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Several studies show that a significant portion of daily air pollution exposure, in particular black carbon (BC),
occurs during transport. In a previous work, a model for the in-traffic exposure of bicyclists to BC was proposed
based on spectral evaluation of mobile noise measurements and validated with BC measurements in Ghent,
Belgium. In this paper, applicability of this model in a different cultural context with a totally different traffic
and mobility situation is presented. In addition, a similar modeling approach is tested for particle number (PN)
concentration.
Indirectly assessing BC and PN exposure through amodel based on noisemeasurements is advantageous because
of the availability of very affordable noisemonitoring devices. Our previous work showed that a model including
specific spectral components of the noise that relate to engine and rolling emission andbasicmeteorological data,
could be quite accurate. Moreover, including a background concentration adjustment improved the model
considerably. To explore whether this model could also be used in a different context, with or without tuning
of the model parameters, a study was conducted in Bangalore, India. Noise measurement equipment, data
storage, data processing, continent, country, measurement operators, vehicle fleet, driving behavior, biking
facilities, background concentration, andmeteorology are all very different from thefirstmeasurement campaign
in Belgium. More than 24 h of combined in-traffic noise, BC, and PNmeasurements were collected. It was shown
that the noise-based BC exposure model gives good predictions in Bangalore and that the same approach is also
successful for PN. Cross validation of the model parameters was used to compare factors that impact exposure
across study sites. A pooled model (combining the measurements of the two locations) results in a correlation
of 0.84 when fitting the total trip exposure in Bangalore. Estimating particulate matter exposure with traffic
noise measurements was thus shown to be a valid approach across countries and cultures.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Particulate matter (PM) is currently regulated in Europe, the US,
India and other countries based on specific particle size fractions
(e.g., PM10, PM2.5). Black carbon (BC) and particle number (pN) concen-
trations are associated with transportation emissions but are typically
unregulated. The World Health Organization suggests including BC
when evaluating traffic-related health effects (WHO Europe, 2012).
Recent epidemiological results for BC suggest that health effects per
koninck),
tpanis@vito.be,
.com (S. Hankey),
mass may be up to 10 times higher than PM10 (Janssen et al., 2011).
Research into the health effects of traffic-related particulates is cons-
trained by the stronger spatial variability for BC and PN concentrations
relative to PM10 and PM2.5. Detailed measurements for near-road
settings have shown large spatial gradients for certain aspects of partic-
ulate air pollution. For example, ultrafine particles and BC show
decreases of over 50% within the first 150 m from the edge of the road
(Karner et al., 2010) and significant street-to-street differences in PN
and BC have been reported by several authors (Boogaard et al., 2011;
Dons et al., 2012, 2013). Building a fixed-site monitoring network for
PN and BC to provide robust estimates of exposure patterns, would
therefore be a daunting task.

In a previous work a novel way to predict a bicyclist's in-traffic BC
exposure was presented based on mobile measurements of traffic-
related noise and BC in Ghent (Belgium) (Dekoninck et al., 2013). The
noise-based model yields spatially and temporally precise estimates of
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BC based on traffic noise measurements. The additive model successful-
ly split the BC exposure of a bicyclist into a background component and
a local, traffic-related component. The local component included the
wind speed, a street canyon index and a noise-based characterization
of instantaneous traffic volume and dynamics; specifically, an engine
throttle noise component and a rolling noise component.

Here we extend our prior work by exploring the same category of
modeling (correlating real-time measurement of noise with real-time
pollution measurements) in Bangalore, India. Relevant environmental
differences between Bangalore and Ghent include vehicle fleet and
fuel use, driving patterns, speeds, densities, and behavior; levels of am-
bient and traffic-related noise and pollution, meteorological conditions,
and limited biking facilities. Three important differences between the
current investigation (Bangalore) and the prior investigation (Ghent)
are: (1) a different location, with very different traffic conditions rela-
tive to the prior study, (2) measurement procedures were automated
to allow use by bicyclists unfamiliar with the equipment, and (3) we
study two pollutants (PN and BC) rather than only BC.
2. Methodology

