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a b s t r a c t

Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure
assessment in epidemiological studies. Most LUR models are developed for single cities, which places
limitations on their applicability to other locations. We sought to develop a model to predict nitrogen
dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of
tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating
equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a
national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial
variation in NO2 (absolute RMS error¼1.4 ppb), while the best monthly model explained 76% (absolute
RMS error¼1.9 ppb). We applied our models to predict NO2 concentrations at the �350,000 census
mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census).
National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We
found that a simple approach using tropospheric NO2 column data yielded models with slightly better
predictive ability than those produced using a more involved approach that required simulation of
surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and
offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across
Australia from 2006–2011. We are making our model predictions freely available for research.

& 2014 Elsevier Inc. All rights reserved.
1. Introduction

Outdoor (ambient) air pollution is a major contributor to the
global burden of disease and a leading environmental risk factor
for morbidity and mortality (Lim et al., 2012). Accurate estimates
of people's exposure to ambient air pollution are required to
quantify and understand its effects on health. Exposure estimates
have traditionally involved using average measurements from air
pollution monitors (e.g. Barnett et al., 2005), assigning exposure
using the nearest monitor to a person's residence (e.g. Ritz et al.,
2002) or using a proxy like distance to the nearest main road (e.g.
Hoffmann et al., 2007). There is potential for exposure misclassi-
fication with all these approaches due to their limited ability to
capture the spatial variability that characterises some air pollu-
tants (Jerrett et al., 2005; Hoek et al., 2008).
Land-use regression (LUR) is a technique that can improve the
accuracy of air pollution exposure estimates. It uses measurements
at a set of locations combined with spatial variables to build
statistical models that can predict concentrations at unmeasured
locations (Hoek et al., 2008). A key limitation of most LUR models
is that they are constrained to individual cities, and a model built
for one location is not necessarily transferrable to another (Briggs,
2007; Vienneau et al., 2010). However, the recent availability of
high quality satellite data has helped address these issues by
permitting better representation of large areas in LUR. Satellite-
based LUR models for the USA (Novotny et al., 2011), Canada
(Hystad et al., 2011) and Western Europe (Vienneau et al., 2013)
have been developed, and have similar predictive ability to city
models but with national coverage. In some cases, their spatial
resolution can rival that of city models (Novotny et al., 2011). These
satellite-based LUR models have attractive applications in air
pollution epidemiology, environmental justice, and planning
studies.
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Australia (population �23 million) is one of the world's least
densely populated countries (3 people/km2) but also one of the
most urbanised, as ninety percent of the population live in or near
cities (Australian Bureau of Statistics, 2013a,b). There are relatively
few regulatory air pollution monitoring sites in Australia. For
example, Canada's population is about 50% larger than Australia's,
but Canada has about twice the number of monitors (Hystad et al.,
2011). Most monitoring sites in Australia are located in and around
major cities but are sparsely distributed, which means they are
less than ideal for assessing spatial variability in ambient air
pollution levels. This can make exposure assessment for the
Australian population problematic.

We sought to develop a satellite-based LUR model for Australia
that could predict ambient air pollution exposure levels with good
accuracy. We aimed to add to the evidence base by investigating
the utility of a national satellite-based LUR in a location where
ground-based monitors are scant. Most previous national LUR
models have focussed on annual concentrations (e.g. Hystad et al.,
2011; Vienneau et al., 2013). We aimed to expand the temporal
component of our models to include monthly concentrations.
Having monthly estimates of exposure would be useful for
examining health outcomes where exposures within the year are
important (such as birth outcomes), and to examine the potential
health effects of interactions between seasons and pollution
exposure. We sought to produce both monthly and annual
exposure estimates over a 6 year period.
2. Methods

2.1. Variables

2.1.1. Measured NO2

We focussed on nitrogen dioxide (NO2) because it is strong marker of traffic
and other combustion-derived pollution (e.g. industry, airports) and a key compo-
nent of ambient air pollution (Briggs et al., 1997; Richter et al., 2005). We obtained
hourly average ground-level NO2 measurements from January 2006 to December
2011 from the Australian agencies responsible for regulatory ambient air pollution
monitoring. NO2 concentrations were measured using the standard chemilumines-
cence method, which can be subject to bias due to interference by other nitrogen
oxides but is widely used in research and assessing compliance with regulations
(Novotny et al., 2011). The measurements had undergone basic quality assurance
Table 1
Independent variables used to build the models. Additional informatio

Variable (units)

OMI ground-level NO2 (ppb)
OMI tropospheric NO2 column density (molecules�1015 / cm2)
Elevation (m)
Distance to coast (km)
Annual and seasonal mean rainfall (mm)
Annual and seasonal mean daily average temperature (°C)
Annual and seasonal mean daily solar exposure (MJ/m2)
Tree cover (%)
Impervious surfaces (%)
Major roads (km)
Minor roads (km)
Total roads (¼major roadsþminor roads)
Population density (persons/km2)
Land use by type (%)e

Non-vehicle point source NOX emissions (kg/yr)f

Airport (present/not present)

a 22 Circular buffers were created with radii of 100 m, 200 m, 300
1800 m, 2000 m, 2500 m, 3000 m, 3500 m, 4000 m, 5000 m, 6000 m,

b Average of variable in buffer.
c Sum of variable in buffer.
d A mesh block is the smallest spatial unit used in the Australian ce
e Four land use categories were examined – residential, commercial,

agricultural land (Rose et al., 2011)).
f The average density (sites/km2) of point source NOX emissions in
procedures and we examined them further for completeness and validity. There
were 68 monitoring sites across Australia where NO2 was measured during the
study period (supplement, Table S3). The sites′ locations ranged from dense urban
areas with multiple pollution sources nearby through to rural areas with few local
sources.

2.1.2. Land use
We sourced data on natural and anthropogenic features that have a plausible

association with measured NO2 concentrations. Our choice of variables was guided
by previous satellite LUR models and data availability (Hystad et al., 2011; Novotny
et al., 2011; Vienneau et al., 2013). The variables selected are summarised in Table 1.
We incorporated land use data from a range of sources including satellites and the
Australian census. Detailed information on data sources is provided in the
supplement (Table S2). We used ArcGIS version 10.0 (ESRI Inc., Redlands, USA) to
process our data.

2.1.3. Satellite data: NO2

The Ozone Monitoring Instrument (OMI) aboard the Aura satellite produces
daily global observations of NO2 tropospheric column abundance at a resolution of
13�24 km2 (nadir) using a differential optical absorption spectroscopy (DOAS)
algorithm (Levelt et al., 2006). We obtained the average tropospheric NO2 columns
over Australia for each month from 2006–2011. We then produced estimates of
ground-level NO2 by using the Weather Research and Forecasting model (WRF-
Chem) to predict monthly surface-to-column ratios. This approach is a standard
method to convert tropospheric column NO2 abundance (in molecules per cm2) to
ground-level NO2 concentration (in ppb), and has been described extensively
(Lamsal et al., 2008; Bechle et al., 2013). Detailed information on satellite data
retrieval and processing is given in the supplement (pages S3–S9).

2.2. Modelling approach

We generated 22 buffers from 100 m to 10 km around each monitoring site
(Table 1). This approach was analogous to other national-scale models and aims to
capture both proximate and more distant sources of variability in NO2 concentra-
tions (Novotny et al., 2011; Vienneau et al., 2013). Some variables were calculated
within each buffer (e.g., percent tree cover, road length, impervious surface area)
using either the average or sum of the variable in each of the 22 buffers (Table 1).
Other variables were determined at each monitoring point (e.g., elevation, distance
to coast). Detailed information about each variable is presented in the supplement
(Table S2). There were 286 buffer variables (13 variables calculated at 22 buffers
each) and 29 point variables, giving a total of 315 independent variables.

2.2.1. Annual model
The dependent variable (measured NO2) was longitudinal, as measurements

were repeated at the 68 monitoring sites over 6 years. We only included years
where more than 90% of the daily measurements from a site were non-missing.
Selecting the best subset of predictor variables was complex as there were 315 to
n on data sources and processing is presented in the supplement.

Resolution Point or buffera

13�24 km2 (nadir) Point
13�24 km2 (nadir) Point
30 m Point
– Point
2.5 km Point
2.5 km Point
5 km Point
250 m Bufferb

1 km Bufferb

– Bufferc

– Bufferc

– Bufferc

Mesh blockd Bufferb

Mesh blockd Bufferb

– Bufferc

– Buffer

m, 400 m, 500 m, 600 m, 700 m, 800 m, 1000 m, 1200 m, 1500 m,
7000 m, 8000 m, and 10,000 m (Novotny et al., 2011).

nsus and their size varies - on average they contain 62 people.
industrial, and open space (which was the sum of water, parks and

each buffer was also used in model building.
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choose from. Because of the large number of variables and the computational
issues this presented, we employed a two-stage variable selection procedure. In the
first stage, we narrowed the list of variables by using the lasso method in the
‘glmnet’ library (Friedman et al., 2010). This places a bound on the sum of absolute
coefficient values and minimises the sum of squared errors (Tibshirani, 1996).
Because this method is not suitable for longitudinal data, we ran separate lasso
models for each year. We tabulated the frequencies of selected variables as an
indicator of their relative importance over the 6 years (supplement, pages S16–
S17). We then used all those variables that were selected at least once in the second
stage of variable selection.

