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A Spatial Model of Air Pollution: The Impact

of the Concentration-Response Function

Andrew L. Goodkind, Jay S. Coggins, Julian D. Marshall

Abstract: We develop a spatial model to examine policies aimed at reducing am-
bient concentrations of fine particulates (PM2.5), with emissions from many sources
that affect many population centers. Two alternative specifications of the relation-
ship between PM2.5 concentration and health impacts from Krewski et al. are an-
alyzed: log-linear, which implies downward-sloping marginal benefits of abatement;
and log-log, which implies upward-sloping marginal benefits of abatement. A stan-
dard assumption would be that the greatest benefit from cleanup would occur in
the dirtiest locations. We show, however, that for the log-log (but not log-linear)
relationship, the largest risk reductions are achieved from abatement of pollution in
the cleanest locations. Our model demonstrates that with a log-log relationship so-
ciety should prefer lower emissions and lower pollution concentrations than if the
relationship is log-linear. Our model also shows that an efficient abatement policy
may substantially outperform a uniform pollution standard such as the National
Ambient Air Quality Standards (NAAQS).

JEL Codes: H41, I18, Q53

Keywords: Air pollution, Environmental policy, Increasing marginal benefits

THE STANDARD APPROACH to analyzing clean-air policy assumes that the bene-
fit associated with a unit of abatement declines as the air becomes cleaner.1 That is,
the greatest marginal improvements in human health are to be achieved in the dirt-
iest places. This assumption is based in a particular understanding of the relation-
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ship between pollution and human health: that the marginal harm to health grows
ever more severe as the level of pollution rises. The traditional view is appealing from
an ethical perspective because it means that we should clean the dirtiest places first,
thereby protecting those most who are most at risk. In line with this understanding,
regulation of harmful pollutants has generally been based on uniform standards such as,
in the United States, the National Ambient Air Quality Standards (NAAQS). The
NAAQS set limits on pollution concentration that are not to be exceeded in any location.

In this paper we ask, what if the basic understanding regarding the link between
pollution exposure and health outcomes is wrong? This question, we argue, is both in-
teresting and relevant to environmental policy. Recent estimates of the concentration-
response (C-R) relationship between fine particulates (particulate matter with a di-
ameter less than 2.5 microns, PM2.5) and several causes of adult mortality suggest
that the C-R function for PM2.5 might be strictly concave in concentration. If true,
this C-R function would mean that the first unit of abatement yields the smallest
improvement in health risk, while the last unit, taking us to a pristine environment,
yields the greatest improvement. Crouse et al. (2012), for example, find that the C-R
relationship for PM2.5 on ischemic heart disease is strictly concave (“supralinear”) over
ambient concentrations. Supralinear C-R functions across a wide range of PM2.5 con-
centrations (including observations from exposure to ambient air, secondhand smoke,
and active smokers) were also found in Ostro (2004) and Pope et al. (2009, 2011).

An interesting question, which economists are hardly equipped to answer, is
which physiological pathways could lead to supralinearity. This matter is not well un-
derstood in the relevant health literature, but there are some tentative suggestions.
Ambrose and Barua (2004, 1735) posit that the “underlying biochemical and cellular
processes may become saturated with small doses of toxic components from cigarette
smoke causing a nonlinear dose-response on cardiovascular function.” Whatever the
physiological explanation, supralinear C-R functions are common in studies of mor-
tality from exposure to workplace toxins (Stayner et al. 2003). Among several expla-
nations of the attenuation of the relative risk at higher concentrations, Stayner et al.
suggest the possibility of a saturation of enzyme systems, where relative risks increase
faster before saturation is reached, and less thereafter. Birnbaum (2012) discusses the
“low-dose hypothesis” which indicates that the impacts to human health from expo-
sure to low doses of chemicals may be fundamentally different than what would be
expected from the impact at higher doses.

Krewski et al. (2009), in their follow-up to the influential study by Pope et al.
(1995), estimate the health risks associated with PM2.5 exposure. They present the
results of estimates based on two functional forms (see fig. 1). The first form is a
log-linear C-R relationship (they call this relationship the “linear” version), which is
convex and so leads to the usual form: a marginal benefit function that decreases in
abatement. The second form is a log-log relationship (they call this relationship the
“log” version), which is concave, or supralinear, and so leads to a marginal benefit
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function that increases in abatement. Regarding which of the two functions is to be
preferred statistically, Krewski et al. (2009, 27) say only that “the logarithmic func-
tion was a slightly better predictor of the variation in survival among MSAs than
the linear function because the MSA random-effect variance is somewhat smaller
(than that for the linear function) for each cause-of-death category except all other
causes.”

The Krewski et al. study highlights the uncertainty regarding the shape of the
C-R function between PM2.5 and adult mortality. The difference between the two
forms of the C-R function has significant implications for air pollution policy of pos-
sibly the most consequential environmental issue affecting human health. Despite
the enormous benefits from existing regulations, ambient concentrations of fine par-
ticulates remain a major cause of premature mortality in the United States. The Of-
fice of Management and Budget estimates that the benefits of EPA regulations on fine
particulate concentrations range from $19 billion to $167 billion per year (OMB 2013).
The benefits are large because reduced exposure to fine particulates has saved many
lives, yet at existing concentrations substantial risks remain. Fann et al. (2012) estimates
130,000 annual cases of premature mortality attributable to fine particulate concen-
trations. In contrast, the comparative costs for cleanup are quite modest: by OMB’s es-
timates, benefits are 2.6 to 22.9 times larger than costs (OMB 2013). Krewski et al.
is central to the analysis of the impacts of exposure to fine particulates. The estimates
in Krewski et al. are the latest from an American Cancer Society study, one of two ma-
jor longitudinal analyses on the link between PM2.5 and premature mortality. In the

Figure 1. Risk of mortality from PM2.5 concentration relative to risk at 10 μg m–3 for
Krewski et al. (2009) log-linear and log-log concentration-response functions.
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recent regulatory impact analysis by the US EPA (2012, 5-32) recommending a lower
standard for fine particulate concentrations, the key parameter was the Krewski et al.
log-linear estimate.

The importance of the log-log C-R function is that it calls into question the risks
of mortality faced by individuals exposed to low levels of pollution, suggesting that
mortality risks may be substantially lower at very low concentrations than at mod-
erate or high concentrations. Why should one care about the risks borne by people
exposed to the lowest concentrations, given that most experience higher exposures
and correspondingly greater risks? Under the Clean Air Act, the primary goal of
pollution control is to protect human health, and the general trend has been toward
less pollution and lower risks.2 In order to arrive at desirable policy outcomes, we
must understand the risks at the lowest pollution level being considered. If the log-
log C-R function is correct, then the benefits associated with achieving very low
pollution levels are even higher than we have thought.3

A log-log C-R relationship suggests that regulators should focus not only on re-
ducing risks for people at high concentrations but also on reducing risks for people
at low concentrations. Uniform pollution standards like the NAAQS, by their na-
ture, have the effect of aiming abatement resources at those places where concentra-
tions are the highest. As we show here, the uniform standard approach is not nec-
essarily the most appealing from a social welfare perspective if marginal benefits are
increasing in abatement. An alternative policy, one that seeks to maximize the aggre-
gate net benefits of abatement, might yield a very different outcome. A policy of max-
imizing social welfare, as opposed to limiting risks in the dirtiest locations, raises con-
cerns over environmental justice, as it may tend to exacerbate the disparity between
the pollution faced by individuals, leading to greater inequality in environmental risk.

