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Commonly considered strategies for reducing the environmental
impact of light-duty transportation include using alternative fuels
and improving vehicle fuel economy. We evaluate the air quality-
related human health impacts of 10 such options, including the use
of liquid biofuels, diesel, and compressed natural gas (CNG) in
internal combustion engines; the use of electricity from a range of
conventional and renewable sources to power electric vehicles
(EVs); and the use of hybrid EV technology. Our approach combines
spatially, temporally, and chemically detailed life cycle emission
inventories; comprehensive, fine-scale state-of-the-science chemical
transport modeling; and exposure, concentration–response, and
economic health impact modeling for ozone (O3) and fine particu-
late matter (PM2.5). We find that powering vehicles with corn eth-
anol or with coal-based or “grid average” electricity increases
monetized environmental health impacts by 80% or more relative
to using conventional gasoline. Conversely, EVs powered by low-
emitting electricity from natural gas, wind, water, or solar power
reduce environmental health impacts by 50% or more. Consider-
ation of potential climate change impacts alongside the human
health outcomes described here further reinforces the environ-
mental preferability of EVs powered by low-emitting electricity
relative to gasoline vehicles.

LCA | pollution | bioelectricity | externality | spatial

Society is in the midst of a great effort to understand and
mitigate anthropogenic greenhouse gas (GHG) emissions

and their effects on the global climate (1–5). However, GHG
damages are not the only environmental impact of human ac-
tivities, and are often not even the largest. In transportation, for
example, non-GHG air pollution damage externalities generally
exceed those from climate change (6–8). Here, we explore the air
quality impacts of several proposed transportation fuel inter-
ventions: liquid biofuels (9), electric vehicles (EVs) powered by
conventional and alternative energy sources (3), biomass feed-
stocks to power EVs (10, 11), compressed natural gas (CNG)
powered vehicles (5), and improved vehicle fuel economy.
The air quality impacts of biofuels, transportation electrifica-

tion, CNG vehicles, and improved fuel economy have been
studied (refs. 7, 8, and 12–21; results are summarized in Table
S1); our work advances prior research by combining estimates of
life cycle emissions [i.e., emissions from production (“upstream”)
and consumption (“tailpipe”) of the fuel] with an advanced air
quality impact assessment. In addition, we incorporate greater
spatial, temporal, and chemical detail than have prior research
efforts. We also report non-GHG air quality life cycle impacts of
biomass-powered EVs, which to our knowledge have not yet
been described.
We use a spatially and temporally explicit life cycle inventory

model (22) to estimate total fuel supply chain air pollutant
emissions for scenarios where 10% of US projected vehicle miles
traveled in year 2020 are driven in 1 of 11 types of passenger
cars: (i) conventional gasoline powered vehicles (abbreviation:

“gasoline”); (ii) grid-independent hybrid EVs (“gasoline hybrid”);
(iii) diesel powered light-duty vehicles (“diesel”); (iv) internal-
combustion CNG vehicles (“CNG”); (v) vehicles powered by
ethanol from corn grain through natural-gas–powered dry mill-
ing (“corn ethanol”); (vi) vehicles powered by cellulosic ethanol
from corn stover (“stover ethanol”); and battery EVs (“EV”)
powered by electricity from the following: (vii) the projected year
2020 US average electric generation mix (“EV grid average”);
(viii) coal (“EV coal”); (ix) natural gas (“EV natural gas”); (x)
the combustion of corn stover (“EV corn stover”); and (xi) wind
turbines, dynamic water power, or solar power (“EV WWS”).
Because year 2020 electric generation infrastructure is not
predetermined, we explore a range of electricity technologies
rather than attempting to predict future electrical generation and
dispatch deterministically; our approach can inform trans-
portation and electricity generation policies in tandem. Based on
prior research, we assume that the difference among scenarios in
emissions from manufacturing and disposal of vehicles and from
upstream infrastructure is small relative to differences in vehicle
operation emissions (8, 23, 24) with the exception of lithium ion
EV battery production. To highlight battery-related impacts, we
analyze them separately from fuel-related impacts.

Significance

Our assessment of the life cycle air quality impacts on human
health of 10 alternatives to conventional gasoline vehicles
finds that electric vehicles (EVs) powered by electricity from
natural gas or wind, water, or solar power are best for im-
proving air quality, whereas vehicles powered by corn ethanol
and EVs powered by coal are the worst. This work advances
the current debate over the environmental impacts of con-
ventional versus alternative transportation options by com-
bining detailed spatially and temporally explicit emissions
inventories with state-of-the-science air quality impact analysis
using advanced chemical transport modeling. Our results re-
inforce previous findings that air quality-related health dam-
ages from transportation are generally comparable to or larger
than climate change-related damages.
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We use spatially and temporally explicit simulations, including
a state-of-the-science mechanistic meteorology and chemical
transport model, to estimate for each scenario the changes in
annual-average concentrations of the regulated pollutants fine
particulate matter (PM2.5) and ground-level ozone (O3). We use
spatially explicit population data (25) and results from major ep-
idemiological studies (26, 27) to estimate increases in mortalities
attributable to each scenario. We estimate monetized externalities
from mortalities using a value of statistical life (VSL) metric.
Results are given next; methods are described thereafter.

Results
Fig. 1 shows the spatial distributions of the background PM2.5
concentrations (Fig. 1A) and of the changes in PM2.5 concen-
trations for each scenario (Fig. 1 B–L). Spatial distributions of
concentrations of O3 (Fig. S1) and other species are in SI Results.
As all scenarios represent increases in vehicle miles traveled,
concentrations increase in almost all cases, as shown in Fig. 1.
Changes in concentrations caused by alternative scenarios (Fig. 1
C–L) may be larger or smaller than the changes caused by the
business-as-usual gasoline scenario (Fig. 1B). For the petroleum
scenarios (gasoline, gasoline hybrid, and diesel; Fig. 1 B–D),
vehicle tailpipe emissions are the largest source of impacts.
Impacts from vehicle tailpipe emissions for the CNG (Fig. 1E)
and ethanol (Fig. 1 F and G) scenarios are similar to those from
the petroleum scenarios, but upstream processes, such as
natural gas processing and compression (mainly in Texas) for
the CNG scenario and agriculture (mainly in the upper Mid-
west) for the ethanol scenarios, cause additional substantial
impacts. Industrial electricity use in the corn ethanol and CNG
scenarios creates additional impacts in Wyoming and in the
Appalachian Mountains owing to emissions from coal mining;
emission credits from excess electricity generation in the stover
ethanol scenario cause decreases in concentrations in the same
geographic areas. Impacts are lower for the EV natural gas