2.1. Measurement equipment and setup

The original experimental setup for the measurement campaign
in Ghent (Dekoninck et al., 2013) was based on a manually operated
Fig. 1. Inexpensive mobile noise measurement equipment including the micro-aethalomete
smartphone GPS, a Type 1 Noise Level Meter (Svantek 959) and a
micro-aethalometer. The data was processed and merged manually.
These labor intensive procedures needed to be automated to enable
large scale, low support measurement campaigns. A low-cost noise
measurement setup designed by the acoustics group at the Ghent Uni-
versity was modified to enable automated mobile measurements at a
much lower hardware cost (Can et al., 2011a,b; Dauwe et al., 2012;
Van Renterghem et al., 2011). The noise measurement module is ex-
tended with a GPS (Haicom HI-204 III USB), a micro-aethalometer
(AE51, Aethlabs, San Francisco, CA) and a battery for off-grid operation
(Fig. 1). Software was developed to automatically capture the 1-second
data stream from themicro-aethalometer. The mobile node is designed
to bemounted on the handlebar of a bicycle. In addition, a condensation
particle counter (CPC 3007, TSI Inc., Shoreview, MN) was carried in a
backpack by the bicyclist to measure PN. After each sampling run the
mobile node was connected to the internet and the data was uploaded
to a database on the server at the University of Ghent. An automated
process synchronizes and merges the noise, GPS and BC data based on
the timestamp of the mobile node. The CPC data was joined with the
other data in a separate post-processing sequence.
2.2. Measurement location, strategy and processing

Measurements were carried out north of the city center of
Bangalore, India, (elevation: 920 m; metropolitan population: ~10
r and GPS. The box containing all instruments is 23 cm by 9 cm wide and 17 cm high.
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million; land area: 1276 km2). The mobile measurements were per-
formed while cycling a predefined route around the Armana Nagar
neighborhood including roads with different traffic conditions instead
of the random sampling used by Dekoninck et al. (2013). The route
was selected to alternate on a regular basis between high and low traffic
roads to assess small scale spatial and temporal differences in exposure.
The sampling route was completed 15 times during the morning rush-
hour and 5 times in the evening rush-hour during the sampling period
(11 November 2013–15 January 2014; total duration: 24.5 h). The sam-
pling route is shown in Fig. 2. The sampling runs also included station-
ary roadside measurement to explore the possibility of using stationary
noise measurements. The results of the stationary measurements are
not reported in this article. Some additional ‘random’ runs (not on the
sampling route) were included to increase the coverage of small roads
in several neighborhoods.

The noise measurements are performed in one-third octave band
spectra, at a sampling rate of 8 measurements per second; these
sound measurements are later aggregated to 1-second averages, to
match the temporal resolution of the GPS, BC and PN measurements.
The basic traffic-related noise parameters LOLF(t) and LHFmLF(t) as de-
fined in Dekoninck et al. (2013) are then calculated. The parameter
LOLF(t) is the sum of the (A-weighted) 100 to 200 Hz one-third octave
bands and describes the engine noise of the nearby traffic at timestamp
t. It increases with increasing engine throttle, increasing traffic volume,
and increasing fraction of heavy vehicles. The second parameter
LHFmLF(t) is related to the ratio of rolling noise and engine noise. The
high frequencies in rolling noise are caused by tire–road interaction
and are related to the size and pattern of the tire profile and the road
surface grain size (see for example Sandberg and Ejsmont, 2002).
LHFmLF(t) is defined as the difference between the high (1000 to
2000Hz) and the low frequencies (100 to 200Hz) in the noise spectrum
Fig. 2.Map of the sampling route in Bangalore. The blue star show
at timestamp t. High levels of LHFmLF(t) indicate that rolling noise
dominates over engine noise, which indicates higher driving speed.

The noise, BC and PN measurements are smoothed by applying a
running average of 20 s on the 1-second time series. The smoothed 1-
second time series are then aggregated to the mean of each 10-second
interval. The dataset with 10 second temporal resolution is used as
input for the exposure models.

The noise–BC relation is evaluated on the uncorrected standard out-
put of the aethalometer or CPC and reported on this basis in the detailed
results, but several BC and PN correction functions to improve the qual-
ity of the data processing are available in the literature. Somemeasure-
ment quality issues were related to bumps along the bicycle route as
reported in the past by other authors (Apte et al., 2011; Cai et al.,
2013). We checked the validity of the noise-BC relation for a selection
of commonly used correction functions to test the sensitivity of our
results. Two correction functions aim at cleaning the short term time se-
ries of BC by removing spikes and potentially erroneous aethalometer
readings due to vibration errors (Apte et al., 2011; Hagler et al., 2011).
Two particle loading correction functions for BC and one correction
function for PN are applied as well (Kirchstetter and Novakov, 2007;
Virkkula et al., 2007; Westerdahl et al., 2005). Each of the correction
functions are applied to the raw output of the aethalometer or CPC.
Where the correction function requires the use of the ATN value of the
BC measurements it is applied as documented in the references.