We compare the implications for mortality risk of the two functional forms es-
timated by Krewski et al. (2009) and the socially preferred policies to regulate air
pollution in both cases. We devise a simple model that captures the spatial aspects
of air pollution over a region with many sources of pollution and many receptors.
An efficient abatement policy is examined that controls pollution at each individual

2. For instance, emissions of sulfur dioxide (one of the main contributors to fine particu-
late concentrations) in the United States have dropped from 23 million tons in 1990 to 5.5 mil-
lion tons in 2012 (NEI 2013). This drop has contributed to the 33% decrease in the US
national average concentration of PM2.5 from 13.8 μg m–3 in 2000 to 9.3 μg m–3 in 2012 (EPA
2013).

3. In an analysis of the effects of lead exposure on children’s IQ, Rothenberg and Rothenberg
(2005), find that a model using the log of lead exposure is a significantly better fit of the data
than a model with a linear lead relationship. The estimated benefits in the United States from
the drop in lead concentrations to very low levels is 2.2 times greater with the log model than
with linear.
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source and maximizes the social welfare of the individuals and industries in the re-
gion. The efficient policy is compared to a uniform standard, under which a cap is
placed upon concentrations across the region, and a uniform tax, where a fee is levied
on each unit of pollution emitted. The three policies are compared for both C-R
functional forms based on total social welfare, the average concentration of pollution
in receptors, and the level of environmental inequality across receptors.

We find that society should prefer significantly lower emissions, and correspond-
ingly lower ambient concentrations, of air pollution if the log-log C-R function is cor-
rect than if the log-linear C-R function is correct. Our findings underscore the impor-
tance of identifying the true shape of the C-R function between fine particulates and
adult mortality.

With a log-log C-R function, we find that the efficient abatement policy performs
substantially better than the uniform standard in maximizing social welfare and lim-
iting the exposure to pollution. The efficient policy is also preferred to a uniform tax
policy across the region, suggesting that there is substantial heterogeneity in marginal
damages across sources. Surprisingly, the environmental inequality concerns with the
efficient policy are slightly less than with the uniform standard. Pollution concentra-
tion reductions in the cleanest receptors provides benefits to all surrounding loca-
tions due to the widespread dispersion of the pollutant. In obtaining the greatest risk
reductions in the cleanest locations, significant pollution concentration reductions
are achieved across the map.

1. A MULTIPLE-RECEPTOR, MULTIPLE-SOURCE MODEL

This paper presents a model that compares the outcomes from air pollution regu-
lation policies using either a log-linear or log-log C-R relationship between fine par-
ticulate concentrations and adult mortality. The model simulates the dispersion of
emissions from many sources (denoted by subscript j) located across a rectangular
geographic region, and calculates the resulting change in pollution concentrations in
all receptors (denoted by subscript i) in this region.

The region is separated into N identically sized grid squares. Each square can be
both a source and receptor of pollution (i, j = 1, . . . , N). In each grid square there
is a population, Popi, and an aggregate mass emission rate, ej, of PM2.5, a primary
conserved air pollutant. The model simulates emission and dispersion of primary
PM2.5 and the resulting concentration in each receptor.4

Pollution from each source is emitted at the center of the grid square and dis-
persed across the region as nonreactive emissions according to a Gaussian-Plume dis-

4. We consider only the impact of primary PM2.5 on total PM2.5 concentrations. Sev-
eral other pollutants contribute to total PM2.5 concentrations, but these are excluded for
simplicity.
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persion model. The wind is uniform across the region and travels in many directions
weighted by a representative wind rose. The pollution is assumed to be emitted from
a point source with the same effective height for each grid square. The Gaussian-
Plume dispersion model describes the change in average annual ground level con-
centration (in μg m–3) at any other grid square resulting from the emission of an
additional unit of pollution (tons/year) from a given grid square. Dispersion is calcu-
lated for all N grid squares to derive a source-receptor (S-R) matrix that describes
the change in concentration at every grid square from the emission of a pollutant from
every grid square. Let πji be the S-R coefficient from source grid square j to receptor
grid square i, and let ΠN�N denote the S-R matrix for all grid squares.

The concentration of PM2.5 is calculated for each grid square based on the emis-
sion rates from all squares, e (an N × 1 vector), the S-R matrix, and a background
concentration level, ~C, that accounts for emissions upwind of the modeling domain.
Background concentrations, which are constant across the region, are added to the
pollution emitted inside the region. In the initial situation, prior to pollution regula-
tion, the concentration in receptor square i is Ciðe0Þ = ~CþoN

j = 1πjie0j . After an abate-
ment policy is adopted that induces abatement of a tons, the level of emissions is e =
e0 – a, and the resulting concentration in receptor square i is CiðeÞ = ~CþoN

j = 1

πjiej = ~C þoN

j = 1πjiðe0j – ajÞ.

1.1. Krewski et al. Concentration-Response Relationships

Concentration-response functions identify the relative risk of disease given exposure
to concentrations of a stressor compared to some baseline. Suppose that the C-R re-
lationship between exposure to fine particulates and adult mortality follows either the
log-linear or the log-log functional form reported in Krewski et al. (2009), which are
only two of many possible forms the relationship between PM2.5 concentrations and
risk of mortality can take. By focusing attention on the two forms in Krewski et al.
we do not suggest that alternate forms are impossible. Rather we attempt to call at-
tention to the divergent policy implications from these two functional forms, high-
lighting the importance of identifying the true shape of the C-R function.

We apply the log-linear and log-log C-R functions across the entire range of am-
bient PM2.5 concentrations considered in this model. Because the data are sparse,
Krewski et al. is silent on the shape of the relationship at even lower concentrations.
It is possible that the function becomes convex in that region. There appears to be
little doubt, though, that the function bends downward at very high concentrations
(Pope et al. 2009; Smith and Peel 2010).

Krewski et al. report the results of estimating two forms of a hazard function,
denoted by λð˙Þ, using a random-effects Cox proportional-hazard model. These
hazard functions map a given level of concentration, and several covariates, onto the
risk of developing a negative health outcome. Taking the ratio of a hazard function
evaluated at two different concentration levels results in a hazard ratio (HR). The

456 Journal of the Association of Environmental and Resource Economists December 2014

This content downloaded from 134.84.3.1 on Mon, 15 Dec 2014 20:29:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


HR is reported in table 11 of Krewski et al. For a certain location, or receptor, the
HRs identify the relative risk of mortality between a relatively high concentration of
pollution and a low concentration. The HR allows us to evaluate, for each receptor,
the impact of a change in air pollution concentrations.

To understand the difference between the log-linear and log-log HRs it is nec-
essary to examine the hazard functions (or log-hazard functions, as demonstrated in
[1] and [2] below) that were estimated by Krewski et al. The log-linear specification,
which we will often refer to as the “lin” form, is given by

lnðλlinðX; PM2:5ÞÞ = lnðλ̂Þ þXβ lin þ PM2:5γ
lin: ð1Þ

The log-log specification, which we will often refer to as the “log” form, is given by

lnðλlogðX; PM2:5ÞÞ = lnðλ̂Þ þXβ log þ lnðPM2:5Þγlog: ð2Þ
In (1) and (2), λ̂ is the baseline risk of disease; X is a matrix of covariates that affect
the risk of disease, with β the estimated effect of these variables; and PM2.5 is the
concentration of PM2.5, with γ the estimated effect of PM2.5 concentration. Our
interest centers on γ. Note that the log-linear specification (1) regresses the natural
log of the risk, or hazard, on the “linear” concentration of fine particulates, whereas
the log-log form (2) regresses the natural log of the risk on the natural log of the
concentration.