In the second stage of variable selection we followed the general approach of
Su et al. (2009). This is a forward selection procedure where an independent
variable can be added to the model on the conditions that: (1) it is statistically
significant at the 5% level; (2) the variance inflation factors of all variables in the
model remain below five. The second condition is an attempt to avoid co-linearity.
For all variables that met these two conditions, we used 10-fold cross-validation
with 3 replications using the ‘cvTools’ library (Alfons, 2012) to choose the variable
with the smallest cross-validated root mean square error. We only added a variable
to the model if the mean cross-validated error plus the cross-validated standard
error was smaller than the previous minimum root mean square error. This
criterion aims to create a parsimonious model. These longitudinal models used
all available years of data and were fitted by a generalised estimating
equation (GEE) model using the ‘geepack’ library (Højsgaard et al., 2006). This
produced one model for predicting annual average concentrations for each year
during 2006–2011. We assumed an independent correlation structure for residuals
from the same monitoring site.

2.2.2. Model validation
We visually checked the residuals of the final models for outliers, and used

Cook's distance and df-beta statistics to test for influential observations. We used
five-fold cross-validation with five replications to estimate the prediction error of
the final models on an absolute and percentage scale. We examined the importance
of individual sites by comparing those with the highest Cook's distance against
3 randomly selected sites (supplement, pages S20–S21). Additional details on
model validation are given in the supplement (pages S13–S14). All modelling was
performed using R version 3.0.3 (R Foundation for Statistical Computing, Vienna,
Austria).

2.2.3. Monthly model
We used the same approach for our monthly model, except in this case there

were up to 72 average concentrations for each monitoring site (12 months by
6 years). We only included months from sites where 25 or more daily pollution
measurements were non-missing. The first variable selection stage using the lasso
method was run separately for each month. We then used all those variables that
were selected 6 or more times in the second stage. We started the second stage
variable selection with a model that included month as a factor, as we strongly
suspected that this would be an important variable and wanted to avoid potential
proxies for month (e.g., solar radiation, rainfall, temperature) being selected
unnecessarily. Using the same GEE approach as the annual model, we produced
one model for predicting the 72 monthly average concentrations during 2006–
2011.

2.2.4. Comparison of different satellite NO2 estimates
We assessed whether surface NO2 estimates derived using surface-to-column

ratios from WRF-Chem lead to models with better predictive ability for ground
level NO2 than the easier to obtain estimates of tropospheric NO2 column density.
For both our annual and monthly models, we examined two alternatives; one with
surface NO2 estimates as a candidate variable (‘surface model’) and one with NO2

column density estimates (‘column model’). All other candidate variables were the
same across the two models.

2.2.5. Applying the models
We obtained the boundaries of the �350,000 Australian Bureau of Statistics

‘mesh blocks′ that cover the entirety of Australia (Australian Bureau of Statistics,
2011). Mesh blocks are the smallest spatial unit used in the Australian census. They
contain 62 people on average (range 0–2339), and have a highly variable size
(range: 1.0�10�4–1.7�105 km2; population-weighted mean size¼26.3 km2). The
majority of populated mesh blocks include between 30 and 60 dwellings
Table 2
Descriptive statistics for monitors that met the inclusion criteria for the annual and mo

Model (n observations) NO2 concentration (ppb)

Minimum 25th

Annual (358) 1.3 4.9
Monthly (4371) 0.2 4.2
(Australian Bureau of Statistics, 2013c). We determined the centroid of every mesh
block and used our final models to predict annual average NO2 concentrations at
the centroids for each year during 2006–2011 (Hystad et al., 2011; Novotny et al.,
2011).
3. Results

The number of air quality monitoring sites that met the
inclusion criteria for the annual model ranged from 55 (2006) to
66 (2010) out of a possible 68. There were 358 annual measure-
ments that met the inclusion criteria over the 6-year study period.
Between 47 (February 2006) and 67 (May/July 2010) out of 68 sites
met the inclusion criteria for the monthly model, and there were
4371 monthly measurements over the 72 months. The descriptive
statistics of measurements used to build the annual and monthly
models are shown in Table 2.

The best annual surface model (i.e. model that included surface
estimates of NO2) was capable of explaining 79% of the variability
in measured NO2 concentrations (Table 3). This increased to 81% in
the best annual column model (i.e. model that included tropo-
spheric column NO2 density). The two models had comparable
absolute and percentage root mean squared (RMS) prediction
errors (Table 3). All other variables in the final models were
identical with the exception of summertime mean daily solar
exposure, which appeared in the surface model but not the
column model. In both models, the three variables that made
the largest contribution to overall R2 were satellite NO2, imper-
vious surfaces within 1200 m, and major roads within 500 m.

The best monthly model that included NO2 surface estimates
explained 73% of the variability in measured NO2 (Table 4). The
best model including NO2 column measurements explained 76%.
The monthly surface and column models had very similar RMS
prediction errors (Table 4). Excluding year and month, there were
4 common variables that were in both monthly models (minor
roads within 8000 m, major roads within 100 m, industrial site
density within 400 m, industrial land use within 10,000 m). In
both models, the variable that made the largest contribution to R2

was satellite NO2 (Table 4). The next largest contributors to the
column model were minor roads within 8000 m and industrial
land use within 10,000 m. The next largest contributors to the
surface model were the months of July and August, which is
during the Australian winter.

Residuals were approximately normally distributed in all mod-
els (supplement, Figs. S3–S6). For a given variable in the final
models some monitoring sites were more influential than others,
but after investigation we found no overt undue influence on the
models. The results of model checking using df-beta statistics and
Cook's distance are presented in the supplement (pages S18–S26).
We compared the values of predictors at the monitoring sites with
those at the �350,000 mesh block centroids around Australia and
found that they were very similar (supplement, Table S11).

The average NO2 concentration predicted by the annual surface
model for 2008 is in Fig. 1, which was selected as a representative
example from the 6-year study period. The mostly unpopulated
interior of the country had concentrations around 2 ppb. Areas
with higher concentrations (from �5 up to 420 ppb) are the
nthly models.

Median Mean 75th Maximum

6.6 7.1 9.0 17.8
6.3 7.1 9.3 27.1



Table 3
Summary of the best annual models using surface and tropospheric column NO2 estimates. Variables are listed in order of decreasing contribution to the model’s predictive
ability.

Model Variable Units βa SE p-value R2 decrease (%)b VIF

Best annual model: surface NO2 Intercept ppb 13.0 2.187 o0.001
R2¼0.79 Major roads (500 m) km 0.900 0.185 o0.001 4.8 1.3
Absolute RMS error¼1.35 ppb OMI surface NO2 ppb 2.067 0.508 o0.001 3.4 1.6
Percent RMS error c¼19.0 % Impervious surfaces (1,200 m) % 0.609 0.196 0.002 3.1 2.5

Summertime mean daily solar exposure MJ/m2 �0.283 0.078 o0.001 2.6 1.4
Industrial NOX emission site density (1000 m) sites/km2 4.096 1.143 o0.001 2.5 1.3
Industrial NOX emission site density (400 m) sites/km2 2.585 0.242 o0.001 2.1 1.1
Open space (10,000 m) % �0.260 0.082 0.002 1.8 2.6
Industrial land use (10,000 m) % 0.491 0.157 0.002 1.0 1.3
Year Calendar year �0.163 0.036 o0.001 0.8 1.0

Best annual model: column NO2 Intercept ppb 4.563 0.515 o0.001
R2¼0.81 OMI column NO2 molecules�1015/cm2 1.203 0.178 o0.001 10 1.3
Absolute RMS error¼1.36 ppb Impervious surfaces (1200 m) % 0.701 0.196 o0.001 4.3 2.4
Percent RMS errorc¼19.1 % Major roads (500 m) km 0.828 0.197 o0.001 4.1 1.3

Industrial NOX emission site density (1000 m) sites/km2 4.083 1.228 o0.001 2.4 1.3
Industrial NOX emission site density (400 m) sites/km2 2.629 0.256 o0.001 2.2 1.1
Open space (10,000 m) % �0.170 0.074 0.021 1.0 2.1
Industrial land use (10,000 m) % 0.451 0.169 0.008 0.9 1.3
Year calendar year �0.140 0.034 o0.001 0.6 1.0

a Some variables were centred and standardised to make their parameter estimates more interpretable (see supplement);
b The unit decrease in model R2 (%) when a variable is excluded. Variables that contribute more predictive ability lead to larger decreases when they are excluded.
c Percent RMS error is the overall average across the monitoring sites. Note: SE¼standard error; VIF¼variance inflation factor; RMS¼root mean squared; ppb¼parts per

billion.
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cities and major towns. The inset of Fig. 1 focuses on Sydney,
Australia's most populous city (4.5 million). Elevated concentra-
tions (410 ppb) were predicted on and near major roads. Max-
imum concentrations (420 ppb) were predicted in locations with
many nearby major roads and industrial areas. This general
pattern was present in the 8 state and territory capital cities
around Australia, although levels were highest in the 3 largest
cities: Sydney, Melbourne (4 million) and Brisbane (2.1 million).