scenario (Fig. 1J) than for the CNG scenario (Fig. 1E) for several
reasons: emissions per vehicle-kilometer are lower for natural
gas combustion in electricity generators than for CNG combus-
tion in vehicles; natural gas must be compressed for use in CNG
vehicles but not in electricity generation; and combustion emis-
sions generally occur further from population centers for elec-
tricity generation than for vehicle tailpipe emissions. The EV
corn stover scenario (Fig. 1K) causes farming-related impacts in
the Midwest. Coal mining and combustion in the EV coal (Fig.
1I) and EV grid average (Fig. 1H) scenarios cause large impacts
in Wyoming and the Appalachian Mountains; long-range trans-
port of sulfur dioxide (SO2) emitted during coal combustion
causes impacts distributed over wide areas in those scenarios.
Excluding battery production, impacts from wind, water, and
solar (WWS) EVs (Fig. 1L) are notably lower than from the
other scenarios because WWS electrical generators do not pro-
duce emissions while in use. Emissions from battery production
for the EV scenarios are tracked separately. The main emission
sources for EV battery production (Fig. 1M) are coal mining in
Wyoming and the Appalachian Mountains and the extraction
and refinement of raw material inputs, including copper in Ari-
zona and Utah and aluminum in Washington State and the
Appalachian Mountains.
Animated versions of Fig. 1 showing temporally explicit con-

centrations for PM2.5 and O3 are available in SI Results. Notable
trends include spikes in PM2.5 for the corn ethanol, corn stover
ethanol, and EV corn stover scenarios caused by fertilizer ap-
plication and nitrification emissions during the spring planting
season. For these same scenarios, owing to complexities in the
chemistry of O3 formation and removal, O3 concentrations in the
Midwest “corn belt” tend to be increased relative to the baseline
in the summer months, but decreased in the winter months.
Air pollution-related human health impacts for each scenario

(PM2.5- and O3-related mortalities, and the corresponding
monetized damages) are shown in Fig. 2. Total impacts range

A Baseline B Gasoline C Gasoline hybrid D Diesel E CNG

F Corn grain ethanol G Corn stover ethanol H EV grid average I EV coal

J EV natural gas K EV corn stover L EV WWS M EV battery production

0 2 4 6 8 10 12 14 16

46Baseline concentrations: Panel A (µg m−3)

-0.094 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.094

20-20 Scenario changes in concentration: Panels B−M (µg m−3)

Fig. 1. Annual average PM2.5 concentrations. (A) Year 2005 baseline modeled concentrations. (B–L) Increase in concentration above the baseline attributable
to replacement of 10% of year 2020 vehicle use with the given technology. (M) Increase in concentration attributable to EV battery manufacturing. Color
scales contain a discontinuity at the 99th percentile of emissions. Abbreviations: CNG, compressed natural gas vehicle; EV, electric vehicle; WWS, wind, water,
or solar. Analogous plots for O3 are in Fig. S1.
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from 230 mortalities per year ($0.14 per gallon gasoline-equiv-
alent) for the WWS EV scenario to 3,200 mortalities per year
($1.94 per gallon gasoline-equivalent) for the coal EV scenario.
Estimated mortality impacts from PM2.5 are approximately an
order of magnitude greater than those from O3. Damages from
the production of EV batteries are shown separately in Fig. 2.
Scenarios with substantially decreased air quality-related health
impacts compared with gasoline include gasoline hybrid vehicles
(30% decrease) and EVs powered by natural gas or by WWS
(50% and 70% decrease, respectively); scenarios with sub-
stantially higher damages than gasoline include corn ethanol
(80% increase) and EVs powered by grid average or coal elec-
tricity (200% and 350% increase, respectively).
Changes in combined air pollution and climate damages at-

tributable to each alternative scenario, relative to gasoline, are
shown in Fig. 3. For most scenarios, air pollution impacts are
comparable to or larger than climate change impacts. Although
corn ethanol as modeled here emits marginally less GHGs than
does gasoline, the combined climate and air quality impacts are
greater than those from gasoline vehicles. (Our corn ethanol
GHG results exclude impacts of indirect land-use change, and so
likely are lower-bound GHG emission estimates.) EVs powered
by grid-average electricity also have greater negative impacts
than do vehicles powered by gasoline. Previous studies (3, 5)
have argued that to meet stated goals for GHG emission
reductions, it is necessary to both electrify vehicles and de-
carbonize electricity generation, for example through WWS
electric generation. Our results suggest that such a strategy
would have the strong cobenefit of substantially reducing air
quality-related mortalities (by ∼70%).
Given the considerable computational demands of our mecha-

nistic meteorology and chemical transport modeling, compre-
hensive quantification of uncertainty within our analyses is
impractical. Rather, we explore uncertainty via sensitivity anal-
yses for several factors that are important in our analyses and
that could impact the relative rankings of scenarios. Results are
described below; additional detail, methods, and figures are in
SI Results.
As shown in Fig. S2 and discussed in SI Results, EV battery

production is unique among the life cycles investigated here in
that up to about half of all emissions occur outside of our spatial
modeling domain and are thus excluded from this analysis. We
test the impact of this exclusion by doubling the impacts from EV
battery production (Fig. S3). We find that this increases damage
costs for EVs by $0.08 per gasoline gallon-equivalent, which is
between a 4% increase for the coal EV scenario and a 57% in-
crease for the WWS EV scenario, but does not change the rank
order of air quality impacts among scenarios.
As emissions from coal mining are a major source of impacts

in many of the scenarios we study, we examine the impact on our
results of using lower coal mining emission factors (28, 29). As

shown in Fig. S3, this shift does not change the rank order of air
quality impacts among scenarios, although it decreases overall
impacts from EVs powered by coal or grid average electricity by
37% and 33%, respectively.
To test the importance of incorporating full life cycle supply

chain information when performing air quality impact assessment,
we perform a sensitivity analysis that considers only emissions from
the single phase of each life cycle most frequently associated with
its environmental impacts (for internal combustion vehicles: on-
road emissions; for EVs: emissions from electricity generation).
This change causes corn ethanol to appear substantially less
damaging because emissions during production and transport are
overlooked (Fig. S3).
We also investigate the sensitivity of our results to a range of

assumptions related to climate change (Fig. S4). We investigate
the use of a lower carbon price, the inclusion of international
emissions of climate forcers, the inclusion of indirect land-use
change, the recently reported possibility of additional gas leak-
age during natural gas extraction (30), and sourcing crude oil
from oil sands rather than from conventional sources (31). As
illustrated in Fig. S4, conclusions of this study are generally ro-
bust to these perturbations.
Finally, we investigate the impact of model spatial resolution

on estimated health impacts (Fig. S5). Higher resolution analyses
tend to produce larger estimates for health impacts but do not
alter the overall conclusions presented here.