The HR is defined as the ratio of the hazard function evaluated at two values
of PM2.5 concentration, PM′′2:5 and PM′2:5. This equation is calculated by taking the
ratio of the antilog of the log-hazard function at two PM2.5 concentrations. The
log-linear and log-log hazard ratios are given by

HRlin =
λlinðX; PM′′2:5Þ
λlinðX; PM′2:5Þ =

λ̂ ˙ expfXβ lin þ PM′′2:5γling
λ̂ ˙ expfXβ lin þ PM′ 2:5γ ling = expfγlinðPM′′2:5 – PM′2:5Þg ð3Þ

and

HRlog =
λlogðX; PM′′2:5Þ
λlogðX; PM′2:5Þ =

λ̂ ˙ expfXβ loggðPM′′2:5Þγ log

λ̂ ˙ expfXβ loggðPM′2:5Þγ log
=

PM′′2:5

PM′2:5

� �γ log

: ð4Þ

With the HR, taking the ratio of the hazard function at two concentration levels
causes all the variables in X to cancel out, leaving an expression comparing the risks
of disease that depends only on the pollution concentration. Solving for γ in (3) and
(4) yields

γ lin =
lnðHRlinÞ

PM′′2:5 – PM′2:5

and

γ log =
lnðHRlogÞ

lnðPM′′2:5Þ – lnðPM′2:5Þ:
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The hazard ratios reported in table 11 of Krewski et al. are based on a 10 μg m–3

difference in fine particulate concentration. Note that for the log-linear form any
10 μg m–3 change will lead to the same value of the HR regardless of the baseline
level of the concentration. With the log-log form, the value of the HR will change
depending on the levels of the concentration. HRs reported in table 11 of Krewski
et al. are

HRlin = 1:060 for any 10μg m–3 change

HRlog =
1:095 for a 10μg m–3 change from 5μg m–3 to 15μg m–3

1:059 for a 10μg m–3 change from 10μg m–3 to 20μg m–3
:

(

The estimated values of γ, then, are

γlin =
lnð1:060Þ

10
= 0:005827 ð5Þ

and

γlog =
lnð1:059Þ

lnð20Þ – lnð10Þ = 0:082703: ð6Þ

Using these values of γ, we can construct an HR for any PM2.5 concentration com-
pared to an initial baseline concentration. We will define the baseline concentration
in receptor i as the concentration at the initial level of emissions, PM′′2:5 = Ciðe0Þ.
The concentration in receptor i for some other level of emissions, e, is defined as
PM′2:5 = CiðeÞ. The HRs in receptor i become5

HRlin
i ðCiðeÞÞ = expfγlinðCiðe0Þ –CiðeÞÞg ð7Þ

and

HRlog
i ðCiðeÞÞ = Ciðe0Þ

CiðeÞ
� �γ log

: ð8Þ

1.2. Benefits of Abatement

To calculate the benefits of pollution abatement in receptor i we first go back to the
original definition of the HR in (3) and (4), the ratio of hazard functions, λið˙Þ:

HRiðCiðeÞÞ = λ0
i

λiðCiðeÞÞ: ð9Þ

5. Note that the initial concentration is not an argument of the HR function because it
is fixed under all abatement policies.
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In (9), λ0
i = λiðCiðe0ÞÞ is defined as the risk of disease given the initial concentration

before regulation, and λiðCiðeÞÞ is defined as the risk given a lower concentration in
receptor i after a reduction in emissions. Rearranging (9), the risk of mortality in
receptor i for any level of emissions is λiðCiðeÞÞ = λ0

i =HRiðCiðeÞÞ.
Assume that premature mortality is the only identified risk from the air pollution.

We can estimate the expected number of deaths in receptor i as the receptor’s pop-
ulation times the risk of mortality, DeathsiðCiðeÞÞ = Popi ˙ λ

0
i =HRiðCiðeÞÞ. The change

in deaths in receptor i after a reduction in emissions from e0 to e is ΔDeathsiðCiðeÞÞ
= Popi ˙ λ

0
i ½1 – 1=HRiðCiðeÞÞ�. Next we define the vector of emissions in all sources

after regulation in terms of the vector of abatement from all sources, e = e0 – a. This
way we can write the change in expected deaths and the concentration level after reg-
ulation as a function of a vector of abatement.6

Define V as the value society places on each human life. Therefore, the benefits in
receptor i of a vector of abatement in all sources are the changes in expected deaths
times the value of a life saved.

BiðCiðe0 – aÞÞ = V ˙ΔDeathsiðCiðe0 – aÞÞ = V ˙Popi ˙ λ
0
i 1 –

1
HRiðCiðe0 – aÞÞ

� �
: ð10Þ

These benefits are the difference in monetized health damages without and with reg-
ulation, defined as a function of the hazard ratio. This implies that the benefits for
receptor i from the two C-R functions in (7) and (8) are

Blin
i ðCiðe0 – aÞÞ = V ˙ Popi ˙ λ

0
i 1 – exp – γlin Ciðe0Þ –Ciðe0 – aÞð Þf g½ �

and

Blog
i ðCiðe0 – aÞÞ = V ˙ Popi ˙ λ

0
i 1 –

Ciðe0 – aÞ
Ciðe0Þ

� �γ log� �
:

The total benefits for all receptors in the region, resulting from abatement, a, from all
sources, are the sum of the benefits across receptors.

BlinðaÞ = o
N

i = 1

Blin
i ðCiðe0 – aÞÞ

and

BlogðaÞ = o
N

i = 1

Blog
i ðCiðe0 – aÞÞ:

The total benefits are the value of risk reductions in all receptors resulting from a
vector of abatement, a, at every source of pollution. Next we investigate how the ben-

6. We write CiðeÞ = Ciðe0 – aÞ to indicate that the concentration in a receptor is a
function of the level of abatement.
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efits in all receptors change from an incremental change in abatement at any single
source.

1.3. Interrelated Marginal Benefits across Sources

With the total benefits in all receptors we can examine the marginal benefits of ad-
ditional abatement from source j. We start with the marginal benefits in receptor i
associated with a change in concentration in i (suppressing the argument of Ci):

MBiðCiÞ = ∂BiðCiÞ
∂Ci

=
VPopiλ

0
i

½HRiðCiÞ�2
∂HRiðCiÞ

∂Ci

:

The marginal benefits in receptor i attributable to a change in abatement at source j
is just MBiðCiÞ times πji, the incremental impact on concentrations in i from emis-
sions at j. Summing across all receptors, we obtain the combined marginal benefits of
additional abatement from source j:

MBjðaÞ = o
N

i = 1

MBiðCiðe0 – aÞÞπji:

The marginal benefits of abatement from source j are the sum of the change in ben-
efits in all downwind receptors from an incremental increase in abatement at that
source. For the log-linear and log-log C-R functions the expressions for the marginal
benefits of abatement from source j are given by