The annual NO2 concentrations predicted at the �350,000
census mesh block centroids by our annual surface model are
shown in Fig. 2 (Hart et al., 2009). The median concentration
predicted across Australia decreased from 6.3 ppb in 2006 to
5.3 ppb in 2011, which was a reduction of 16% over the 6 years.
Because about 25% of mesh blocks are uninhabited, we also
calculated population-weighted concentrations to indicate the
average concentration that Australians are exposed to. These
ranged from 7.3 ppb (2006) to 6.3 ppb (2011), a decrease of 14%
from 2006 to 2011. The NO2 levels predicted at each mesh block by
the column model were almost identical to those predicted by the
surface model (supplement, Table S12).

We also examined predicted NO2 concentrations in Sydney.
Across the �57,000 mesh blocks that made up the greater Sydney
area (Australian Bureau of Statistics, 2011), the population-
weighted average annual NO2 concentration ranged from 9.9 ppb
(2006) to 8.7 ppb (2011), a decrease of 12% between 2006 and
2011. A range of statistics on predicted NO2 levels across Sydney
are in the supplement (Table S13).
4. Discussion

We assessed the ability of satellite-based LUR models to predict
monthly and annual average NO2 concentrations in Australia from
2006–11. We found that the best annual model explained 81% of
variation in NO2, while the best monthly model explained 76%. We
applied our models to predict NO2 concentrations at each of the
�350,000 census mesh blocks across the country and found a
slight but consistent decrease between 2006 and 2011. Predicted
concentrations were generally modest compared to studies in the
USA and Europe (Beelen et al., 2007; Hart et al., 2009; Vienneau
et al., 2013), but were more comparable with those predicted in
Canada using similar methods (Hystad et al., 2011).

While it is difficult to comprehensively compare our results to
other national satellite-based LUR due to differences in methodol-
ogy, we found that our models captured a similar or slightly higher
amount of variability in NO2. An annual model for the USA
explained 78% of variability in measured NO2, while a Canadian
model explained 73% (Hystad et al., 2011; Novotny et al., 2011).
A recent model covering Western Europe explained 60% of
measured NO2 variability (Vienneau et al., 2013). The prediction
error of all our models was comparable or slightly lower than
other studies, albeit using different validation methods (Novotny
et al., 2011; Vienneau et al., 2013; Lee and Koutrakis, 2014).

The variables in our models were generally consistent with
those reported in previous studies, with both major and minor
roads featuring prominently as well as impervious surface cover
(Novotny et al., 2011; Vienneau et al., 2013). Increased roads,
impervious surfaces and industrial variables were all associated
with higher NO2. Road traffic is a major source of NO2, and
impervious surfaces are greater in built-up locations and may
reflect increased NO2 sources in these areas. Increased open space
(e.g. parklands) and summertime solar exposure were both asso-
ciated with lower NO2. Open spaces are relatively free of sub-
stantial NO2 sources, while the presence of summertime solar
exposure in the annual surface model may be due to the shorter
lifetime of nitrogen oxides in the lower troposphere during the
summer months (Lamsal et al., 2010).

Industrial land use and the density of nearby industrial point
source NOX emissions featured in all of our models. Industrial
sources are a leading contributor to outdoor NOX in Australia
(Australian Bureau of Statistics, 2012), and the conspicuous pre-
sence of industrial variables in our models is in keeping with this.
Industrial emissions and industrial land use have been found to be
significant predictors of NO2 in some other national LUR models
(Hart et al., 2009; Hystad et al., 2011). Including industrial
variables can improve model performance but creates models that
are less specific to vehicle emissions (e.g. Novotny et al., 2011).
However, it also means that model predictions are able to capture



Table 4
Best monthly models using surface and tropospheric column NO2 estimates. Variables are listed in order of decreasing contribution to the model’s predictive ability.

Model Variable Units βa SE p-value R2 decrease (%)b VIF

Best monthly model: surface NO2 Intercept ppb 3.304 0.269 o0.001
R2¼0.73 OMI surface NO2 ppb 2.244 0.336 o0.001 5.0 1.6
Absolute RMS error¼2.02 ppb Aug calendar month 3.582 0.278 o0.001 3.5 1.9
Percent RMS errorc¼28.4 % Jul 3.464 0.324 o0.001 3.2 2.0

Jun 3.323 0.356 o0.001 2.8 2.0
May 3.214 0.336 o0.001 2.6 2.1
Minor roads (8000 m) km 1.509 1.179 o0.001 2.5 2.2
Major roads (100 m) km 4.086 0.199 o0.001 1.9 1.3
Industrial NOX emission site density (400 m) sites/km2 2.736 0.447 o0.001 1.8 1.1
Impervious surfaces (500 m) % 0.530 0.204 0.009 1.6 2.4
Sep 2.338 0.208 o0.001 1.5 1.8
Apr 2.157 0.206 o0.001 1.3 1.9
Industrial land use (10,000 m) % 0.599 0.754 0.001 1.1 1.3
Oct 1.596 0.138 o0.001 0.7 1.8
Industrial NOX emission site density (1000 m) sites/km2 2.872 0.187 0.015 0.7 1.4
Year calendar year -0.162 0.033 o0.001 0.5 1.0
Mar 1.233 0.096 o0.001 0.4 1.8
Nov 0.780 0.090 o0.001 0.2 1.8
Jan �0.124 0.067 0.066 0.0 1.8
Feb 0.244 0.065 o0.001 0.0 1.8

Best monthly model: column NO2 Intercept ppb 2.710 0.280 o0.001
R2¼0.76 OMI column NO2 molecules � 1015/cm2 1.182 0.139 o0.001 8.7 1.5
Absolute RMS error¼1.93 ppb Minor roads (8000 m) km 1.954 0.398 o0.001 5.6 1.7
Percent RMS errorc¼27.1 % Industrial land use (10,000 m) % 1.004 0.165 o0.001 3.2 1.1

Aug calendar month 3.253 0.270 o0.001 2.9 1.9
Jul 3.201 0.305 o0.001 2.8 1.9
Jun 3.116 0.341 o0.001 2.5 2.0
May 3.043 0.298 o0.001 2.4 2.0
Industrial NOX emission site density (400 m) sites/km2 3.161 0.181 o0.001 2.4 1.1
Major roads (100 m) km 4.591 0.694 o0.001 1.9 1.7
Apr 1.959 0.205 o0.001 1.0 1.8
Sep 1.893 0.199 o0.001 1.0 1.9
minor roads (300 m) km 0.623 0.266 0.019 0.7 1.3
Oct 1.358 0.130 o0.001 0.5 1.9
Major roads (500 m) km 0.427 0.194 0.028 0.5 1.9
Distance to coast km 0.541 0.253 0.032 0.4 1.3
Mar 1.100 0.100 o0.001 0.3 1.8
year calendar year �0.122 0.031 o0.001 0.3 1.0
Nov 0.630 0.094 o0.001 0.1 1.8
Jan �0.161 0.070 0.022 0.0 1.8
Feb 0.149 0.066 0.023 0.0 1.8

a Some variables were centred and standardised to make their parameter estimates more interpretable (see supplement);
b The unit decrease in model R2 (%) when a variable is excluded. Variables that contribute more predictive ability lead to larger decreases when they are excluded.
c Percent RMS error is the overall average across the monitoring sites. Note: December was the reference month in the monthly models. All calendar month variables

were significant at the 5% level except January in the monthly surface model. SE¼standard error; VIF¼variance inflation factor; RMS¼root mean squared; ppb¼parts per
billion.
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both vehicle and non-vehicle sources of NO2, both of which
contribute to ambient NO2 and human exposure.