Discussion
Results provided here combine spatially and temporally explicit
life cycle assessment with state-of-the-science air quality model-
ing for a range of potential transportation technology interventions.
The updated emissions estimates, better spatial resolution and
coverage, better disaggregation of process locations, and more
detailed air quality impact analysis incorporated here yield dif-
ferent overall conclusions from a similar recent study by
Michalek et al. (8). For instance, when only air quality impacts
are considered, Michalek et al. found that WWS EVs increase
impacts by 160% compared with gasoline, whereas we find that
WWS EVs reduce impacts by 70% compared with gasoline. Two
major factors contributing to this difference are our use of a
more recent version of the Greenhouse Gases, Regulated Emis-
sions, and Energy Use in Transportation (GREET) model and
Michalek et al.’s assumption that all emissions from EV battery
manufacturing are colocated with automobile manufacturing fa-
cilities; our more detailed analysis places many of the most
polluting processes in the battery production life cycle in remote
areas. Additional discussion of this comparison is in SI Results.
We have considered here 10 alternative transportation fuel

and technology options that have been put forward as potentially

$0.00 $0.50 $1.00 $1.50
EV WWS

EV corn stover
EV natural gas

EV coal
EV grid average

Corn stover ethanol
Corn grain ethanol

CNG
Diesel

Gasoline hybrid
Gasoline

PM2.5 other than from battery production

O3

PM2.5 from battery production 

0 1000 2000 3000
Mortalities per year

Externality damages per gallon gasoline equivalent

Fig. 2. Air quality health impacts in the United States for each scenario:
attributable increases in annual mortality (upper scale) and the resulting
monetized health impacts (lower scale).

$-0.50 $0.00 $0.50 $1.00

EV WWS
EV corn stover
EV natural gas

EV coal
EV grid average

Corn stover ethanol
Corn grain ethanol

CNG
Diesel

Gasoline hybrid
Air quality

Climate change
Net total

Externality damages per gallon gasoline equivalent relative to gasoline

Fig. 3. Combined air quality plus climate change externalities attributable
to each scenario, relative to the gasoline scenario. [The gasoline scenario
impacts (air quality, $0.53/gallon; climate change, $0.46/gallon) would equal
zero on this plot.] EV scenarios include battery production. Air quality
impacts include PM2.5 and O3. For bars with both positive and negative
values, the triangle above each bar shows the net total impact. GHG emis-
sions from indirect land-use change are not included. See Fig. S4 for the
impact of including indirect land-use change on net GHG emissions.
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environmentally preferable to conventional gasoline-powered
vehicles based largely on reductions in fossil fuel use and GHG
emissions. We find that, in some cases, such as for EVs powered
by natural gas or WWS, considering air quality impacts alongside
climate impacts increases the apparent environmental benefit of
the alternative fuel relative to gasoline; in both cases (EVs from
natural gas; EVs from WWS), the air pollution benefits relative
to gasoline are larger than the climate-related benefits. Other
fuels, such as corn ethanol [the climate impact of which is un-
clear (32)], are more damaging than conventional vehicles when
air pollution impacts are considered alone or when air pollution
and climate impacts are considered together. The difference
between the least- and most-polluting electricity generation
options for EVs increases almost sixfold when air pollution
damages are considered alongside climate impacts, instead of
when climate impacts are considered alone. Our findings thus
reinforce the benefit of pairing EVs with clean electricity (3, 5).
Our work supports the inclusion of air pollution health

impacts when assessing the environmental impact of trans-
portation; in monetized terms, the health impacts can be as
great, or greater than, effects on climate change. We also dem-
onstrate the importance of spatial, temporal, and chemical detail
and precision in life cycle air quality impact assessment. Al-
though climate change and air quality are often considered the
two main transportation-related environmental externalities (6),
inclusion of other life cycle impact categories not considered
here, such as environmental justice, water quality and availability
(e.g., 33, 34), biodiversity, or vehicle safety could add addi-
tional insight.
Results given here should not be taken as a final statement

that environmental improvements are best achieved by replacing
existing light-duty vehicles with less-polluting light-duty vehicles,
nor that EVs are the best technology for every transportation
need. Instead, these results can be seen as an indication of
how light-duty transportation fuels could shift to reduce or
increase pollution, and as an encouragement into the research
of less polluting, more sustainable transportation options for
the future.

Materials and Methods
Scenario Selection. We use a functional unit of 388 billion miles per year,
which is 10% of year 2020 projected US vehicle miles traveled (35). For the
ethanol scenarios, this value corresponds to blending an average of 10%
ethanol with gasoline on an energy equivalent basis. For EV scenarios, it
corresponds to aggressive but plausible adoption of EVs (36).

We do not consider constraints on the availability or cost of resources (e.g.,
the viability of increased ethanol production; availability of WWS electricity).
However, we have found that the air quality impacts we consider scale ap-
proximately linearly with changes in the size of the functional unit, so as
a first approximation air quality impacts from different amounts of miles
traveled or fuel produced could be interpolated from our results.

Life Cycle Inventory.We create a chemically, spatially, and temporally detailed
life cycle inventory for each scenario using the GREET-chemical, spatial, and
temporal (GREET-cst) model (22), which is based on the GREET model, version
1.8d1, from Argonne National Laboratory (31). It is worth noting that sub-
sequent versions of GREET have been released since version 1.8d1. We in-
vestigate the sensitivity of our results to some of the changes in subsequent
GREET versions, as well as to other important factors; investigating the ef-
fect of GREET version on the estimated air quality impacts is an area for
future research. GREET-cst outputs emissions that are spatially allocated to
a 12-km grid covering the continental United States and surrounding waters,
chemically speciated according to the CB05 chemical mechanism (37), and
temporally disaggregated in 1-h time increments. The GREET model can be
obtained at greet.es.anl.gov/.

For assumptions specific to GREET-cst, including spatial modeling domain,
spatial locations of emissions, chemical speciation, and temporal profiles, we
configure the model as described by Tessum et al. (22). Briefly, we use the
continental United States and its surrounding waters as a spatial model
domain and exclude from the analysis all emissions occurring outside of the
domain. We assume all emissions from individual processes, including vehicle

end use, occur at existing production or activity locations. For material
transport emissions, we use network analysis and linear optimization to
simulate transport behavior along roadways, rails, and navigable water
routes between source and destination locations. We apply temporal and
chemical speciation profiles from the 2005 National Emissions Inventory
(NEI) (38) to the emissions from each process. We use the results of Bashash
et al. (39) for EV battery charging temporal profiles, which assume batteries
would be charged to optimize for long battery life and low electricity costs.
We use these charging profiles only to determine the timing for emissions
release from power plants; for the mix of electrical generation sources, we
use the hypothetical scenarios discussed in the Introduction.