MBlin
j ðaÞ = Vγlino

N

i = 1

Popiλ
0
i πji

HRlin
i ðCiðe0 – aÞÞ

and

MBlog
j ðaÞ = Vγlogo

N

i = 1

Popiλ
0
i πji

Ciðe0 – aÞ ˙HRlog
i ðCiðe0 – aÞÞ:

The marginal benefits of abatement, or equivalently the marginal damages of emis-
sions, are different for most or possibly all sources, as demonstrated in Muller and
Mendelsohn (2009), and NRC (2010). Muller and Mendelsohn (2009) report me-
dian marginal damages across US counties of $1,170 (2000 US dollars) per ton of pri-
mary PM2.5, with a range of $41,000 between the 1st and 99.9th percentiles. In a report
by the National Research Council (NRC 2010) median marginal damages across coal
power plants are estimated at $7,100 (2007 US dollars) per ton of primary PM2.5,
with a range of $23,400 between the 5th and 95th percentiles.7

7. Muller and Mendelsohn (2009) and the NRC report (2010) use the log-linear C-R
function from Pope et al. (2002). Krewski et al. (2009) is an update of Pope et al. (2002).
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The heterogeneity of marginal benefits of abatement across sources is heavily in-
fluenced by the size of the population near the source.8 The marginal benefits with
the log-log C-R function (but not with the log-linear C-R function) will also be sub-
stantially influenced by the PM2.5 concentration of the receptor grid squares near the
source. A source emitting pollution near receptors with low pollution concentrations
will have higher marginal benefits of abatement than a source near high concentration
receptors (given equal receptor populations) because of the concavity of the log-log
C-R function. However, the lowest concentration receptors are also likely to have the
lowest population density. If the log-log C-R function is correct, these two effects,
higher population in dirtier places and greater risk reductions in cleaner places, pull
in opposite directions. The overall effect might be to reduce the variance of the dis-
tribution of marginal benefits of abatement with log-log compared to log-linear.

The marginal benefits in source j are a function of the level of abatement from all
sources of the pollution. The interconnected nature of the marginal benefit functions
across sources turns out to be quite important. How do the marginal benefits of
abatement from source j change when source k increases its abatement? The relevant
effects are

∂MBlin
j ðaÞ

∂ak
= – VðγlinÞ2o

N

i = 1

Popiλ
0
i πjiπki

HRlin
i ðCiðe0 – aÞÞ ð11Þ

and

∂MBlog
j ðaÞ

∂ak
= – Vγlogðγlog – 1Þo

N

i = 1

Popiλ
0
i πjiπki

½Ciðe0 – aÞ�2HRlog
i ðCiðe0 – aÞÞ; ð12Þ

for the log-linear and log-log C-R, respectively. Using the specific parameter values
for γ found in (5) and (6), we can determine the sign of equations (11) and (12).
Note that the parameters are all positive, and most importantly for equation (12),
γlog < 1. This means that, although equation (11) is negative, the γlog – 1ð Þ term
guarantees that equation (12) is positive. When k = j it is clear that the marginal
benefit function for source j is decreasing in abatement aj for log-linear, but increas-
ing in aj for log-log.

When j ≠ k with the log-linear C-R equation, the marginal benefits of abatement
from source j are decreasing with abatement from source k. Therefore, abatement
from different sources can be considered substitutes: additional abatement from one
source decreases the marginal benefits of abatement from other sources. With the
log-log C-R function, on the other hand, the marginal benefits of abatement from

8. Marginal benefits of abatement are closely linked with the relationship between emis-
sions and human intake, known as the intake fraction (see Bennett et al. 2002). Larger pop-
ulations near sources are associated with a greater intake fraction.
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source j are increasing with abatement from source k. Thus, abatement levels across
sources are complements.

Two questions arise from this differential feature of the two specifications. First,
which of the two effects (substitute for log-linear or complement for log-log) is larger?
And second, are either of these effects significantly different from zero? To answer the
first question, consider the ratio of these two expressions:

Λ =

∂MBlog
j ðaÞ

∂ak
∂MBlin

j ðaÞ
∂ak

=
γlog γlog – 1ð Þ

γ linð Þ2
oN

i = 1Popi ˙ λ
0
i πjiπkiCiðe0Þ–γ log

Ciðe0 – aÞγ log–2

oN

i = 1Popi ˙ λ
0
i πjiπki ˙ exp – γlin Ciðe0Þ – Ciðe0 – aÞð Þf g

" #
:

For the moment, assume that the concentration level is the same in each receptor i:
Ciðe0Þ = Cðe0Þ and Ciðe0 – aÞ = Cðe0 – aÞ. (This assumption is not appropriate for
the rest of our model, but it does help shed light on the characteristics of Λ.) This
allows us to cancel out all the Pop, π, and λ0 terms, leaving

Λ =
γlog γlog – 1ð Þ

γlinð Þ2
Cðe0Þ–γ log

Cðe0 – aÞγ log–2

exp – γlin Cðe0Þ –Cðe0 – aÞð Þf g:

Plugging in the parameter values found in (5) and (6) and using concentration levels
commonly found in the United States, the absolute value of Λ can range from 10 to
60, with the largest values at low concentrations. This finding suggests that the com-
plement effect in the log-log function is far more important than the substitution ef-
fect in the log-linear function, and at lower concentrations the difference is even more
pronounced. A large complement effect suggests that for multiple sources that are in-
terrelated (such that their pollution affects common receptors), emission reductions
from one source would increase the marginal benefits of abatement from the other
sources. The incremental gains, in terms of reductions in risk, at the impacted recep-
tors from additional abatement are larger after one source has reduced emissions. This
outcome is embodied by the concave shape of the log-log C-R function in figure 1,
where the steepest part of the curve is found at the lowest concentration levels. Achiev-
ing low concentrations in receptors allows for the largest reductions in risk of mor-
tality, per unit of concentration reduction.

The second question is whether the complement effect is large in absolute value,
rather than just in relation to the substitution effect. This question is an empirical mat-
ter, but results given below indicate that the complement effect contributes to a pref-
erence for lower emissions and lower concentrations with the log-log C-R function
than with log-linear.

1.4. Costs of Abatement

The primary focus of this paper is the impact of the functional form of the C-R
function on the benefits of pollution abatement. However, to provide an interesting
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analysis of pollution abatement policies it is necessary to specify the costs of abate-
ment. The cost of abatement at each source is assumed to be independent of the
other sources. The form of the marginal cost function (below) was chosen to have a
relatively flat slope for the first units of abatement and a steeper slope as abatement
increases, indicating that abatement becomes exceedingly expensive as a source at-
tempts to completely eliminate their pollution. The marginal cost functional is strictly
convex in aj and is defined as

MCjðajÞ = �1j – �2j ˙ ln 1 –
aj
e0j

 !
;

with �1j ≥ 0 and �2j > 0. As seen in figure 2, the marginal costs rise to infinity as
abatement approaches the maximum ðlimaj→e0j MCjðajÞ =∞Þ.

In the simulations, described in section 2, marginal costs are heterogeneous across
sources. This outcome is accomplished by randomly assigning values for parameters
�1j and �2j for each source. The simulation assumes an initial situation with no pollu-
tion regulation, and then various policies to regulate pollution are introduced. The pa-
rameter values are calibrated to make the simulation economically interesting. That is,
we ensure that marginal costs are small enough to induce abatement and large enough
to discourage nearly complete abatement. Although the cost parameters are randomly
assigned to sources in the initial situation, after abatement policies have been imple-
mented the largest marginal costs are found, on average, at sources that had the greatest
amount of abatement.