We found that satellite-derived NO2 estimates from the Ozone
Monitoring Instrument added the most predictive ability to 3 of
our 4 models. Previous studies have reported pronounced reduc-
tions in model performance when satellite NO2 is excluded (e.g.
Novotny et al., 2011; Vienneau et al., 2013). Our findings further
confirm the utility of satellite NO2 in national-scale LUR, and the
improvements in exposure assessment that it offers.

Notably, we found that the best annual and monthly models
that included NO2 tropospheric column observations exhibited
slightly better predictive ability with comparable error to those
that included estimates of surface NO2 obtained by modelling
surface-to-column ratios using WRF-Chem. This could reflect the
fact that tropospheric columns are dominated by NO2 in the part
of the atmosphere closest to Earth's surface (i.e. the boundary
layer), and are therefore useful proxies of relative ground-level
concentrations (Richter et al., 2005). Also, the parameters selected
in the process of modelling surface-to-column ratios (supplement,
pages S4–S9) may add additional error into NO2 estimates
obtained using this method (Lamsal et al., 2008; Bechle et al.,
2013). Modelling surface-to-column ratios is both computation-
ally- and time-intensive and requires technical expertise. Our
findings are promising for those who are interested in less
complex approaches to NO2 exposure assessment. We note, how-
ever, that these findings may be specific to the context of our study
and are not necessarily applicable beyond that.

Our study has some important limitations. The monitoring data
used to build the models came from only 68 sites, which is small
when compared with other national LUR studies (e.g. Novotny
et al., 2011; Vienneau et al., 2013), particularly when Australia's
size is considered (supplement, Table S3; Johnson et al., 2010;
Basagaña et al., 2012; Wang et al., 2012). Indeed, it was this
paucity of monitoring that provided the initial motivation for our
study. However, this means that model predictions may be valid
only when applied to environments similar to those where
monitoring was performed. We addressed this by comparing the
summary statistics of predictors at the monitoring sites with those
at the mesh block centroids that covered all of Australia (supple-
ment, Table S11). We found no evidence to indicate that the
monitoring sites on which the models were based differed
markedly from the broader Australian context that they were



Fig. 1. Average NO2 concentration in 2008 predicted at �350,000 census mesh block centroids by the annual surface model. The inset focuses on the greater Sydney area,
Australia's largest city (population �4.5 million). The figure was produced by applying ordinary kriging to the mesh block predictions and is displayed at 100 m resolution.

Fig. 2. Selected percentiles of annual average NO2 predicted at �350,000 census mesh block centroids by the annual surface model, 2006–2011.
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applied to. However, the monitoring sites are primarily used for
regulatory ambient air monitoring, and so they were not typically
sited near substantial emission sources. For this reason, using our
models to predict concentrations in pollution ‘hot-spots′ (such as
road intersections or areas with very localised non-road emis-
sions) should be undertaken with caution, and would require
additional validation against measurements from the area of
interest.

Because we used a generalised estimating equation we were
unable to assess spatial autocorrelation in the model residuals.
However, all other national satellite-based NO2 models have
reported that spatial autocorrelation was not present in model
residuals, and this is also true of many non-satellite urban LUR
models (Hoek et al., 2008; Hystad et al., 2011; Novotny et al., 2011;
Vienneau et al., 2013). Also, our small data set prevented us from
holding out some of the data for an independent evaluation (Hoek
et al., 2008; Novotny et al., 2011; Wang et al., 2012), which has also
been the case in other studies with limited monitoring data (e.g.
Hystad et al., 2011). We instead used five-fold cross-validation to
estimate our models′ prediction error. We note that our R2 values
may be higher than would be observed with a new validation data
set due to the relatively small number of monitoring sites and
large number of predictors (Basagaña et al., 2012; Wang et al.,
2012). Finally, we focussed on generating monthly and annual
averages rather than daily estimates (e.g. Lee and Koutrakis, 2014).
This enabled us to examine all of Australia, rather than a specific
region or city.
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Satellite-based LUR models hold promise for improving expo-
sure assessment in epidemiological studies and have a diverse
range of potential applications. They are particularly useful in
locations with sparse or absent ground-based monitoring. Our
models included both variables within different buffers (e.g.
percent land use type, road length) and point variables (e.g.
satellite NO2, distance to coast). They permit unique predictions
for a given set of input points (e.g. residential addresses). Our
models are capable of capturing within-urban variability in con-
centrations, and although we did not aim to capture localised
effects the models may also be able to capture some near-source
(e.g. roads, industry) variability in certain areas (Hoek et al., 2008;
Marshall et al., 2008). Because the models spanned the entire
country there were no limitations around city-to-city transfer-
ability. Our models are the first that we are aware of to offer
national coverage of Australia, and add to the growing interna-
tional evidence regarding the utility of satellite-based LUR.

In summary, our satellite-based LUR models were able to
capture �80% of spatial variability in monthly and annual ambient
NO2 concentrations during 2006–2011 across Australia, a country
with sparse ground-level monitoring. These models can be used to
determine concentrations that individuals are exposed to at their
residential address, or for larger spatial units (e.g. post code or
suburb level) if their address is unknown due to confidentiality
restrictions. They can also be used to refine and validate estimates
of population-level exposures. With these applications in mind we
are making our model predictions freely available to those who
want to use them for research.
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1. METHODS 

1.1 Satellite Retrieval of Nitrogen Dioxide 

Background to the Ozone Monitoring Instrument  

The Ozone Monitoring Instrument (OMI) observes atmospheric column density of NO2 on a 

daily basis. It was launched in July 2004 and is one of the four instruments on board the 

NASA Earth Observing System Aura satellite designed to measure atmospheric trace gases 

and aerosol optical properties.  The Aura satellite crosses the equator in a sun-synchronous 

polar orbit at approximately 13:30 hours local time for the daylight ascending orbit (Torres et 

al., 2007) and it passes over Australia in the mid- to late-afternoon.  OMI measures top of 

atmosphere radiance from 270-500 nm in the ultraviolet and visible regions of the solar 

spectrum with a spatial resolution at nadir of 13 × 24 km (Levelt et al., 2006). 

 

OMI NO2 tropospheric column amount data (cloud screened at 30%) is available via the 

NASA Giovanni Aura/OMI online visualisation and analysis web site 

(http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omi) (Acker & Leptoukh, 

2007). The level 3 NO2 concentration product, OMNO2d.003, is a daily, global dataset 

gridded at 0.25 × 0.25 degrees spatial resolution with units of 10
15

molecules/cm
2
. Briefly, the 

OMI-derived NO2 algorithm: (1) takes radiance values in ultraviolet and visible bands known 

to absorb NO2; (2) applies radiometric and de-striping corrections to column concentrations, 

and then; (3) calculates both tropospheric and stratospheric contributions to the atmospheric 

column NO2 (for pixels which have less than 30% cloud cover) by incorporating satellite path 

slant corrections and a range of air mass factors, and; (4) converts the data from satellite 

swath grid to a consistent grid size (Bucsela et al., 2013). The NO2 concentration at any given 

grid point is a weighted average of a number of OMI measurements, given the grid points are 

http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omi
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calculated from OMI swath pixels which are 13 x 24 km at nadir but become larger toward 

the swath edge. The contribution of individual OMI pixels to NO2 concentrations above a 

given geographic location is a function of the daily variance in Aura ephemeris.  

 

While OMI tropospheric columns from the standard product are prone to seasonal bias 

(Lamsal et al., 2010), surface NO2 estimates derived from OMI columns are well-correlated 

with corrected ground level measurements, with bias under 30% and without substantial 

seasonal variation (Lamsal et al., 2008; Lamsal et al., 2010; Novotny et al., 2011).  

Notwithstanding the confines of algorithms and a dynamic radiometric row anomaly more 

evident since January 2009, OMI NO2 data sets offer consistent quality for quantitative 

investigations of the relationships between pollution, its sources, and populations (Lamsal et 

al., 2013).  

 

1.2 Surface NO2 estimates 

Data source 

We downloaded and subset the global daily average OMI tropospheric NO2 data using NASA 

Giovanni website functions, for: (1) a spatial domain encompassing the Australian continent; 

and; (2) temporal aggregation to each calendar month from January 2006 through December 

2011.  The OMI row anomaly issue is normalised in the present study by the level 3 OMI 

NO2 concentration product weighted average grid point calculation algorithm, as well as our 

selection of mean daily NO2 concentration time averaged per month. 

 

Modelling surface and tropospheric NO2  

We estimated the ground level NO2 concentrations from the OMI observed tropospheric 

column NO2 concentrations by determining surface-to-column ratios across Australia using 
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modelled ground-level and tropospheric NO2 levels (Novotny et al., 2011). We used a gas 

phase chemistry and aerosol transport version of the Weather Research and Forecasting 

(WRF) model; WRF-Chem. WRF-Chem is a multi-scale, “on-line” fully connected, 

atmospheric chemistry edition of the WRF non-hydrostatic, fully compressible, community 

meteorological model (Grell et al., 2005). The fully coupled nature of the chemistry transport 

and meteorology applications means that during computation, the same transport schemes, 

horizontal and vertical grids, physics schemes and model time steps operate together, which 

removes the need for inter-model interpolation. Verification trials have shown that WRF-

Chem improves on the previous coupled chemistry/meteorological models from which it was 

developed (Grell et al. 2005). 