Formost processes that use electricity, such as electricity generation for use
in EVs in the EV coal and EV natural gas scenarios, we assume that electricity
generation comes from the same North American Electrical Reliability Cor-
poration (NERC) electrical grid region as the end use process as in Tessum et al.
(22) and that the mix of generation fuels and technologies in each NERC
region is the same as the national average. For electricity generation in the
EV corn stover scenario, however, because of the logistical difficulty in
transporting corn stover, we assume that electricity generation for EVs
occurs in the same electrical grid region as the corn stover production in-
stead of vehicle end use. For the EV grid average scenario, we assume that
electricity generation for EV use is distributed according to total generation
amounts in the year 2007 (40) so as to preserve the difference in fuel mixes
for electric generation across NERC regions. Further details are in SI Results.

In GREET, we model year 2020 passenger cars using default settings with
the following exceptions:

• The gasoline used is 100% conventional (0% reformulated gasoline) so as
to disentangle the effect of ethanol blends.

• Because almost all oil extraction from oil sands occurs outside of our
geographic modeling domain, we assume all oil is extracted convention-
ally (0% oil sands oil). The sensitivity of our results to this assumption is
explored in SI Results.

• For gasoline hybrid vehicles, GREET assumes that the tailpipe emission
factors for volatile organic compounds, CO, PM10, PM2.5, and N2O are
the same as for conventional gasoline vehicles on a per-mile basis. We
therefore adjust gasoline hybrid tailpipe emissions of these species to be
71% (the ratio of hybrid to conventional fuel efficiency) of the conven-
tional vehicle emissions factors.

• We do not include land-use change emissions for the ethanol or
bioelectricity scenarios.

• We assume all corn ethanol plants use dry milling and 100% natural gas
for process heat.

• We assume that ethanol is produced as 100% ethanol with no denatur-
ant, but for ethanol scenarios we use tailpipe emissions factors for a 10%
blend of ethanol with gasoline (“E10”).

• We update the year 2020 projection for electricity generation mix to
a more recent Energy Information Administration projection (41).

• We add a corn stover bioelectricity pathway to the GREET 1.8d1 spread-
sheet based on parameters from the other bioelectricity pathways and
the corn stover ethanol pathway.

We do not assume that marginal emissions from electrical generation or
other sources are subject to cap-and-trade or other regulation (e.g., as in refs.
12 and 42). We use the GREET default assumption that electricity from
biomass (corn stover) is generated using a dedicated biomass boiler. Cofiring
biomass with coal may yield different emissions.

We assume that impacts related to the manufacture and disposal of
equipment used to supply fuel (e.g., electrical generating units, oil wells,
manufacturing plants), as well as those from themanufacture and disposal of
vehicles, do not differ among the scenarios investigated here (8, 23, 24), and
we exclude them from this analysis. Although these emissions do not differ
much among scenarios, their impact on the overall air quality-related
damages from transportation may be important (8, 23) and is an area for
future research. We do include, however, production of EV batteries, which
we model as a separate scenario to show explicitly the contribution of EV
battery manufacturing to total impacts. We model the emissions from the
production of enough lithium ion batteries to power our functional unit of
10% of the projected year 2020 US vehicle miles traveled by expanding
GREET-cst to include the GREET2 vehicle cycle model, version 2012 (23). We
do this step using the methods of Tessum et al. (22) and including additional
spatial data on the locations of aluminum manufacturing (43), copper
manufacturing (44), plastics manufacturing (38), steel manufacturing (38),
and battery assembly (38). Table S2 shows, for each process, the fractions of
emissions from battery production processes that are excluded from the anal-
ysis because they occur outside our spatial modeling domain. Information on
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international fractions for other processes is reported by Tessum et al. (22).
Fig. S2 shows amounts of domestic (included) and international (excluded)
emissions from battery production. Full GREET-cst results for battery pro-
duction are included in Dataset S1. We use the GREET2 default EV battery
life assumption of 160,000 miles.

Emissions of GHGs and radiatively active aerosols are calculated using the
same assumptions as above (i.e., the exclusion of indirect, market-mediated
effects and the exclusion of emissions occurring outside the United States),
and reported as CO2 equivalent emissions using global warming potential
conversions reported by Bond et al. (45). We use GREET default values for all
emissions factors and process relationships not otherwise mentioned here.

Chemical Transport Modeling. To estimate changes in PM2.5 and O3 concen-
trations attributable to each scenario, we run the Weather Research and
Forecasting with Chemistry (WRF-Chem) Eulerian meteorology and chemical
transport model, version 3.4 (46), using a 12-km resolution grid with 444
rows, 336 columns, and 28 vertical layers. The modeling domain (5,328 km ×
4,032 km) covers the continental United States, southern Canada, and
northern Mexico [see the study by Tessum et al. (47)].

Setup of WRF-Chem as used here is detailed elsewhere (47). We use the
Regional Atmospheric Chemistry Mechanism (RACM) (48) for gas phase
reactions, and the Modal Aerosol Dynamics for Europe (MADE) (49) module
for aerosol chemistry and physics. We use the Volatility Basis Set (VBS) (50) to
simulate formation and evaporation of secondary organic aerosols.

We compare the change in emissions attributable to each scenario to
a baseline or reference case. For the baseline emissions we use the 2005
NEI (38), which includes area, point, and mobile emissions from year 2005 for
the United States, year 2006 for Canada, and year 1999 for Mexico. The
performance of WRF-Chem as used here in reproducing observed PM2.5 and
O3 concentrations is reported by Tessum et al. (47); the annual mean frac-
tional bias and error, respectively, are −1% and 21% for PM2.5, and 11% and
14% for daily peak O3.

We use year 2005 baseline emissions and meteorology inputs. The NEI has
been projected to future years, but we are only able to compare our model
predictions to observed pollutant levels for years for which there is an
available emissions inventory, pollutionmonitoring data, andmeteorological
observations. At the time the simulations described here were run, 2005 was
the most recent year for which all of these inputs existed.

To predict changes in pollutant concentrations attributable to each sce-
nario, we combine the emissions from each scenario with the baseline NEI,
rerunWRF-Chemwith the resulting emissions, and then subtract the baseline
NEI-derived concentrations from the concentrations calculated using the
combined emissions. Because some scenarios involve credits for displaced
coproducts that we model as negative emissions, and because negative
emissions cannot be represented in WRF-Chem, we deal with any grid cell
with net negative emissions (where the baseline NEI value plus the scenario
value is negative) by subtracting emissions from nearby cells, thereby
zeroing out the negative cells while achieving the targeted local total
mass of emissions.