Figure 2. Illustration of marginal cost of abatement curve from zero abatement to complete
abatement (e0).
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The corresponding abatement cost function with fixed costs F is

CostjðajÞ = �1j þ �2j

� �
aj þ �2j e0j – aj

� �
ln 1 –

aj
e0j

 !
þ F:

The total cost of a vector of abatement levels is the sum of the costs for individual
sources:

CostðaÞ = o
N

j = 1

CostjðajÞ:

1.5. Abatement Policies

With the benefits and costs of pollution abatement established for each receptor and
source in the region, we examine three approaches to abatement. The first approach
(called “efficient abatement”) selects abatement levels at each source to maximize the
difference between the benefits and costs of abatement. The second approach is a
uniform pollution concentration standard across the region, designed to emulate the
NAAQS, achieved through a command-and-control approach. The third approach
is a uniform tax on emissions. The uniform tax yields a cost-effective outcome but ig-
nores the spatial heterogeneity of marginal damages of emissions among sources. The
difference in the outcomes between efficient abatement and the uniform tax identifies
the importance of implementing source-specific regulation. All three approaches (poli-
cies) are considered with the log-linear and log-log C-R functions.

Efficient abatement can be represented for the log-linear C-R function, as

max
a

fBlinðaÞ –CostðaÞg
Subject to: aj ≥ 0; aj � e0j for j = 1; . . . ; N;

ð13Þ

and, for the log-log C-R function, as

max
a
fBlogðaÞ –CostðaÞg

Subject to: aj ≥ 0; aj � e0j for j = 1; . . . ; N:
ð14Þ

No source completely eliminates its pollution, because the slope of the marginal cost
curve approaches infinity as abatement approaches e0, but zero abatement is possible
for some sources if the costs of abatement are high. The first-order conditions, then,
are different depending on whether this corner comes into play:

MBjðaÞ =
MCjðajÞ if aj > 0

MCjð0Þ – μj if aj = 0
;

(

where the μj are the Lagrange multipliers on the zero abatement constraints. The N
marginal benefit functions are interdependent, as abatement at each source affects
the marginal benefits at all other sources. As the number of sources becomes large,
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these problems pose computational challenges because of the number of equations
that must be solved simultaneously.9

In the second policy, the uniform standard selects a concentration limit, C, that
cannot be exceeded in any location. The optimal concentration limit is computed by
setting a concentration limit, imposing emission reductions at sources to satisfy the
limit, and calculating the benefits and costs of abatement. This approach is repeated
for a series of limits at progressively stricter levels (lower concentrations). The uni-
form standard adopted (one standard for the whole region) is the concentration
limit that achieves the greatest net increase in welfare for society. This concentration
is referred to as the “best” uniform standard for the region.

Under this command-and-control policy, in order to achieve any given concentra-
tion limit, emission reductions are determined based on that receptor, among all those
to which the source contributes measurably, that has the highest concentration. To
avoid constraining distant sources that have a minimal impact on an out-of-compliance
receptor, here we defined a source as contributing pollution to a receptor if the rele-
vant entry in the S-R matrix is above a lower threshold, ε.10 We define θji as an indi-
cator variable that equals one if πji ≥ ε and zero if πji < ε. We employ the following
approach for determining emission reductions: for each source j the emissions required
to comply with the concentration limit are equal to the ratio of the proposed limit, C,
and the maximum concentration in a receptor to which source j contributes pollution,
denoted Cj. If Cj is less than the proposed limit, emissions remain at the status quo,
e0j . This maximum concentration that a source contributes pollution is defined as Cj =
maxfC1 ˙ θj1; . . . ; CN ˙ θjNg. The approach does not optimize abatement by minimiz-
ing the costs of emission reductions. Rather, each source reduces emissions by the pro-
portion of its contribution to any downwind receptor that is out of compliance with the
concentration limit.

For the log-linear functional form the problem is formally stated as

max
C
fBlinðaÞ – CostðaÞg

Subject to: aj = e0j ˙min 1; 1 –
C
Cj

� 	
for j = 1; . . . ;N;

ð15Þ

9. With the log-log C-R function there is the possibility of a nonconvexity because the
marginal benefit and marginal cost curves are both increasing in abatement. In this model the
potential for a nonconvexity is very small because the absolute value of the slope of the marginal
cost curve is likely greater than the absolute value of the slope of the marginal benefit curve in
own-source abatement.

10. ε = 1:0� 10–6. For entries in the S-R matrix greater than this value of ε suggests that
for each additional ton of emissions from a source, the annual concentration in the receptor is
increased by more than 1 millionth of a μg m–3.
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and for the log-log functional form as

max
C
fBlogðaÞ – CostðaÞg

Subject to: aj = e0j ˙min 1; 1 –
C
Cj

� 	
for j = 1; . . . ; N:

ð16Þ

The regional concentration standards (the NAAQS values calculated here) will de-
pend on the C-R function because the benefits of abatement are determined by the
functional form of the HR.

The third policy is a uniform tax where the regulator must choose a single tax rate
on emissions to maximize the difference between total benefits of abatement and total
costs of abatement. For each source the resulting quantity of abatement from any
chosen tax policy is the greater of zero and the intersection of the tax and the source’s
marginal cost curve. For the log-linear C-R function the problem is stated as

max
t
fBlinðaÞ – CostðaÞg

Subject to: aj =max 0;MC – 1
j ðtÞ

n o
for j = 1; . . . ; N;

ð17Þ

and for the log-log functional form as

max
t
fBlogðaÞ – CostðaÞg

Subject to: aj =max 0;MC – 1
j ðtÞ

n o
for j = 1; . . . ; N:

ð18Þ

2. MODEL SOLUTION AND RESULTS

The model analyzes a hypothetical geographical region that is 750 km east/west and
500 km north/south (an area approximately 5% the size of the contiguous United
States). The region is separated into 25 km × 25 km grid squares, with a total of
N = 600 grid squares that are each a source and receptor of air pollution. The pop-
ulations of the grid squares in the region are modeled after a section of the US Mid-
west that spans from northwest West Virginia to southeast Wisconsin.11 The emis-
sions from each grid square prior to regulation are artificially determined but are
correlated with that grid square’s population, with a correlation coefficient ρ = 0:44.12

The model and this example are meant to be representative of a generic situation of

11. The parameters of the dispersion model and the emissions from sources are artificial
and not calibrated to the modeled geographic region. Modeled concentrations are not meant
to mirror observed concentrations in this region.

12. The correlation coefficient is derived from the correlation between criteria pollutant
emissions and population from counties in Illinois, Indiana, Michigan, and Ohio.
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air pollution and how abatement policies will affect the welfare of the region. Map-
ping the actual population of a region of the Midwest and correlating the emissions
with population is done to provide a reasonable reflection of a real-world situation.13

2.1. Model Solution

The model assumes an initial situation without pollution regulation. The model then
solves for three abatement policies: efficient abatement, a uniform pollution concen-
tration standard across the region, and a uniform emissions tax. Each policy is ana-
lyzed with both of the Krewski et al. (2009) C-R functions: log-linear and log-log.