 

WRF-Chem requires the modeller to select combinations of computational schemes 

representing aerosol transport, gas-phase chemistry, atmospheric physics, cloud microphysics 

as well as land use energy-balance parameterisation. Furthermore, WRF-Chem configuration 

also involves making informed decisions on which meteorological boundary conditions, 

aerosol emissions (anthropogenic, biogenic and background), model domain sizes and grid 

spatial resolution to use. These model component choices are made considering any 

computational resource constraints. 

In our study, 6 years of Australia-wide daily average NO2 concentrations were required, 

ordinarily representing an extensive computational commitment. WRF-Chem version 3.5 was 

structured on The University of Queensland’s Research Computing Centre (RCC) to produce 

the required output using 2 parallel batch runs of 64 CPUs each. With this constraint, WRF-

Chem was configured using a single domain, 60 km spatial resolution, and time steps of 6 

minutes to produce daily aggregated NO2 concentrations. The WRF-Chem models contained 
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27 vertical levels. The WRF-Chem physics scheme configurations used in this study are 

listed in Table S1.  

Table S1. WRF-Chem configuration. 

Parameterisation Selected Configuration Item 

Microphysics scheme Lin et al scheme 

Cumulus scheme Grell G3 

Longwave radiation RRTMG scheme 

Shortwave radiation RRTMG scheme 

Planetary boundary layer YSU scheme 

Surface layer option MM5 Monin-Obukhov scheme 

Land surface option Unified Noah land surface model 

Chemistry driver RADM2 

Aerosol driver MADE-SORGAM 

Anthropogenic emissions EDGAR 0.1 degree 

Biogenic emissions None 

Background emissions GOCART 

Gas chemistry On 

Aerosol chemistry On 

Wet scavenging Off 

Vertical turbulent mixing On 

Cloud chemistry Off 
  

WRF-Chem meteorological boundary conditions were updated every six hours by data 

sourced from the National Centre for Environmental Prediction (NCEP) global 1-degree 

database of tropospheric analyses, which is a collection of meteorological observations used 

in the US Global Forecast System (GFS). Each model run calculated a month of NO2 

concentrations and included a model spin-up time of five days to ensure stable 

meteorological physics operation during the model run.  

 

The WRF-Chem aerosol and gas phase molecule emissions were provided by two global data 

sets;  GOCART global anthropogenic and background emissions as of 2006 with a spatial 

resolution of 1 degree (Chin et al., 2002), and the EDGAR (Emission Database for Global 
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Atmospheric Research) global anthropogenic emissions for 2005 with spatial resolution of 

0.1 degree (Olivier et al., 2005).  

 

WRF-Chem was configured with the MADE-SORGAM (Modal Aerosol Dynamics Model 

for Europe - Secondary Organic Aerosol Model) aerosol transport scheme and RADM2 

(Regional Acid Deposition Model version 2) gas phase chemistry scheme because they 

offered timely model output. MADE was developed in Europe in 1998 (Ackermann et al., 

1998), with the capacity to model secondary organic aerosol (SORGAM) added in 2001 as 

described by Schell et al. (2001). Fast et al. (2011) concluded that MADE-SORGAM 

performed as well as a more advanced 8-bin sectional aerosol parameterization while being 

computationally cheaper.  

 

Since we used WRF-Chem to calculate an average daily ratio of surface-to-column NO2 

concentration aggregated to a monthly time scale Australia-wide, the model configuration 

trade-offs were considered suitable.  In a study comparing a similarly configured WRF-Chem 

that measured anthropogenic emissions for the whole of Europe (albeit with a different 

anthropogenic emission source database), Tuccella et al. (2012) noted that WRF-Chem NO2 

replicated measured time-series NO2 within ±15%. 

 

The atmospheric chemistry model was used to create a ratio of near ground to tropospheric 

NO2 concentrations for each month of the study. After each WRF-Chem run, NO2 

concentration at the 60 km spatial resolution was extracted and aggregated to the daily 

average for each calendar month of 2006 to 2011 using ‘netCDF kitchen sink’ LINUX file 

manipulation utilities. At each model grid-point the extraction created a netCDF file of 

latitude, longitude and NO2 concentration in ppmv for each model level from near ground 
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level (i.e. surface) to the average height of the tropopause, which was set to 14 km and meant 

that the first 22 WRF-Chem model level NO2 concentrations were extracted to represent the 

troposphere (i.e. column). The tropopause height varies latitudinally, seasonally and daily due 

to the heterogeneous nature of heat sources over time and space – according to figures 

presented by Sturman and Tapper (2006), a 14 km median tropopause height over Australia is 

reasonable. The NO2 emission data sets were created in netCDF format because the intrinsic 

WRF-Chem model output file format can be read by ArcGIS (ESRI Inc., Redlands, USA), in 

which further OMI and model NO2 comparison computation and emissions mapping was 

undertaken. The OMI tropospheric NO2 data was sourced in text file format so that that 

ArcGIS point class shape-files could be readily produced for further processing. 

 

Estimating surface NO2 from OMI columns 

We used ArcGIS to determine the ratio of WRF-Chem surface-to-column NO2 at each grid 

point for each month of the study. We then applied this ratio to OMI tropospheric NO2 

columns to elicit a daily surface average NO2 concentration at 0.25 x 0.25 degrees spatial 

resolution for each month from January 2006 to December 2011. Since the OMI and WRF-

Chem NO2 concentration had different spatial resolutions and therefore different grid 

structures, the ArcGIS model firstly calculated grid-point pairs using a GIS “one to one” 

spatial join and intersect procedure. 

 

The maps of monthly and annually aggregated daily average OMI surface NO2 

concentrations were created using kriging interpolation in ArcGIS. Of the various techniques 

for treating trend common in atmospheric data geostatistical analysis, we chose universal 

kriging with linear drift, as described by Webster and Oliver (2007). Since universal kriging 

utilises localised parameter mean values a logarithmic transformation of the OMI and WRF-
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Chem data sets was not warranted. This determination also acknowledges that the ArcGIS 

kriging semivariogram spatial correlation calculations using 12 points was only 0.04% of the 

grid points in the size of the domain – the data set mean has less influence and local 

clustering influences dominate the interpolation. 
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1.3 Land-use variables 

Table S2. The type and source of independent land-use variables considered in the model. 

Variable (units) Resolution Point or 
buffer* 
estimate 

Source (all websites accessed on 02-Apr-2014) 

OMI ground-level NO2 (ppb) & 
OMI tropospheric NO2 column 
density (molecules × 1015 / 
cm2) 

13 × 24 km 
(nadir) 

point Aura OMI level-3 NO2 product via NASA Giovani interface 
http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omi 
Acker & Leptoukh (2007) 

elevation (m) 30 m point Geoscience Australia 1-second smoothed digital elevation model derived from SRTM 
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759 
Geoscience Australia (2011) 

distance to coast (km) - point Derived using 'Near' command in ArcGIS (excludes inland lakes) 

annual & seasonal mean 
rainfall (mm) 

2.5 km point Australian Bureau of Meteorology 
http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp 

annual & seasonal mean daily 
average temperature (°C)a 

2.5 km point Australian Bureau of Meteorology 
http://www.bom.gov.au/jsp/ncc/climate_averages/temperature/index.jsp 

annual & seasonal mean daily 
solar exposure (MJ/m2) 

5 km point Australian Bureau of Meteorology 
http://www.bom.gov.au/jsp/ncc/climate_averages/solar-exposure/index.jsp 

tree cover (%) 250 m bufferi MODIS-derived vegetation continuous fields product for 2006 
http://www.landcover.org/data/vcf/ 
DiMiceli et al. (2011) 

impervious surfaces (%) 1 km bufferi NOAA constructed impervious surface area product 2000-2001 
http://ngdc.noaa.gov/eog/dmsp/download_global_isa.html 
Elvidge et al. (2007) 

major roads (km)b - bufferj PSMA Australia Transport and Topography product** 
http://www.psma.com.au/?product=transport-topography 
PSMA (2013) 

minor roads (km)c - bufferj " " 

http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omi
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp
http://www.bom.gov.au/jsp/ncc/climate_averages/temperature/index.jsp
http://www.bom.gov.au/jsp/ncc/climate_averages/solar-exposure/index.jsp
http://www.landcover.org/data/vcf/
http://ngdc.noaa.gov/eog/dmsp/download_global_isa.html
http://www.psma.com.au/?product=transport-topography
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total roads (= major roads + 
minor roads)  

