
Major roads 100m 2.05E-04 0.0 0.00 | 1.1 35
Distance to sea -1.87E-01 0.4 -0.07 1.2 .36
2007 - Global with satellite
Constant 3.65
Y coordinate -2.85E-07 | 780423 -0.22 1.2 .14
Satellite-derived surface PM, 52001-6 | 2.00E-02 7.1 014 | 1.1 30
Impervious surface 1000m 2.32E-03 36.4 008 | 14 42
Altitude -7.37E-01 0.2 -0.12 | 1.2 47
Minor roads 200m 4.59E-05 1564 0.07 1.4 49
Major roads 4.94E-04 0.0 0.00 | 1.1 .50

a. Model building based on natural logarithm of concentration (LN concentration) using 100% of monitoring sites
b. All p-values < 0.000
Adj-R? including country dummy variables: 0.54 (year-2005), 0.53 (year-2006) and 0.54 (year-2007)



Table S6. Final NO, models by year

Model building®
Variables b Partial
B IQR B*IQR | VIF Adj-R2

2005 - Corine with satellite
Constant 2.31
Minor roads 1800m 3.22E-06 74727 0.24 2.6 0.38
Satellite-derived surface NO, 2005 6.13E-02 3.0 0.18 1.3 0.48
Semi-natural land 600m -4.84E-03 4.4 -0.02 1.6 0.52
Major roads 100m 5.91E-04 0.0 0.00 1.1 0.56
Total built up land 300m 3.15E-03 55.2 0.17 | 2.1 0.57
Minor roads 1800-10000m 1.04E-07 | 978059 0.10 | 2.0 0.58
2006 - Corine with satellite
Constant 2.35
Minor roads 1500m 3.96E-06 | 54683 022 | 2.5 0.33
Satellite-derived surface NO, 2006 4.30E-02 4.0 0.17 1.3 0.43
Major roads 100m 6.49E-04 0.0 0.00 | 1.1 0.48
Semi-natural land 500m -5.19E-03 1.2 -0.01 1.6 0.52
Minor roads 1500-10000m 1.22E-07 | 965644 0.12 1.7 0.54
Total built up land 300m 3.10E-03 51.7 0.16 | 2.2 0.55
2007 - Corine with satellite
Constant 2.3
Minor roads 1500m 4.21E-06 | 55549 023 | 2.6 0.32
Satellite-derived surface NO, 2007 6.37E-02 3.1 0.20 1.3 0.45
Major roads 100m 6.33E-04 0.0 0.00 | 1.0 0.49
Semi-natural land 600m -4.30E-03 53 -0.02 1.6 0.53
Total built up land 300m 3.13E-03 58.6 0.18 | 2.2 0.54
Minor roads 1500-10000m 1.01E-07 | 912789 0.09 1.8 0.55
2005-2007 - Corine with satellite
Constant 2.3
Minor roads 1500m 4.09E-06 54754 0.22 2.5 0.37
Satellite-derived surface NO, 2005-2007° | 5.29E-02 3.2 0.17 1.3 0.48
Semi-natural land 600m -4.79E-03 4.4 -0.02 1.6 0.53
Major roads 100m 5.93E-04 0.0 0.00 1.1 0.57
Minor roads 1500-10000m 1.22E-07 | 961813 0.12 1.8 0.58
Total built up land 300m 3.16E-03 48.3 0.15 | 2.3 0.60

a. Model building based on natural logarithm of concentration (LN concentration) using 80% of monitoring sites
b. All p-values < 0.000
c. Average of annual satellite-derived surface NO, for the three year period



Table S7. Final PM;, models by year

Model building”
Variables b Partial
B IQR B* IQR | VIF Adj-R?