The model is run 1,000 times with different abatement cost parameter values and
distributions of initial emissions at the sources, randomly selected, to provide a wide
array of possible outcomes. The total quantity of emissions, prior to regulation, across
the region is fixed in each iteration, but the allocation of initial emissions to each grid
square is randomly assigned, with the approximate correlation between emissions and
population maintained. The marginal cost parameters for each grid square source are
randomly drawn from distributions in each model run.14

In the efficient abatement policy, which solves the maximization problems in (13)
and (14), emissions are selected to maximize the difference between the benefits to
society of reduced mortality and the costs of abatement for polluters. Solving this
problem presents significant computational challenges, requiring as it does the simul-
taneous solution of N = 600 equations and 600 unknowns. We adopted an iterative
numerical approach that yields the optimum in a computationally efficient manner.15

The iterative method is based upon the algorithm suggested by Antweiler (2012),

13. Our input parameters for the Gaussian-Plume dispersion model include a constant
ground level wind speed of 5.24 m/sec, based on the average annual wind speed in Minnesota
at a height of 10 m, with a west to east prevailing direction. The emissions from each grid
square are assumed to be emitted from a point source with an effective height of 250 m.
The background concentration level of PM2.5 is ~C = 4μgm–3. Following US Environmen-
tal Protection Agency recommendations (EPA 2010) regarding the value of a statistical life
(VSL), the parameter V is equal to $8.43 million (2012 US dollars). The baseline risk of
mortality, λ0i , is assumed to be the same in each receptor, and is set to the 2011 national
mortality rate of 806.6 deaths per 100,000 population (Hoyert and Xu 2012).

14. The parameters �1 and �2 for each source are both independently drawn from nor-
mal distributions: �1∼Nð20;000; 8;000Þ; �2∼Nð100;000; 50;000Þ. Draws from the �1 dis-
tribution that are negative values are assigned a value of zero, and draws from the �2 distribu-
tion that are nonpositive are assigned a value of 10. Fixed costs are assumed to be zero for all
sources, F = 0.

15. We confirmed this claim by solving an otherwise identical model, but with 150 grid
squares instead of 600. At N = 150 it is just possible to compute the solution directly using
a personal computer. We compared the efficient iterative solution to the fully simultaneous
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who envisions an environmental regulator who selects a set of source-specific dis-
criminating taxes in each period, adjusting the taxes in response to the observed
emissions decisions by sources. In each period (which is best interpreted as an iter-
ation in our algorithm), the taxes are set equal to each source’s marginal benefits of
abatement, computed at the previous period’s abatement level. Then the abatement
level for the next iteration is determined by equating marginal benefits and marginal
costs for each source (taking into account possible corner solutions). Because mar-
ginal benefits are based on abatement levels in the previous iteration, the simulta-
neous equation problem is avoided. In the first step, the abatement levels are not op-
timal, but after several iterations the solution converges to the optimum found by
solving the equations simultaneously. With the large number of sources in the model,
and the 1,000 model runs with different parameter values, the iterative solution method
is computationally efficient and very accurate.

2.2. Model Results

Across the 1,000 runs of the model, substantial differences appear between the out-
comes from the log-linear and log-log C-R functions. With an efficient abatement
policy, if the true C-R function is log-log, society should prefer fewer emissions, lower
average concentrations of fine particulates, and therefore, lower risks of mortality,
than if the true C-R function is log-linear. This finding is attributable to the compara-
tively large reductions in risk of mortality that are possible from obtaining low con-
centrations of fine particulates with a log-log C-R function. This result highlights the
importance of discovering the true shape of the C-R function between adult mortality
and fine particulate exposure as the preferred abatement policies and outcomes are
substantially different.

2.2.1. Efficient Policy and Uniform Pollution Standard
The results show that when abatement costs are sufficiently large an efficient abate-
ment policy is usually preferred to a uniform pollution standard for fine particulate
concentrations. This preference exists for both C-R functions and suggests that poli-
cies directed at obtaining the greatest risk reductions at the lowest cost may provide
enough benefits to outweigh the environmental justice concerns of not primarily fo-
cusing emission reductions at the dirtiest locations.

The following results report the outcomes from the median of the 1,000 model
runs. We analyze and compare the outcomes of the model from two of the policies
examined: efficient abatement policy with log-linear and log-log C-R functions and

solution for a sample of 20 randomly selected runs. The numerical error between the two
methods was very small: 0.002% with the log-linear C-R function and 0.001% with log-log.
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the “best” uniform pollution standard with log-linear and log-log C-R functions. Prior
to regulation, there are 3.22 × 106 tons of emissions across the region. With the ef-
ficient abatement policy, across the 1,000 runs, the median emission reduction is 22%
and 38% with log-linear and log-log C-R functions, respectively. With the uniform
standards, emissions are reduced by 18% (log-linear C-R) and 30% (log-log). For both
policies, total emissions and population-weighted average concentrations are lower for
the log-log than for the log-linear C-R function. The largest population-weighted
average concentration reduction is achieved by the efficient abatement policy with the
log-log C-R function. From an initial population-weighted average concentration of
12.2 μg m–3, the efficient abatement policy leads to a population-weighted average
concentration of 10.0 μg m–3 for log-linear, and 8.6 μg m–3 for log-log. The “best”
uniform standards yield population-weighted average concentrations of 10.8 μg m–3

(log-linear) and 9.7 μg m–3 (log-log).
With the efficient abatement policy, concentration reductions (2.2 μg m–3 [log-

linear] and 3.6 μg m–3 [log-log]) would reduce annual expected deaths across the re-
gion by 4,000 with log-linear versus 8,950 for log-log. The lower expected mortality
with log-log is attributable to both the lower average concentrations and the compar-
atively smaller risks at low concentrations with this C-R function. The amount of
abatement (and therefore in our model the total costs of abatement) is higher for log-
log than for log-linear, because greater abatement is justified by the greater reductions
in risk of mortality. Under the “best” uniform standards the reduction in expected mor-
tality is 2,700 with log-linear and 5,900 with log-log.

With a log-log C-R function the total emissions from the efficient abatement
policy are only 11% less than with the “best” uniform standard; however, the effi-
cient policy is able to achieve a 52% greater reduction in expected mortality across
the region compared with the uniform standard. An efficient abatement policy is
able to more precisely target abatement to reduce risks of mortality.

The effectiveness of the efficient abatement policies is demonstrated by a compar-
ison of the net benefits of abatement between the two policies and the two C-R func-
tions, which combines the benefits from risk reductions with the costs of abatement
for the polluting sources. Figure 3, which displays both the net benefits of abatement
and the population-weighted average concentration across the region for all model
runs, shows that the efficient abatement policies are able to achieve far greater welfare
for society than a uniform standard while also reducing the average concentration to
lower levels. The ellipse inside each cluster of points in figure 3 encircles the outcomes
within one standard deviation from the mean, in each dimension, of the 1,000 model
runs. In the median model run, net benefits with a log-linear C-R function are $13 bil-
lion for the efficient abatement policy and $5.8 billion for the “best” uniform stan-
dard. For the log-log C-R function, net benefits are $26 billion (efficient policy) and
$13 billion (uniform standard). Under either policy, the net benefits of abatement
are much larger if the C-R function is log-log compared to log-linear. If the true C-R
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function is identified as log-log, regulators could justify imposing a more restrictive
pollution control policy.