- bufferj " " 

population density 
(persons/km2) 

mesh 
blockh 

bufferi Australian Bureau of Statistics 2011 Census  
http://www.abs.gov.au/census 

land use type (%)d mesh 
blockh 

bufferi " " 

non-vehicle point source NOX 

emissions (kg/yr)e,f 
- bufferj Australia National Pollutant Inventory 2008/9   

http://www.npi.gov.au/ 

airport (present/not present)g - buffer PSMA Australia Transport and Topography product** 
http://www.psma.com.au/?product=transport-topography 
PSMA (2013) 

 

NOTES: 

a
 average daily minimum and maximum temperature were also included in the model 

b
 major roads were defined as national/state highways, arterial roads (which are major connector roads for national and state highways) and sub-

arterial roads (which are connectors between highways and/or arterial roads, or serve as an alternative for arterial roads) (PSMA, 2013) 
c
 minor roads were defined as collector roads (which are connectors between sub-arterial roads, and distribute traffic to local roads) and local roads 

(which provide property access) (PSMA, 2013) 
d
 four land use categories were examined – residential, commercial, industrial, and open space (which was the sum of water, parks and agricultural 

land [Rose et al., 2011]) 
e  

total (fugitive + non-fugitive) estimated NOX emissions from the 1,857 industrial and commercial sites around Australia  
f
 the average density (sites/km

2
) of industrial and commercial sites emitting NOX in each buffer was also included in the model 

g  
there were few airports in the majority of buffers so they were defined as either 0 (not present) or 1 (present) (Hystad et al., 2011) 

h
 a mesh block is the smallest spatial unit used in the Australian census and their size varies - on average they contain 62 people 

i
 average of variable within buffer 

j
 sum of variable within buffer

 

* 22 circular buffers were created with radii of 100 m, 200 m, 300 m, 400 m, 500 m, 600 m, 700 m, 800 m, 1000 m, 1200 m, 1500 m, 1800 m, 2000 

m, 2500 m, 3000 m, 3500 m, 4000 m, 5000 m, 6000 m, 7000 m, 8000 m, and 10,000 m (Novotny et al., 2011).  

** Positional accuracy is ±2 m in urban areas, ±10 m in rural and remote areas. Attribute accuracy is 99.09% for key attributes (name and unique 

identifier) (PSMA, 2013). 

 

http://www.abs.gov.au/census
http://www.npi.gov.au/
http://www.psma.com.au/?product=transport-topography
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1.4 Monitoring sites 

 
Table S3. Location and number of monitoring sites in the 8 states and territories of Australia during the study period (2006-2011). 

State/Territory Population (2011) Area (km2) n monitors Monitor density (per 100,000 km2) 

Australian Capital Territory (ACT) 357,332 2,358 2 84 
New South Wales (NSW) 6,916,971 800,809 20 2.5 
Northern Territory (NT) 212,045 1,348,199 0 0 
Queensland (QLD) 4,333,257 1,729,958 20 1.2 
South Australia (SA) 1,596,615 984,179 5 0.5 
Tasmania (TAS) 495,566 68,018 1 1.5 
Victoria (VIC) 5,353,837 227,496 13 5.7 
Western Australia (WA) 2,239,065 2,526,574 7 0.3 
     
TOTAL 21,504,688 7,687,591 68 0.9 
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1.5 Model building 

Variable processing 

To improve model convergence and make the parameter estimates more interpretable, we 

centred and standardised some of the independent variables using the values shown below 

(Table S4). So, for example, the parameter estimates for elevation will be for a 100 metre 

increase, and the intercept of the model will be for an elevation of 20 metres. 

 

Table S4. Values used to centre and standardise variables. 

Variable   Centre   Standardise  

Elevation (m)   20   100 

Distance to coast (km)   10   50 

Tree cover (%)   10   10 

Impervious surface area (%)   10   10 

Road lengths (km)
*
   Median   Inter-quartile range 

Population density (persons/km
2
)   500   1000 

Land use (%)    10   10 

Rainfall (mm)    100   100 

Temperature (°C)    20   5 

NPI NOx
*
   Median   Inter-quartile range 

Year 2008 1 

 

* NPI NOX refers to the total emissions (kg/yr) from point source sites within each buffer. The median and IQR 

were used for each buffer (from 100 m to 10,000 m). 

 

Model validation 

We used cross-validation rather than leave-one-out validation because some important 

predictors were only present at single sites, and hence the model failed to converge when 

these sites were removed.  We examined the importance of these sites using the df-beta 

statistics. 

 

We did not examine the spatial autocorrelation of the residuals because we used a generalised 

estimating equation (GEE) model (see discussion section of paper), which means that the 
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residuals include any remaining differences between monitors. This could have been avoided 

using a mixed model with a random station intercept, which would have given similar 

predictions and parameter estimates. However, we found that the GEE models had a better 

convergence and were easier to use in the cross-validation. Another advantage is that the 

GEEs give R
2
 statistics that are based only on the predictors, whereas mixed models use the 

predictors and the random intercepts and hence would have given overly optimistic R
2
 

statistics for our models.   
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2. RESULTS 

2.1 Measured NO2 concentrations 

Figures S1 and S2 present annual and monthly average NO2 concentrations measured at the 

monitoring sites, respectively. 

 

 

Figures S1 and S2. Time series of annual (top) monthly (bottom) NO2 averages by monitoring site. 
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2.2 Results of variable selection process 

Table S5 shows the results of the initial lasso variable selection process for the annual 

column model for the years 2006 to 2011 (1=Selected, 0=Not selected). Variables are ordered 

by selection frequency. Variables selected at least once are shown (26 variables), as only 

these were used in the second stage of variable selection (see methods section of main paper). 

Tables S6 shows the results of the lasso process for the annual surface model. Tables are not 

shown for the monthly models due to the large number of variables. 

 
Table S5. Results of lasso variable selection for the annual column model. 

  2006   2007   2008   2009   2010   2011   Total 
Intercept   1   1   1   1   1   1   6 
no2_column_mean   1   1   0   1   1   1   5 
imp_sa_1200m...   0   1   1   1   0   1   4 
min_rds10000m.km.   1   0   0   1   1   1   4 
maj_rds800m.km.   0   0   0   1   1   1   3 
NPI_sites_density500m.km2.   0   0   0   1   1   1   3 
NPI_sites_density2000m.km2.   0   1   0   1   0   1   3 
imp_sa_600m...   0   0   0   1   1   0   2 
imp_sa_1500m...   1   1   0   0   0   0   2 
imp_sa_1800m...   1   0   0   0   1   0   2 
imp_sa_3500m...   0   0   1   1   0   0   2 
NPI_sites_density10000m.km2.   0   0   0   1   1   0   2 
imp_sa_500m...   0   0   0   0   1   0   1 
imp_sa_1000m...   0   0   0   0   0   1   1 
maj_rds500m.km.   0   0   0   0   1   0   1 
maj_rds3500m.km.   0   1   0   0   0   0   1 
min_rds8000m.km.   1   0   0   0   0   0   1 
tot_rds8000m.km.   0   1   0   0   0   0   1 
tot_rds10000m.km.   0   1   0   0   0   0   1 
industrial10000m...   0   0   0   0   1   0   1 
openspace10000m...   0   0   0   0   1   0   1 
NPI_sites_density400m.km2.   0   0   0   0   1   0   1 
NPI_sites_NOx_total500m.kg.   0   1   0   0   0   0   1 
NPI_sites_density1000m.km2.   0   0   0   0   1   0   1 
NPI_sites_density3000m.km2.   0   0   0   0   1   0   1 
NPI_sites_density7000m.km2.   0   0   0   1   0   0   1 
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Table S6. Results of lasso variable selection for the annual surface model. 