Health Impact Assessment.We use as health endpoints respiratory mortalities
attributable to ambient O3 concentrations and mortalities from all causes
attributable to ambient PM2.5 concentrations. We use concentration–
response values reported by Jerrett et al. (27) for O3 and Krewski et al. (26)
for PM2.5. Jerrett et al. reported that, after accounting for covariation with
PM2.5 concentrations, a 10-ppb increase in April to September average daily
peak-hour O3 concentration causes a 4% increase in respiratory mortalities.
Krewski et al. reported that a 10 μg·m−3 increase in annual average PM2.5

concentration causes a 7.8% increase in all-cause mortalities; the Krewski
et al. model does not account for covariance with O3 concentrations. Both
results are based on the Cox proportional hazards model, which assumes
that the risk ratio (RR) varies exponentially with change in pollutant con-
centration (ΔC) as in Eq. 1, where the β coefficients for O3 (0.00392 ppb−1) and
PM2.5 [0.00751 (μg m−3)−1] are calculated from the results of Jerrett et al. and
Krewski et al., respectively. WRF-Chem is configured to output instantaneous
concentrations at the beginning of each hour, rather than hourly average
concentrations; when calculating ΔC for each scenario, we use the in-
stantaneous concentrations output by WRF-Chem as a surrogate for hourly
average concentrations. We use Eq. 2 to calculate total annual mortalities (D)
attributable to each scenario, where n is the total number of ground-level grid
cells, P is the population in each cell based on year 2000 US Census block
group-level data (25), andM is the county-specific population average baseline
all-cause (for PM2.5) or respiratory (for O3) mortality rate (51):

RR= expðβΔCÞ, [1]

D=
Xn

i=1

ðexpðβΔCiÞ− 1ÞPiMi : [2]

Economic Valuation. We estimate economic damages from the deaths at-
tributable to air pollution impacts of each scenario using a VSL of $10.1
million (2012$) using US Environmental Protection Agency methodology for
income year 2020 (52). We assume no lag time between pollutant emissions
and the resulting health effects. We estimate the economic damages from
emissions GHGs and radiatively active aerosols using a social cost of carbon
of $180 MgC−1 ($49 MgCO2

−1) (53) (mean value, 1% discount rate, adjusted
to 2012$) in the main analyses and $23 MgC−1 ($6.19 MgCO2

−1) (2012$) in a
sensitivity analysis.
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SI Results
Sensitivity Analyses. We perform several sensitivity analyses to
evaluate the impact of key assumptions. The results of the sen-
sitivity analyses are shown in Figs. S3–S5 and are described below
and in the main text. All sensitivity analyses in Fig. S3 are per-
formed for PM2.5-related health impacts for the month of Sep-
tember only; as shown in Fig. S6, health impacts based on
September PM2.5 concentrations for the scenarios are similar to
health impacts based on annual average concentrations. The grid
resolution sensitivity analysis shown in Fig. S5 was performed for
the month of July to capture summer peak O3 conditions.
As shown in Fig. S2, not all emissions from the fuel life cycles

occur within our spatial modeling domain, and therefore some
emissions are excluded from our analysis. Refer to Tessum et al.
(1) for more information. The electric vehicle (EV) battery
production scenario has the most substantial fraction of emis-
sions assumed to occur outside of the United States, with around
30–40% of emissions of most pollutants from battery production
being excluded from the analysis (Fig. S2). We explore the
sensitivity of our results to this assumption by doubling health
impacts from battery production (Fig. S3) and find that the rank
order of impacts among the different scenarios remains un-
changed. For scenarios other than battery production, in most
cases more than 90% of emissions occur inside the spatial
modeling domain (Fig. S2). A fraction (30–45%) of SOx and
NOx emissions from the petroleum scenarios (gasoline, gasoline
hybrid, and diesel) are also excluded from the analysis, but be-
cause the excluded emissions are mainly from the extraction of
crude oil (1), which largely occurs over the open ocean or far
from population centers, their exclusion is not likely to impact
our overall conclusions. These international upstream emissions
are also excluded from fossil fuel use in the corn grain and stover
ethanol scenarios.
Additionally, as emissions from coal mining and cleaning cause

a substantial fraction of the total health impacts for some sce-
narios, and recent estimates of emissions factors for coal mining
and cleaning for surface mining (2) and for underground mining
(3) exist, we explore updating the GREET model with the new
emission factors and rerunning all analyses for the month of
September. We find that the change in coal mining and cleaning
emissions factors does not affect the rank order of scenario
impacts (Fig. S3) but does substantially reduces the air pollution
impacts of some scenarios.
We additionally compare the impacts from the full life cycle of

the fuels to impacts from either the vehicle tailpipe only for
internal combustion vehicles or the electrical generation units
only for EVs. As shown in Fig. S3, this sensitivity analysis affects
the rank order of scenario impacts, further demonstrating the im-
portance of including the emissions entire life cycle when performing
environmental impact assessment for transportation fuels.
We also perform a set of sensitivity analyses investigating the

effects climate-related assumptions on our results as shown in
Fig. S4.

i) Fig. 3 in the main text excludes emissions occurring outside
the United States for pollutants affecting both air quality
and climate change. We investigate the effects of including
these international emissions (exclusive of indirect land-use
change) on climate change impacts. We find that including
international climate-related emissions does not change overall
damage costs by more than $0.02 per gallon gasoline equiv-
alent for any scenario.

ii) We investigate the impact of including indirect land-use
change emissions as calculated by Plevin et al. (4) (using a
value of 80 g CO2e·MJ−1, which is near the middle of the
range of estimates in that paper) for the corn ethanol sce-
nario. This substantially increases the overall externality
damages from that scenario and reinforces the overall con-
clusion that corn ethanol is not an attractive alternative fuel
in terms of air pollution or climate change impacts.

iii) We investigate the sensitivity of our results to carbon pricing
using market-based carbon price of $6.19 Mg−1 CO2 (from
www.pointcarbon.com/productsandservices/carbon/ as of
March 9, 2013, adjusted to 2012$) as opposed to the $49
Mg−1 CO2 price used in Fig. 3. We find that this changes the
sign of the net externality damages of the EV corn stover
scenario from negative to positive but does not impact the
overall conclusions presented in this paper.

iv) Recent analysis by Brandt et al. (5) suggests that CH4 emis-
sions may be systematically underestimated in emissions in-
ventories, especially for natural gas extraction. We update
the GREET model with the middle value for CH4 leakage
during natural gas extraction from Brandt et al. (5), re-
sulting in 1.2% leakage on average instead of the GREET
1.8d1 default of 0.35%. We find that this does not affect
the overall conclusions presented here. Although increased
CH4 emissions may also impact O3 concentrations, we as-
sume the effect on our overall conclusions to be negligible
because O3 health impacts are small relative to PM2.5
health impacts.

v) Because almost all oil extraction from oil sands occurs out-
side of our geographic modeling domain, our baseline anal-
ysis assumes all oil is extracted conventionally (0% oil sands
oil). This sensitivity analysis assumes that the GREET 1.8d1
year 2020 default value of 21% of crude oil comes from oil
sands. We find that this does not affect the overall conclu-
sions presented here. The use of oil sands oil instead of
conventionally extracted crude may also affect air pollution
concentrations, but the difference in health impacts is likely
small because both the Canadian oil sands and most con-
ventional extraction locations are typically located far from
population centers.