Across the 1,000 model runs the distribution of the outcomes is tightly centered
around the median, indicating that the median results presented above provide a
good representation of the array of outcomes that are possible in the model. This out-
come suggests that across many profiles of initial emissions and abatement costs from
sources, the general pattern holds that society prefers lower emissions with a log-log
than with a log-linear C-R function. This conclusion is demonstrated in figure 4 for
total emissions of pollution and population-weighted average concentrations of PM2.5

across the region. The distributions of the outcomes across the model runs from the
four policies show clearly that emissions and concentrations are lower with the log-
log C-R function compared with the log-linear function. There is also a less obvious but
clear distinction between the efficient policies and the uniform standards, with lower
emissions and concentrations under the efficient policies.

Differences also exist between the maximum allowable concentrations from the
“best” uniform standard under the two C-R functional forms. In figure 5, the me-
dian standard with the log-linear C-R function is set at 13.25 μg m–3, while the
median standard with log-log is more stringent, at 11.75 μg m–3. The primary cause
of the lower standard with the log-log C-R function is the greater ancillary benefits
that accrue to low-concentration receptors when limiting emissions to meet the stan-
dard at the dirtiest receptors. While the standard is designed to limit the pollution in
the dirtiest locations, the resulting emission reductions also clean the air in surround-

Figure 3. Efficient abatement policy versus uniform standard: net benefits of abatement
and population-weighted average pollution concentration for each model run: log-linear C-R
function (A), log-log C-R function (B). The four clusters each contain 1,000 points, of which
69%–71% are encircled by the respective ellipse. Each ellipse radius represents one standard
deviation from the mean. The points inside each ellipse are the outcomes nearest the center of
the joint distribution of PM2.5 concentration and net benefits.
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Figure 5. Distribution of maximum allowable PM2.5 concentration of “best” uniform stan-
dard with log-linear and log-log C-R functions across 1,000 model runs. Boxplot: center line
represents median, top and bottom of box represent 25th and 75th percentiles, and ends of
whiskers represent 5th and 95th percentiles.

Figure 4. Distribution of outcomes across 1,000 model runs: total emissions across region
(A), population-weighted average PM2.5 concentration across region (B): (i) initial situation
without regulation, (ii) log-linear efficient abatement policy, (iii) log-linear “best” uniform stan-
dard, (iv) log-log efficient abatement policy, (v) log-log “best” uniform standard. Boxplot: cen-
ter line represents median, top and bottom of box represent 25th and 75th percentiles, and
ends of whiskers represent 5th and 95th percentiles. The total emissions boxplot appears as a
single line under the initial situation without regulation because it is a constant value in all model
runs.

This content downloaded from 134.84.3.1 on Mon, 15 Dec 2014 20:29:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ing (i.e., comparatively cleaner) areas, leading to risk reductions at those cleaner
areas. Because of the steep slope of the log-log C-R function at low concentrations,
large risk reductions are also achieved in nearby clean receptors. The larger benefits
(with log-log compared to log-linear) at the comparatively cleaner receptors offset
the greater costs of setting a lower, stricter uniform concentration standard across the
region.

In the United States, uniform pollution standards under the NAAQS are used
to limit the risks associated with criteria air pollutants. One apparent virtue of these
policies is the perceived equity of protecting everyone from the greatest risks from
pollution (i.e., the standard is the same everywhere). Under an efficient abatement
policy, environmental justice concerns may arise. The focus is on making the greatest
risk reductions at the lowest cost, regardless of equity among receptors. Of course,
even with uniform standards inequality still exists (Brulle and Pellow 2006; Mar-
shall 2008; Mohai, Pellow, and Roberts 2009; Su et al. 2009; Clark, Millet, and
Marshall 2014). In previous studies (Marshall, Zwor, and Nguyen 2014), it was
found that more than 90% of articles on environmental justice in the United States
reported that air pollution exposures are greater for lower than for higher socioeco-
nomic status groups (e.g., based on income, race, education level, or other attributes).
Dockery et al. (1993) reported that there is no threshold of fine particulate concen-
tration below which risks of mortality are nonexistent (see also Pope and Dockery
2006). Receptors with concentrations below the uniform standard face less risk than
those receptors that just meet the standard. The question becomes how much in-
equality is acceptable.

An efficient policy abates sources that would lead to the greatest risk reductions,
but surrounding receptors also experience concentration reductions because of pollut-
ant dispersion. Disregarding equity or justice under an efficient abatement policy may
initially appear objectionable, but the policy should be evaluated based on a compari-
son of the realized level of inequality or injustice against the overall welfare gains.
Figure 3 demonstrates the substantial advantage of the efficient abatement policies
over the uniform standards both with greater net benefits to society and lower av-
erage fine particulate concentrations. Surprisingly, the level of inequality, as measured
by the Gini coefficient of the differences in fine particulate concentrations across the
region, is slightly lower with the efficient policy. With a log-linear C-R relationship
the median Gini coefficient across the model runs is 0.077 under the efficient policy
and 0.090 under the uniform standard. With log-log the Gini coefficient is 0.060
under the efficient policy and 0.066 under the uniform standard. These differences
are small and show significant improvement when compared to the situation prior to
regulation with a median Gini coefficient of 0.139. The distributions across the model
runs of the Gini coefficient, in figure 6, show considerable overlap, suggesting that the
environmental inequality issues with the efficient policies, in cases considered here, are
of no greater concern than with the uniform standards. Using the Atkinson coeffi-
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cient, an alternative measure of inequality, the same pattern is found with inequality
slightly lower under the efficient abatement policies than under the uniform stan-
dards.

2.2.2. Efficient Policy and Uniform Tax on Emissions
The above results indicate a strong social preference for an efficient abatement policy
over a command-and-control style uniform pollution standard. Next we compare
the importance of source-specific emission controls in the efficient policy to a cost-
effective policy that does not differentiate the impact of emissions by source. Henry,
Muller, and Mendelsohn (2011) find that SO2 allowance trading in the United
States actually increases damages relative to the no-trade baseline because it directs
greater emissions to the dirtiest cities. The dirtiest cities tend to have the highest
marginal costs of abatement as well as the highest marginal damages from emissions.
By not differentiating between emissions at different sources, more emissions result
in the areas with the highest marginal damages than is optimal.

Here we compare a uniform emissions tax to an efficient abatement policy that
equates the marginal damages to the marginal costs of abatement for each source.
The uniform emissions tax achieves a cost-effective outcome because sources choose a
quantity of emissions to equate their marginal costs of abatement with the tax on
emissions; however, because there is a single tax rate for the region, most or possibly

Figure 6. Distribution of Gini coefficient of inequality based on PM2.5 concentration across
1,000 model runs: (i) initial situation without regulation, (ii) log-linear efficient abatement
policy, (iii) log-linear “best” uniform standard, (iv) log-log efficient abatement policy, (v) log-log
“best” uniform standard. Boxplot: center line represents median, top and bottom of box repre-
sent 25th and 75th percentiles, and ends of whiskers represent 5th and 95th percentiles.
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all sources will be charged a tax that is not equal to the marginal damages from
emissions. The uniform tax is a much simpler policy to administer than an efficient
policy. We ask whether the distribution of marginal damages across sources is suffi-
ciently spread out to favor an efficient policy over a uniform tax. Are the distributions
of marginal damages sufficiently different between a log-linear and log-log C-R func-
tion to warrant different policies depending on the identified functional form?