  2006   2007   2008   2009   2010   2011   Total 

Intercept  1   1   1   1   1   1   6 

imp_sa_1200m...   0   1   1   1   0   1   4 

min_rds10000m.km.   1   0   0   1   1   1   4 

imp_sa_1800m...   1   1   0   0   1   0   3 

NPI_sites_density500m.km2.   0   0   0   1   1   1   3 

NPI_sites_density2000m.km2.   0   1   0   1   1   0   3 

no2_surface_mean   1   1   0   0   1   0   3 

imp_sa_600m...   0   0   0   1   1   0   2 

imp_sa_1500m...   1   1   0   0   0   0   2 

imp_sa_3500m...   0   0   1   1   0   0   2 

maj_rds800m.km.   0   0   0   1   1   0   2 

NPI_sites_NOx_total500m.kg.   1   1   0   0   0   0   2 

NPI_sites_density10000m.km2.   0   0   0   1   1   0   2 

imp_sa_500m...   0   0   0   0   1   0   1 

imp_sa_1000m...   0   0   0   0   0   1   1 

maj_rds3500m.km.   0   1   0   0   0   0   1 

maj_rds5000m.km.   0   1   0   0   0   0   1 

tot_rds10000m.km.   0   1   0   0   0   0   1 

pop_dens5000m.km2.   1   0   0   0   0   0   1 

industrial10000m...   0   0   0   0   1   0   1 

openspace10000m...   0   0   0   0   1   0   1 

NPI_sites_density400m.km2.   0   0   0   0   1   0   1 

NPI_sites_NOx_total400m.kg.   0   0   0   0   1   0   1 

NPI_sites_density1000m.km2.   0   0   0   0   1   0   1 

NPI_sites_density3000m.km2.   0   0   0   0   1   0   1  
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2.3 Model checking 

Figures S3, S4, S5, and S6 show model residuals and Cook’s distance for the annual column 

model, annual surface model, monthly column model and monthly surface model, 

respectively. 

 

 

 

Figure S3 and S4. Model residuals and Cook’s distance for annual column (top) and surface (bottom) models. 
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Figure S5 and S6. Model residuals and Cook’s distance for monthly column (top) and surface (bottom) models. 

 

 

 

 

 

 

 

 



S20 
 

We selected the NO2 monitoring station with the highest Cook’s distance from each model 

and compared it against three randomly chosen comparisons.  Tables S7, S8, S9 and S10 

show the results for the annual column, annual surface, monthly column and monthly surface 

models, respectively. We used this information to examine influential monitoring sites and 

check that their influence had a plausible basis. All of the largest Cook’s distances were well 

below the commonly used threshold of 1. 

 

Table S7. Dependent and standardised independent variables for the monitoring station with highest Cook’s 

distances in the annual column model (Randwick) and three randomly chosen comparisons. 

 

 

Table S8. Dependent and standardised independent variables for the monitoring station with highest Cook’s 

distances in the annual surface model (Dandenong) and three randomly chosen comparisons. 
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Table S9. Dependent and standardised independent variables for the monitoring station with highest Cook’s 

distances in the monthly column model (Woolloongabba) and three randomly chosen comparisons. 

 

Table S10. Dependent and standardised independent variables for the monitoring station with highest Cook’s 

distances in the monthly surface model (Woolloongabba) and three randomly chosen comparisons. 
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Figures S7, S8, S9, and S10 show boxplots of df-beta statistics for the annual column model, 

annual surface model, monthly column model and monthly surface model, respectively. 

These highlight influential monitoring stations for each variable in the models. These were 

used in combination with the Cook’s distance data presented above to identify and investigate 

influential observations. These were then checked for correctness (i.e. no errors in input data) 

and plausibility (i.e. a real-world basis for their influence [such as proximity to a high 

emitting industrial NOX source]). Generally, the most influential variable was the industrial 

site density. These variables were positively skewed with many zero values and occasional 

high values, which increases the chances of them being influential. Industrial sites are a 

plausible source of NO2 and none of the changes in the parameter slopes in the df-beta plots 

were extreme or counter-intuitive.  
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Figure S7. Boxplot of df-beta statistics for each variable in the annual column model. 
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Figure S8. Boxplot of df-beta statistics for each variable in the annual surface model. 
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Figure S9. Boxplot of df-beta statistics for each variable in the monthly column model. 
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Figure S10. Boxplot of df-beta statistics for each variable in the monthly surface model. 
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2.4 Selected percentiles of predictors  

For the models to be applicable to areas beyond just those where the NO2 monitors were 

located, it is important that the predictors span a sufficient range and one that is 

representative of the areas that they will be applied to (Novotny et al., 2011). We compared 

the summary statistics for the predictors at the 68 monitoring sites used to build the models 

(which included a variety of different land use settings) to the summary statistics of 

predictors in the annual (surface and column) models at the ~350,000 census mesh block 

centroids spread across the entirety of Australia.  Table S11 summarises the results. The 

statistics were very similar and suggests no evidence that monitoring sites differed markedly 

from the broader Australian context. We did not compare the statistics for the monthly 

models due to the large number of results (144). However, the main predictors in the monthly 

models are similar to those in the annual models (e.g. major and minor roads, impervious 

surfaces, industrial land use, industrial site density), and all of which are closely matched to 

the distributions observed around the country. This gives us no reason to suspect issues 

around representativeness for either of the monthly models. 

 

2.5 Comparison of surface and column model predictions 

Table S12 presents the summary statistics for NO2 concentrations predicted at the ~350,000 

mesh block centroids by the annual surface and column models. The table highlights that the 

predictions were almost identical. Population-weighted and unweighted mean concentrations 

are also shown.  Table S13 presents the summary statistics for concentrations predicted by 

the two models at the ~57,000 mesh block centroids that make up the greater Sydney area, 

which is Australia’s most populous city (4.4 million). 
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Table S11. Selected percentiles for predictors (annual surface and column models) at the monitoring sites and mesh block centroids.  

 

 

 

 
Monitoring sites (n = 68) 

 
Mesh blocks (n = 344,500) 

            Predictor 5th 25th 50th 75th 95th 
 

5th 25th 50th 75th 95th 

impervious surfaces 1200 m (%) 0.0 7.5 15.0 26.5 45.0 
 

0.0 1.8 10.0 23.3 47.9 

major roads 500 m (km) 0.0 0.0 0.6 1.0 2.4 
 

0.0 0.0 0.7 1.1 2.3 

summer mean daily solar radiation (MJ/m2) 21.0 22.0 23.0 24.0 28.0 
 

21.0 22.0 23.0 25.0 28.0 

open space 10,000 m (%) 16.3 25.6 51.2 72.0 96.2 
 

16.0 30.7 59.7 89.4 99.8 

industrial NOX emission site density 400 m (sites/km2) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 

industrial NOX emission site density 1,000 m (sites/km2) 0.0 0.0 0.0 0.0 0.3 
 

0.0 0.0 0.0 0.0 0.3 

industrial land use 10,000 m (%) 0.0 2.3 6.1 9.9 22.8 
 

0.0 0.3 2.6 6.9 13.1 

OMI NO2 surface mean 2006 (ppb) 0.1 0.3 0.4 0.9 1.4 
 

0.1 0.2 0.4 1.0 1.4 

OMI NO2 surface mean 2007 (ppb) 0.2 0.3 0.4 0.9 1.1 
 

0.1 0.2 0.4 0.9 1.2 

OMI NO2 surface mean 2008 (ppb) 0.2 0.3 0.4 0.8 1.2 
 

0.1 0.2 0.3 0.9 1.3 

OMI NO2 surface mean 2009 (ppb) 0.2 0.3 0.4 0.8 1.3 
 

0.1 0.2 0.4 0.8 1.3 

OMI NO2 surface mean 2010 (ppb) 0.1 0.3 0.4 0.7 1.2 
 

0.1 0.2 0.4 0.8 1.2 

OMI NO2 surface mean 2011 (ppb) 0.1 0.3 0.4 0.8 1.1 
 

0.1 0.2 0.3 0.8 1.1 

OMI NO2 column mean 2006 (molecules × 1015/cm2) 1.0 1.3 2.0 3.2 4.0 
 

0.7 1.0 1.5 3.3 4.0 

OMI NO2 column mean 2007 (molecules × 1015/cm2) 1.0 1.3 2.0 3.0 3.7 
 

0.7 1.0 1.5 3.2 3.7 

OMI NO2 column mean 2008 (molecules × 1015/cm2) 1.0 1.3 1.7 3.0 3.3 
 

0.7 1.0 1.4 3.0 3.3 

OMI NO2 column mean 2009 (molecules × 1015/cm2) 1.1 1.3 1.8 2.7 4.0 
 

0.7 1.0 1.4 2.7 4.0 

OMI NO2 column mean 2010 (molecules × 1015/cm2) 1.0 1.2 1.7 2.7 3.4 
 

0.7 1.0 1.3 2.7 3.4 

OMI NO2 column mean 2011 (molecules × 1015/cm2) 1.0 1.2 1.7 2.8 3.4 
 

0.7 1.0 1.4 2.9 3.4 
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Table S12. Summary statistics for NO2 concentrations predicted at each mesh block centroid across Australia by the annual surface and column models.  