The final sensitivity analysis investigates the impact of model
spatial resolution on calculated health impacts (Fig. S5). For
PM2.5, total estimated impacts increase ∼10–15% when going
from 36- to 12-km resolution, and another 5% when going from
12- to 4-km resolution. (O3 impacts are not highly dependent on
grid resolution owing to the comparatively smaller spatial gra-
dients in O3 concentrations.) Our contiguous-United States,
12-km resolution analysis is an improvement over previous stud-
ies, which used 36-km or county-level resolution or considered
only part of the United States; Table S1); still, our approach is
potentially susceptible to underestimation of near-source ex-
posures. This dependence of impacts on model spatial resolution
is likely caused by numerical dispersion and is likely most pro-
nounced in scenarios where the most emissions occur in urban
areas (i.e., the gasoline, diesel, and gasoline hybrid scenarios). It
currently is not computationally practical to perform the full
methodology reported here at 4-km or finer resolution; current
models capable of higher resolution analyses (e.g., Gaussian
plume models) do so at the expense of the chemical and physical
representation of processes that our findings suggest are im-
portant (e.g., formation of secondary PM2.5).
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Comparison with Michalek et al. (6). An analysis by Michalek et al.
(6) finds that, in terms of air quality-related health impacts, EVs
do not compare favorably to conventional gasoline vehicles:
when only emissions from battery production and from brake
and tire wear during vehicle use are considered (which is
equivalent to the WWS EV scenario presented here), they find
that EVs cause air quality-related damages 150% greater than
do conventional gasoline vehicles. [Michalek et al., table S25,
adjusted to make equivalent for comparison by excluding the
following: (i) vehicle and battery production for gasoline ve-
hicles; (ii) vehicle and electricity production for EVs; and (iii)
GHG, CO, and oil premium impacts for both vehicles.] Our
analysis, however, finds that WWS EVs reduce impacts by 70%
compared with conventional gasoline vehicles. In both studies,
the main source of WWS EV impacts is battery production. We
are aware of two major reasons for the difference between our
and Michalek et al.’s results: (i) differences in the estimates of
amounts of emissions, and (ii) differences in the modeled loca-
tions of battery manufacturing processes.

i) Michalek et al. use a customized version of GREET 2.7 to
calculate emissions from battery production, whereas we use the
default settings in the more recently released GREET2_2012.
(Note: GREET 2 is not an updated version of GREET 1.
GREET 1.x models fuel pathways, and GREET 2.x models
vehicle production pathways.) Comparing our emissions re-
sults (Dataset S1) to those of Michalek et al. (table S3 in their
study), our emissions estimates are substantially lower than
theirs—87% lower for SO2 emissions (80% lower if interna-
tional emissions are included). The battery size used in both
studies is similar (66.1 kWh in Michalek et al.; 63 kWh in our
study). The differences in emissions instead appear to be
caused by differences between GREET versions—among
other differences, GREET2_2012 uses LiMn2O4 batteries
in place of the LiCoO2 batteries used in GREET 2.7 (7)—
and our use of year 2020 grid-average electric generation mix
for electricity used in battery production, which is cleaner
than the year 2010 mix used by Michalek et al.

ii) Michalek et al. assume processes upstream from EV battery
manufacturing are colocated with automobile manufactur-
ing facilities, but our more detailed analysis shows that, for
example, copper ore smelting, which causes the majority of
battery production SO2 emissions, mainly occurs in the
sparsely populated southwestern United States (8). Because
the production of copper and other raw materials for bat-
teries occurs far from people, even if impacts from battery
production as calculated here are doubled to adjust for
emissions that occur outside of our spatial modeling do-
main, impacts from WWS EVs would still be 57% lower
than conventional gasoline vehicle impacts. We test this
hypothesis by using the ratio of population-weighted aver-
age ground-level concentrations to area-weighted average
ground-level concentrations as an imperfect surrogate for
the proximity of emissions sources to people. The ratio for
our results for EV battery production is 1.9, lower than any
of the other scenarios. The ratios for the other scenarios

range between 3 and 9. If emissions from battery produc-
tion were located so as to give a population-weighted aver-
age to domain average ratio of 9 instead of 1.9, impacts
from WWS EVs would be ∼30% greater than impacts from
conventional gasoline vehicles, which is closer to the result
reported by Michalek et al. GREET assumes zero trans-
portation emissions between mining operations and smelt-
ing facilities. This implies that smelting occurs at the mining
site; to maintain consistency with GREET, we have main-
tained that assumption in our analyses. Given the poten-
tially large importance of those emissions in estimating the
impacts of battery EVs, further investigation of this topic
is warranted.

Sensitivity of Results to EV Battery Life. In these analyses, we use the
GREET default assumption that EV battery life is 160,000 miles:
the same as the life of the rest of the vehicle. To explore a hy-
pothetical scenario where battery life is only 100,000 miles, we
multiply our results for air quality impacts from battery pro-
duction by a factor of 1.6. This gives results similar to the sen-
sitivity analysis in Fig. S3 where we double battery impacts: the air
quality impacts of the EV scenario increase (WWS EVs, 34%
increase; natural gas EVs, 18%; corn stover EVs, 7%; grid av-
erage EVs, 5%; coal EVs, 2%), but the rank order of scenarios
does not change.

Model Availability. The GREET model is available at greet.es.anl.
gov/. GREET-cst is freely available upon request. WRF-Chem is
available at www2.mmm.ucar.edu/wrf/users/. The SMOKE model
is available at www.cmascenter.org/smoke/. Our program used to
convert between SMOKE and GREET-cst output and WRF-
Chem input formats is available at bitbucket.org/ctessum/emcnv/.

Additional Data. Additional supporting data files are available:

• Dataset S1: A Microsoft Excel file containing emissions
amounts disaggregated by life cycle stage for each scenario.
For more information on emissions, refer to Tessum et al. (1).