2005 - Global with satellite
Constant 3.42
Y coordinate -1.87E-07 | 756842 -0.14 1.1 0.13
Satellite-derived surface PM, 5 2001-6 2.26E-02 6.9 0.16 1.1 0.24
Impervious surface 1000m 2.46E-03 39.1 0.10 1.2 0.31
Tree canopy 500m -2.86E-03 7.7 -0.02 1.3 0.33
Distance to sea -2.20E-01 0.4 -0.08 1.1 0.34
Major roads 4.47E-04 0.0 0.00 1.1 0.35
2006 - Corine with satellite
Constant 3.471
Satellite-derived surface PM, 5 2001-6 2.19E-02 6.9 0.15 1.1 0.13
Y coordinate -2.00E-07 | 780076 -0.16 1.1 0.26
Total built up land 600m 8.86E-04 52.2 0.05 1.9 0.31
Population 1800m 1.04E-06 38155 0.04 1.3 0.33
Distance to sea -2.42E-01 0.4 -0.09 1.1 0.35
Major roads 100m 1.97E-04 0.0 0.00 1.1 0.36
Semi-natural land 1000m -1.77E-03 1.8 0.00 1.6 0.37
2007 - Global with satellite
Constant 3.67
Satellite-derived surface PM, s 2001-6 1.93E-02 7.1 0.14 1.1 0.16
Y coordinate -2.83E-07 | 778777 -0.22 1.2 0.31
Minor roads 200-2500m 6.03E-07 | 119820 0.07 1.7 0.42
Altitude -6.93E-01 0.2 -0.11 1.2 0.47
Minor roads 200m 3.52E-05 1538.0 0.05 1.6 0.48
Major roads 5.07E-04 0.0 0.00 1.1 0.49
Tree canopy 100m -1.86E-03 8.2 -0.02 1.3 0.50
2005-2007 - Corine with satellite
Constant 3.61
Y coordinate -2.40E-07 | 683381 -0.16 1.1 0.17
Satellite-derived surface PM, s 2001-6 2.24E-02 7.1 0.16 1.1 0.31
Semi-natural land 1200m -2.30E-03 12.9 -0.03 1.7 0.40
Distance to sea -3.45E-01 0.3 -0.11 1.1 0.43
Population 1800m 7.48E-07 37142 0.03 1.3 0.46
Total built up 400m 1.18E-03 51.0 0.06 1.7 0.47
Major roads 100m 1.42E-04 0.0 0.00 1.1 0.48

a. Model building based on natural logarithm of concentration (LN concentration) using 80% of monitoring sites
b. All p-values < 0.000



Table S8. Summary of model building and evaluation statistics

Model building” Model Evaluation”
Year Model .52 LN concentration Concentration (ug/m’)
Adj-R™| SEE | N R> | SEE R’ | RMSE | ME | MAE | MB | MAB | Regression line® N

NO,

2005 Corine with satellite 0.58 | 0.42 | 1612 0.58 0.44 | 0.56 11.54 | -1.8 8.1 13 37 y=0.98x+2.47 | 398
2006 Corine with satellite 0.55 ] 043 | 1674 0.55 0.42 | 0.50 1135 ] -1.5 8.3 11 35 y=0.90x+4.15 | 425
2007 Corine with satellite 0.55 | 0.42 | 1786 0.59 0.42 | 0.50 11.80 | -1.3 8.5 18 41 y=0.91x+3.76 | 450
2005-2007 | Corine with satellite 0.60 | 0.39 | 1330 0.56 0.42 | 0.46 11.66 | -1.8 8.4 8 34 y=0.84x+6.07 | 340
2005 Global with satellite 0.35 | 0.27 | 1184 0.41 0.26 | 0.44 7.07 | -0.8 5.4 4 21 y=1.13x-2.53 | 303
2006 Corine with satellite 0.37 | 0.26 | 1263 0.35 0.27 | 0.36 7.56 | -1.2 6.0 3 22 y=1.04x+0.22 | 321
2007 Global with satellite 0.50 | 0.23 | 1339 0.50 0.23 | 0.47 6.74 | -0.5 4.6 4 17 y=1.07x-1.36 | 325
2005-2007 | Corine with satellite 0.48 | 0.22 895 0.46 0.21 | 0.48 5.99 | -0.2 4.4 3 17 y=1.00x+0.39 | 256

a. Model building based on natural logarithm of concentration (LN concentration) using 80% of monitoring sites

b. Model evaluation using 20% reserved monitoring sites
c. See Figures S5 and S5 for scatterplots
ME = mean error (p g/m3 ); MAE = mean absolute error ( ug/m3 ); MB = mean bias (%); MAB = mean absolute bias (%)
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Figure S3. Map and profile plots of NO, concentration in 2005 without satellite data; scatterplot of modelled vs. measured NO, at evaluation sites
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Figure S4. Map and profile plots of PM,, concentration in 2007 without satellite data; scatterplot of modelled vs. measured PM,, at evaluation sites
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Figure S5. Modelled vs. measured NO, concentration (ng/m3) at evaluation sites for final models shown in Tables S3 and S5
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Figure S6. Modelled vs. measured PM;, concentration (ug/m3) at evaluation sites for final models shown in Tables S4 and S5
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