 

 

 

 

 

 

 

 

Surface model 
 

 

Column model 
 

Predicted NO2 (ppb) 2006 2007 2008 2009 2010 2011 
 

2006 2007 2008 2009 2010 2011 

Min.  1.2 1.1 0.9 0.7 0.6 0.4 
 

2.0 1.8 1.7 1.6 1.4 1.3 

1st 2.1 1.9 1.7 1.6 1.4 1.2 
 

2.5 2.3 2.2 2.0 1.8 1.8 

5th 2.7 2.6 2.4 2.2 2.1 1.9 
 

2.7 2.5 2.4 2.2 2.1 2.0 

25th 4.3 4.1 3.9 3.7 3.6 3.4 
 

4.1 3.9 3.7 3.6 3.4 3.3 

50th 6.3 6.0 5.9 5.7 5.5 5.3 
 

6.2 6.0 5.8 5.7 5.4 5.3 

75th 8.9 8.5 8.4 8.2 7.9 7.8 
 

8.9 8.6 8.2 8.1 7.8 7.8 

95th 13.0 12.5 12.4 12.3 11.9 11.7 
 

13.1 12.7 12.2 12.4 11.9 11.8 

99th 16.9 16.5 16.4 16.2 15.8 15.7 
 

17.2 16.8 16.3 16.4 15.9 15.9 

Max. 38.3 38.1 37.9 37.7 37.5 37.4 
 

38.2 38.0 37.6 37.6 37.3 37.1 

              Unweighted mean 6.9 6.6 6.5 6.3 6.1 5.9 
 

6.8 6.6 6.3 6.3 6.0 5.9 

Population-weighted mean 7.3 7.0 6.9 6.7 6.5 6.3 
 

7.3 7.1 6.7 6.7 6.4 6.3 



S30 
 

Table S13. Summary statistics for NO2 concentrations predicted at each mesh block centroid in the greater Sydney area by the annual surface and column models.  

 

Surface model 
 

 

Column model 
 

Predicted NO2 (ppb) 2006 2007 2008 2009 2010 2011 
 

2006 2007 2008 2009 2010 2011 

Min.  4.1 3.9 3.7 3.5 3.4 3.2 
 

3.2 3.1 2.9 2.8 2.7 2.5 

1st 5.3 5.0 4.7 4.5 4.3 4.1 
 

4.9 4.6 4.4 4.0 3.9 3.9 

5th 6.1 5.8 5.6 5.4 5.1 5.0 
 

6.1 5.7 5.5 5.0 4.9 4.9 

25th 7.9 7.6 7.3 7.1 6.8 6.7 
 

7.9 7.6 7.2 6.7 6.6 6.7 

50th 9.8 9.5 9.2 9.0 8.7 8.6 
 

9.8 9.4 9.0 8.4 8.4 8.4 

75th 11.5 11.2 11.0 10.7 10.4 10.3 
 

11.6 11.2 10.8 10.3 10.2 10.3 

95th 14.7 14.5 14.2 13.9 13.6 13.6 
 

15.0 14.7 14.3 13.7 13.6 13.7 

99th 18.2 18.0 17.7 17.4 17.1 17.1 
 

18.5 18.1 17.7 17.2 17.0 17.1 

Max. 37.4 37.2 36.9 36.6 36.3 36.3 
 

38.0 37.9 37.5 36.9 36.7 36.9 

              Unweighted mean 9.9 9.7 9.4 9.1 8.9 8.8 
 

10.0 9.6 9.3 8.8 8.7 8.7 

Population-weighted mean 9.9 9.6 9.3 9.1 8.8 8.7 
 

9.9 9.6 9.2 8.7 8.6 8.7 

 

 



S31 
 

REFERENCES 

Acker, J.G.; Leptoukh, G. Online Analysis Enhances Use of NASA Earth Science Data. Eos, 

Trans AGU. 88:14-17; 2007 

Ackermann, I.J.; Hass, H.; Memmesheimer, M.; Ebel, A.; Binkowski, F.S.; Shankar, U. 

Modal aerosol dynamics model for Europe: development and first applications. 

Atmospheric Environment. 32:2981-2999; 1998 

Bucsela, E.J.; Krotkov, N.A.; Celarier, E.A.; Lamsal, L.N.; Swartz, W.H.; Bhartia, P.K.; 

Boersma, K.F.; Veefkind, J.P.; Gleason, J.F.; Pickering, K.E. A new stratospheric and 

tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: 

applications to OMI. Atmos Meas Tech. 6:2607-2626; 2013 

Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; 

Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric Aerosol Optical Thickness 

from the GOCART Model and Comparisons with Satellite and Sun Photometer 

Measurements. Journal of the Atmospheric Sciences. 59:461-483; 2002 

DiMiceli, C.M.; Carroll, M.L.; Sohlberg, R.A.; Huang, C.; Hansen, M.C.; Townshend , 

J.R.G. Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) 

at 250 m Spatial Resolution for Data Years Beginning Day 65, 2000 - 2010, 

Collection 5 Percent Tree Cover. Available online: 

http://www.landcover.org/data/vcf/ (accessed 10 June, 2014); 2011. 

Elvidge, C. D.; Tuttle, B. T.; Sutton, P. C.; Howard, A. T.; Milesi, C. Global distribution and 

density of constructed impervious surfaces. Sensors. 7:1962–1979; 2007 

Fast, J.D.; Gustafson, W.I.; Chapman, E.G.; Easter, R.C.; Rishel, J.P.; Zaveri, R.A.; Grell, 

G.A.; Barth, M.C. The Aerosol Modeling Testbed: A Community Tool to Objectively 

Evaluate Aerosol Process Modules. Bulletin of the American Meteorological Society. 

92:343-360; 2011 



S32 
 

Geoscience Australia. 1 second SRTM Derived Products User Guide. Available online: 

http://www.ga.gov.au/corporate_data/72759/1secSRTM_Derived_DEMs_UserGuide_

v1.0.4.pdf (accessed June 10, 2014); 2011 

Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, 

B. Fully coupled “online” chemistry within the WRF model. Atmospheric 

Environment. 39:6957-6975; 2005 

Hystad, P.; Setton, E.; Carvantes, A.; Poplawski, K.; Deschenes, S.; Brauer, M., et 

al. Creating National Air Pollution Models for Population Exposure Assessment in 

Canada. Environ Health Perspect. 119:1123-1129; 2011 

Lamsal, L.N.; Martin, R.V.; van Donkelaar, A.; Steinbacher, M.; Celarier, E.A.; Bucsela, E.; 

Dunlea, E.J.; Pinto, J.P. Ground-level nitrogen dioxide concentrations inferred from 

the satellite-borne Ozone Monitoring Instrument. Journal of Geophysical Research: 

Atmospheres. 113:D16308; 2008 

Lamsal, L.N.; Martin, R.V.; van Donkelaar, A.; Celarier, E.A.; Bucsela, E.J.; Boersma, K.F., 

et al. Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI 

satellite instrument: Insight into the seasonal variation of nitrogen oxides at the 

northern midlatitudes. J Geophys Res. 115:D05302; 2010 

Levelt, P.F.; Van den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Huib, V.; de Vries, J.; 

Stammes, P.; Lundell, J.O.V.; Saari, H. The ozone monitoring instrument. Geoscience 

and Remote Sensing, IEEE Transactions on. 44:1093-1101; 2006 

Novotny, E.V.; Bechle, M.J.; Millet, D.B.; Marshall, J.D. National Satellite-Based Land-Use 

Regression: NO2 in the United States. Environmental Science & Technology. 

45:4407-4414; 2011 

Public Sector Mapping Agencies (PSMA). Transport and Topography Data Product 

Description. Available online: http://www.psma.com.au/psma/wp-



S33 
 

content/uploads/Transport-and-Topography-Product-Description.pdf (accessed 10 

June, 2014); 2013 

Olivier, J.G.J.; Van Aardenne, J.A.; Dentener, F.J.; Pagliari, V.; Ganzeveld, L.N.; Peters, 

J.A.H.W. Recent trends in global greenhouse gas emissions:regional trends 1970–

2000 and spatial distributionof key sources in 2000. Environmental Sciences. 2:81-99; 

2005 

Rose, N.; Cowie, C.; Gillett, R.; Marks, G.B. Validation of a Spatiotemporal Land Use 

Regression Model Incorporating Fixed Site Monitors. Environmental Science & 

Technology. 45:294-299; 2011 

Schell, B.; Ackermann, I.J.; Hass, H.; Binkowski, F.S.; Ebel, A. Modeling the formation of 

secondary organic aerosol within a comprehensive air quality model system. J 

Geophys Res. 106:28275-28293; 2001 

Sturman, A.; Tapper, N. The Weather and Climate of Australia and New Zealand: Oxford 

University Press; 2006 

Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; 

Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument 

observations: An overview. Journal of Geophysical Research. 112:1-14; 2007 

Tuccella, P.; Curci, G.; Visconti, G.; Bessagnet, B.; Menut, L.; Park, R.J. Modeling of gas 

and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. J 

Geophys Res. 117:D03303; 2012 

Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists: John Wiley and Sons; 

2007 

 

 