• DatasetS2.pdf: Maps of annual average ground-level concen-
trations of PM2.5, O3, PM10, NOx, HCHO, NH3, particulate
SO4, particulate NH4, particulate NO3, organic aerosol, ele-
mental carbon aerosol, particle number, and CO; maps of
annual average daily peak O3 concentrations; and maps of
PM2.5 and O3 concentrations animated by month of year,
day of week, and hour of day for the baseline simulation
and each scenario. A PDF viewer that allows embedded Java-
Script, such as Adobe Acrobat, is required to view the anima-
tions. Available in an external repository at dx.doi.org/
10.13020/D6159V.

• VideoS1.mp4: A video showing temporal variation in PM2.5
concentrations attributable to each scenario. Available in an
external repository at dx.doi.org/10.13020/D6159V.

• VideoS2.mp4: A video showing temporal variation in O3 con-
centrations attributable to each scenario. Available in an ex-
ternal repository at dx.doi.org/10.13020/D6159V.

1. Tessum CW, Marshall JD, Hill JD (2012) A spatially and temporally explicit life cycle
inventory of air pollutants from gasoline and ethanol in the United States. Environ Sci
Technol 46(20):11408–11417.

2. US Environmental Protection Agency (2013) Fugitive Dust from Mining and Quarrying
(2325000000). Available at ftp://ftp.epa.gov/EmisInventory. Accessed August 12, 2013.

3. Xstrata Coal (2012) Ravensworth Underground Mine—Coal Mine Particulate Matter Control
Best Management Practice Determination. Available at www.xstratacoalravensworth.com.
au/EN/RavensworthUndergroundMine/Publications/Mt plans and programs/RUM
%20Coal%20Mine%20PM%20BMP%20Determination.pdf. Accessed September
26, 2013.

4. Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK (2010) Greenhouse gas emissions
from biofuels’ indirect land use change are uncertain but may be much greater than
previously estimated. Environ Sci Technol 44(21):8015–8021.

5. Brandt AR, et al. (2014) Energy and environment. Methane leaks from North American
natural gas systems. Science 343(6172):733–735.

6. Michalek JJ, et al. (2011) Valuation of plug-in vehicle life-cycle air emissions and oil
displacement benefits. Proc Natl Acad Sci USA 108(40):16554–16558.

7. Argonne National Laboratory (2012) Summary of Expansions and Revisions in
GREET2_2012 Version. Available at greet.es.anl.gov/files/greet2-2012-memo. Ac-
cessed November 24, 2014.

8. Edelstein BDL (2010) US Geological Survey 2010 Minerals Yearbook: Copper (US Geological
Survey, Reston, VA). Available at minerals.usgs.gov/minerals/pubs/commodity/copper/
myb1-2010-coppe.pdf. Accessed January 28, 2013.
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A: Baseline B: Gasoline C: Gasoline hybrid D: Diesel E: CNG

F: Corn grain ethanol G: Corn stover ethanol H: EV grid average I: EV coal

J: EV natural gas K: EV corn stover L: EV WWS M: EV battery production
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2.4-2.4 Scenario changes in concentration: Panels B-M (ppb)

Fig. S1. April to September average daily peak O3 concentrations. (A) Year 2005 baseline modeled concentrations. (B–L) Increase in concentration above the
baseline attributable to replacement of 10% of year 2020 vehicle use with the given technology. (M) Increase in concentration attributable to EV battery
manufacturing. Color scales contain a discontinuity at the 99th percentile of emissions. Abbreviations: CNG, compressed natural gas vehicle; EV, electric vehicle;
WWS, wind, water, or solar.

96% 100% 97% 99% 100% 68% 86% 81% 55% 99%

96% 100% 97% 99% 100% 69% 87% 82% 55% 99%

96% 98% 98% 99% 100% 71% 87% 83% 54% 97%

99% 100% 97% 99% 100% 89% 88% 92% 89% 99%

97% 100% 94% 96% 99% 93% 96% 94% 71% 97%

123% 100% 115% 95% 98% 97% 86% 91% 190% 97%

100% 98% 100% 100% 100% 98% 100% 100% 100% 99%

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

99% 96% 99% 99% 80% 93% 98% 98% 98% 98%

86% 99% 76% 97% 97% 98% 97% 97% 90% 87%

100% 100%

53% 59% 64% 70% 80% 52% 75% 68% 63% 43%

CH4 CO CO2 N2 O NH3 NOx PM10 PM2.5 SOx VOC

Gasoline

Gasoline
hybrid

Diesel

CNG

Corn grain
ethanol

Corn stover
ethanol

EV grid
average

EV coal

EV natural
gas

EV corn
stover

EV WWS

EV battery
production

Fig. S2. Fractions of emissions from each scenario that occur within the spatial modeling domain. Boxes marked with “X” indicate that total emissions are
zero. Emissions outside of spatial modeling domain are not included in the above analyses.
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Fig. S3. Air pollution damages based on air quality modeling for the month of September for the baseline scenarios and sensitivity analyses where battery
production impacts are doubled (“Doubled battery impacts”), where coal mining and cleaning emissions factors were updated to a recently published value
(“Coal mining EF”), and where only emissions from vehicle tailpipes or electrical generation units are considered (“Tailpipe or EGU only”). The numbers at the
base of each bar are rank orders where number 1 has the lowest impacts and number 11 has the highest impacts of all of the scenarios. Climate change and air
pollution impacts of battery production are added to the EV scenarios assuming effects are additive. Abbreviations: CNG, compressed natural gas vehicle;
WWS, wind, water, or solar.
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Fig. S4. Annual air pollution and climate change externalities attributable to each scenario relative to the gasoline scenario (“Baseline”) and sensitivity
analyses assessing the impacts of (i) “Indirect land-use change”: including indirect land-use change emissions in the corn ethanol scenario; (ii) “International”:
including climate impacts of emissions outside of the United States; (iii) “Market carbon price”: using a market-based carbon prices rather than the mitigation-
based price used in the main analysis; (iv) “Natural gas leakage”: assuming increased leakage of methane during natural gas extraction; and (v) “Oil sands”:
assuming 21% of crude oil comes from oil sands as opposed to the baseline assumption of 0%. The numbers at the end of each bar are rank orders where
number 1 has the lowest impacts and number 10 has the highest impacts of all of the scenarios. Impacts from the gasoline scenario equal zero on this plot.
Climate change and air pollution impacts of battery production are added to the EV scenarios assuming effects are additive. Abbreviations: CNG, compressed
natural gas vehicle; WWS, wind, water, or solar.
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Fig. S5. Impact of grid resolution on apparent health impacts for two scenarios.
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Fig. S6. Average percent differences in number of deaths among all scenarios when only considering air quality modeling results from one month compared
with all 12 months.
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Table S1. Results of previous studies of air quality impacts from alternative transportation fuels and technologies

Article Result Notes

Peer-
reviewed
journal?