The simulation results show that marginal damages vary greatly by source. Under
the efficient abatement policy with both the log-linear and log-log C-R functional
forms, marginal damages at the 95th percentile are nearly 3.5 times larger than at
the 5th percentile. With a log-log C-R function the marginal damages are approxi-
mately 59% greater than with log-linear ($34,700 [log-linear], $55,100 [log-log],
median marginal damages per ton). While the magnitude of the marginal benefits of
abatement vary between the log-linear and log-log C-R functions, the distributions
are quite similar. There is nearly perfect correlation between the marginal benefits of
abatement by source with a log-linear and log-log C-R function. The form of the
C-R function does not affect which sources are inflicting the greatest and least harm
from pollution. Rather if the true C-R function is log-log all sources are contribut-
ing to greater damages than we previously believed.

How does the distribution of marginal benefits of abatement affect the outcomes
from the efficient and uniform tax policies? Across the 1,000 model runs, the “best”
uniform tax policy requires slightly greater emission reductions (23% for log-linear
and 39% for log-log) than the efficient policy (22% for log-linear and 38% for log-
log), yet the efficient policy has a greater impact on the population weighted average
concentration (10.0 μg m–3 [log-linear], 8.6 μg m–3 [log-log]) compared to the uni-
form tax (10.3 μg m–3 [log-linear], 9.0 μg m–3 [log-log]; see fig. 7). The efficient
policy generates 33% greater net benefits than the uniform tax with a log-linear C-R
function, and 27% greater net benefits with log-log. The level of inequality in con-
centration between grid squares, as measured by the Gini coefficient, is very similar
between the efficient policy and the uniform tax.

The advantage of the efficient policy is that it directs more abatement to the
sources in the most populated grid squares, where the damages from emissions are
greatest. With a log-linear C-R function, the efficient policy abates 32% of emissions
from sources in grid squares in the top decile of population and only abates 9% of
emissions from grid squares in the bottom decile. Under the uniform tax, with log-
linear, all deciles abate 23% of emissions. With log-log, the efficient policy results in
emission reductions of 51% from the top decile and 22% from the bottom decile.
Under the uniform tax, with log-log, all deciles abate 39% of emissions. The uniform
tax policy, which does not differentiate between emissions by source, leads to exces-
sive emissions in the most populated areas.

Given the wide distribution of marginal benefits of abatement, and the resulting
welfare advantage from efficient abatement, a policy that differentiates between the
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emissions by source appears warranted. In addition, the inefficient aspects of the uni-
form tax policy would be magnified if the tax were applied to a larger region with a
wider distribution of marginal benefits.

Table 1 summarizes the median outcomes resulting from the three pollution con-
trol policies considered in the model. The efficient policy leads to the lowest concen-
tration of fine particulates and greatest net benefits. The uniform concentration

Figure 7. Efficient abatement policy versus uniform tax: net benefits of abatement and
population-weighted average pollution concentration for each model run: log-linear C-R func-
tion (A), log-log C-R function (B). The four clusters each contain 1,000 points, of which
69%–71% are encircled by the respective ellipse. Each ellipse radius represents one standard
deviation from the mean. The points inside each ellipse are the outcomes nearest the center of
the joint distribution of PM2.5 concentration and net benefits.

Table 1. Comparison of Abatement Policies to Initial Situation without Regulation

Δ Emissions (tons)
Δ Concentration

(μg m–3)
Net Benefits
($billions)

Log-linear:
Efficient policy –700,000 –2.2 12.8
Uniform standard –560,000 –1.5 5.8
Uniform tax –740,000 –1.9 9.6

Log-log:
Efficient policy –1,230,000 –3.6 26.5
Uniform standard –980,000 –2.5 13.4
Uniform tax –1,260,000 –3.2 20.8

Note.—The change in concentration is the population weighted average across grid squares.
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standard results in the worst outcomes utilizing a command-and-control abatement
policy. A uniform tax on emissions outperforms the uniform standard by achieving a
cost-effective outcome and results in the lowest total emissions of the three policies,
but it provides insufficient incentives to the sources inflicting the greatest harm to
limit emissions. Across the three policies, a log-log C-R function calls for lower emis-
sions, lower concentrations of fine particulates, and greater net benefits of abatement
compared to a log-linear functional form.

3. CONCLUSION

This paper contains a discussion of the effect of different shapes of a C-R function on
environmental policy. An important distinction between the two functional forms
considered is the impact on people facing the lowest concentration levels. If the log-
log form reported in Krewski et al. (2009) is correct for fine particulates, then society
may prefer substantially lower emissions. With the log-log functional form the bene-
fits from a marginal unit of abatement are greater in clean locations than in dirty lo-
cations, all else equal. The log-log functional form leads to recommendations for sig-
nificantly stricter pollution abatement policies, and correspondingly lower risks of
mortality. Understanding the true shape of the C-R function between fine particulate
concentrations and adult mortality is a worthy endeavor. Socially optimal policies are
substantially different between the two functions.

The difference in policy outcomes between log-linear and log-log depends on the
emissions within the area under the regulator’s control. With greater unregulated
emissions affecting concentrations within the area of interest, from emissions either
outside the modeling domain or not subject to regulation within the region, the ef-
fectiveness of a policy achieving low concentrations is constrained, and the large po-
tential risk reductions with log-log may not be attainable. Policies regulating all rel-
evant emissions are crucial to realize the best possible outcomes.

Uniform pollution standards with command-and-control mechanisms to achieve
the standards do not appear to be the economically preferred method of pollution
control. We find that an efficient abatement policy leads to lower average concen-
trations while also achieving a better outcome for society. Environmental justice is a
potential concern with an efficient abatement policy, because the focus is not on re-
ducing risks for the most vulnerable populations. Contrary to our expectations, our
results indicate that the level of inequality is similar or slightly less under an efficient
abatement policy than under a uniform pollution standard, and both policies yield
greater equality than conditions before abatement.

The application of Antweiler’s (2012) idea for the iterative emissions tax to our
computational problem appears to be interesting in its own right. He envisions an
environmental regulator who actually adjusts the vector of source-specific taxes each
period. That idea turns out to be powerful in an unexpected way: as the basis for a
computationally efficient solution algorithm. The key to Antweiler’s deep insight is
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that the regulator does not need to know abatement costs in order to guide the it-
erative policy to the optimum. Where his policy involves explicitly the passage of
time, we use the same idea to solve an otherwise infeasible numerical problem that
does not involve the passage of time. In both uses, Antweiler’s and ours, regulated
firms are assumed not to behave strategically in their response to each period’s emis-
sion tax. If this assumption is not met, as in Moledina et al. (2003) and Kwerel
(1977), and regulated sources anticipate the way their behavior in one periods feeds
into the policy next period, one may expect the problem to become more difficult
both computationally and in policy practice.

Our simulations identify the potential differences in outcomes and economically
preferred policies between the two estimated Krewski et al. (2009) C-R functions.
Application of this model to actual data, taken up in future work, will help to un-
derstand further the advantages and disadvantages of uniform environmental stan-
dards, such as the US National Ambient Air Quality Standards. This model also
highlights the importance of source-specific policies, suggesting that greater scrutiny
is needed on cost-effective policies that do not account for spatial differences in dam-
ages by source.

Our analysis focused on the policy implications of a supralinear C-R function at
low concentrations. Supralinearity may be important for places that face much higher
concentrations. At the highest concentrations globally, a supralinear C-R function in-
dicates that risk reductions would be comparatively small until substantially lower con-
centrations are achieved (Evans et al. 2013).
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