Alhajeri et al. (1) Seventeen percent plug-in hybrid EV (PHEV)
adoption leads to greater decreases in O3 than
100% biofuel (E85) adoption.

Use detailed photochemical model, but only
consider vehicle tailpipe and EGU emissions,
and only estimate impacts in Austin, TX.

Yes

Boureima et al. (2) Battery EVs greatly decrease air quality impacts
compared with gasoline or hybrid vehicles.

Full life cycle analysis including battery production
but does not include any spatial information and
uses generalized emissions impact functions.
Electric generation mix is Belgium average.

Yes

Brinkman et al. (3) PHEVs decrease O3 concentrations compared with
gasoline vehicles.

Use detailed photochemical model, but only
consider vehicle tailpipe and EGU emissions,
and only estimate impacts in Denver, CO.

Yes

Cook et al. (4) Increased ethanol use in the United States will
increase O3 concentrations in most areas, but
decrease concentrations in some highly
populated areas with poor air quality.

Full life cycle analysis with spatially explicit
emissions, but the degree of spatial
disaggregation is not clear. Impacts on PM2.5

concentrations are not reported. Air quality
model uses two separate 12-km resolution
domains, each covering half of the United States.

Yes

EPA (5) Standard mandating biofuel (both corn grain-
based and cellulosic) production and
consumption will cause 35–85 cases of adult
PM2.5 mortality and 36–160 cases of adult O3

mortality compared with business as usual.

Use detailed air quality model for contiguous
United States with life cycle inventory, and
spatial data are included in the life cycle
inventory. Impacts of corn grain and cellulosic
ethanol are not reported separately.

No

EPRI (6) PHEV adoption decreases O3 and PM2.5 levels
compared with business-as-usual in almost all
urban areas.

Use detailed photochemical model for contiguous
United States, but only consider tailpipe, EGU,
and petroleum supply chain emissions. Assume
no marginal SOx or NOx emissions from EGUs.
Air quality model uses 36-km spatial resolution.

No

Hill et al. (7) PM2.5 impacts from corn ethanol are ∼60% greater
than from gasoline, impacts from cellulosic
ethanol are slightly better than from gasoline,
and PM2.5 impacts are larger than GHG impacts.

Full life cycle analysis at county-level spatial
resolution for contiguous United States, with
reduced-form air quality model.

Yes

Jacobson (8) Ethanol vehicles cause increased O3-related
mortalities compared with business-as-usual.

Use detailed photochemical model for contiguous
United States, but only consider tailpipe
emissions. Air quality model uses 0.5 by 0.75°
(∼50 km × 75 km) spatial resolution.

Yes

NRC (9) For year 2030, corn ethanol causes similar air
quality impacts to gasoline; cellulosic ethanol,
diesel vehicles, and compressed natural gas
vehicles cause decreased impacts; EVs cause
increased impacts.

Use reduced-form air quality model with full life
cycle emissions inventory. Emissions inventory
and air quality model have county-level spatial
resolution.

No

Michalek et al. (10) Using “base case” assumptions, EVs do not improve
PM2.5 and O3 air quality impacts compared with
gasoline, owing largely to emissions from battery
production.

Use reduced-form air quality model with full life
cycle emissions inventory. Emissions inventory
and air quality model have county-level spatial
resolution.

Yes

Thompson et al. (11) PHEVs decrease O3 concentrations compared with
gasoline vehicles.

Use detailed photochemical model, but only
consider vehicle tailpipe and EGU emissions,
and only estimate impacts in Pennsylvania,
New Jersey, and Maryland.

Yes

Thompson et al. (12) PHEVs decrease O3 concentrations compared with
gasoline vehicles.

Use detailed photochemical model, but only
consider vehicle tailpipe and EGU emissions,
and only estimate impacts in Texas.

Yes

1. Alhajeri NS, McDonald-Buller EC, Allen DT (2011) Comparisons of air quality impacts of fleet electrification and increased use of biofuels. Environ Res Lett 6(2):024011.
2. Boureima F-S, et al. (2009) Comparative LCA of electric, hybrid, LPG and gasoline cars in Belgian context. World Elec Vehicle J 3:1–8.
3. Brinkman GL, Denholm P, Hannigan MP, Milford JB (2010) Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado. Environ Sci Technol 44(16):6256–6262.
4. Cook R, et al. (2010) Air quality impacts of increased use of ethanol under the United States’ Energy Independence and Security Act. Atmos Environ 45(40):7714–7724.
5. US Environmental Protection Agency (2010) Regulation of fuels and fuel additives: Changes to renewable fuel standard program; Final Rule. 75. Federal Register 58 (2010), pp 14670–14904.
6. Electric Power Research Institute (2007) Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 2: United States Air Quality Analysis Based on AEO-2006 Assumptions for

2030. Available at www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001015326. Accessed November 24, 2014.
7. Hill J, et al. (2009) Climate change and health costs of air emissions from biofuels and gasoline. Proc Natl Acad Sci USA 106(6):2077–2082.
8. Jacobson MZ (2007) Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the United States. Environ Sci Technol 41(11):4150–4157.
9. National Research Council (2009) Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use. Available at www.nap.edu/catalog.php?record_id=12794. Accessed

November 24, 2014.
10. Michalek JJ, et al. (2011) Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits. Proc Natl Acad Sci USA 108(40):16554–16558.
11. Thompson T, Webber M, Allen DT (2009) Air quality impacts of using overnight electricity generation to charge plug-in hybrid electric vehicles for daytime use. Environ Res Lett 4(1):014002.
12. Thompson TM, King CW, Allen DT, Webber ME (2011) Air quality impacts of plug-in hybrid electric vehicles in Texas: Evaluating three battery charging scenarios. Environ Res Lett 6(2):024004.
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Table S2. Fractions of processes related to battery production
that occur outside of the spatial modeling domain

Process Percent excluded, % Data source, ref.

Steel production 9 1
LiMn2O4 100 2
Graphite production 100 1
Copper production 35 1
Aluminum production 13 1
LiPF6 100 2

The spatial modeling domain includes the continental United States and
surrounding waters. Processes not included in this table are assumed occur
100% inside the spatial modeling domain. Refer to Dataset S1 for total
emissions for each of these processes after the excluded fractions have been
removed.

1. US Geological Survey (2012) Mineral Commodity Summaries 2012. Available at minerals.usgs.gov/minerals/pubs/mcs/. Accessed January 28, 2012.
2. Wang M, Burnham A, Wu Y (2012) The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model v2_2012. Available at greet.es.anl.gov/. Accessed November

24, 2014.

Other Supporting Information Files

Dataset S1 (XLS)
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