2.3. Black carbon: background and local contribution

The approach used to model the local BC exposure in Dekoninck
et al. (2013)was based on an adjustment for the background concentra-
tion at a fixed measurement site in the official air pollution network.
Since no fixed BC background measurement stations were available at
s the location of the background measurement location (BG).

image of Fig.�2


Table 1
Descriptive statistics of the BC and PN (background, raw and local) datasets in ng/m3 for
BC, pt/cc for PN.

P10 P25 Median Mean P75 P90

BCbkg,15 min,Q1 2993 3567 4966 6687 6457 10,983
BCraw(t) 3347 6096 12,890 26,240 28,470 59,412
BCloc(t) 500 2597 9284 22,840 25,260 54,956
PNbkg,15 min,Q1 5070 5765 8842 8854 10,710 13,302
PNraw(t) 3786 5946 12,940 23,210 32,190 59,210
PNloc(t) 500 500 4259 15,980 23,570 50,075
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the time of the measurements in Bangalore, an alternative procedure
was designed for the background adjustment. A second micro-
aethalometer was set up in Bangalore near a dwelling in a low exposure
area next to a park (background measurement location [BG] shown in
Fig. 2). The BC concentration at the background location was measured
simultaneously with the mobile concentrations at a 1 second temporal
resolution. At the same site a semi-professional meteorological station
was set up to acquire wind speed and temperature conditions. To
mimic the resolution of the background concentrations available in
the original (Belgium-based) model, the basic statistics of the BC at
the background location BG are evaluated at a temporal resolution of
15 min. Instantaneous values of the in-traffic measurements can be
lower than the 15 minute background evaluations. Due to the frequent
occurrence of episodes with high background exposure concentrations
in the Bangalore experiment, the background adjustment had to be
restricted. A maximum adjustment is introduced in the procedure. The
background adjustment for Bangalore is thus defined as:

BCloc; j tð Þ ¼ max BCraw; j tð Þ− min BCbc;limit; BCbg;15min;Q1; j

� �
; 500

� �

ð1Þ

where BCbg,15 min,Q1,j is the first quartile of background concentration of
the 15 minute interval at the start of the bicycle trip j. The minimum
level for the BCloc(t) component was set to 500 ng/m3, a slightly higher
value than in Belgium. Setting a minimum value is necessary to reduce
the range of log(BCloc(t)) for episodes with very low exposure.
The value BCbg,limit is chosen while evaluating the GAM model on
log(BCloc(t)), ensuring a maximum positive effect on the prediction of
the trip segments with low amounts of local traffic.

A similar approach was developed for PN. No simultaneous mea-
surements at the background location were performed since only one
CPC 3007 was available. Instead, to adjust for day-to-day variability in
background concentrations, all instruments were co-located at the ref-
erence site for 30 min before and 30 min after each sampling run. This
data was used to assess the background concentration of PN during
the bicycle trip. To be consistent with the background adjustment for
BC the average of the first quartile of the 15 minute periods before
and after the measurement period is used to estimate the background
concentration of PN. The PNloc adjustment is defined as:

PNloc; j tð Þ ¼ maxðPNraw; j tð Þ− min PNbc;limit ; meanj PNbg;15min;Q1

� �
; 500

� �

ð2Þ

where meanj(PNbg,15min,Q1) is the mean of the first quartile of the
15 minute intervals at the background location before and after the
trip j. Variants of the local components are calculated for the different
correction functions listed in the previous section.

2.4. GAM modeling

Generalized additive models (GAMs) are regression models where
smoothing splines are used instead of linear coefficients for the covari-
ates. This approach has been found to be particularly effective for han-
dling the complex non-linearity associated with air pollution research
(Dekoninck et al. 2013; Dominici et al., 2002; Pearce et al., 2011). The
mathematical form of GAM models is reduced to a time stamp of the
measurement and a reference to the measurement node j and can be
written in the form:

log BC tð Þð Þ ¼
Xn

z¼1
sz vz tð Þð Þ þ ε tð Þ ð3Þ

where vz(t) is the zth covariate evaluated at timestamp t; sz(vz(t)) is the
smooth function of zth covariate, n is the total number of covariates, and
ε(t) is the corresponding residualwith var(ε)=σ2, which is assumed to
be normally distributed. Smooth functions are developed through a
combination of model selection and automatic smoothing parameter
selection using penalized regression splines, which optimize the fit
and try to minimize the number of dimensions in the model. The
main advantage of GAM modeling is the possibility to adjust for non-
linear relationships between the covariate and the outcome. The analy-
sis was constructed using the GAMmodeling function in the R environ-
ment for statistical computing (R development Core Team, 2009) with
the package ‘mgcv’ (Wood, 2006). The covariates are restricted to LOLF,
LHFmLF, wind speed and BC background.

3. Results

3.1. General statistics and background correction

Basic statistics of the BC and PN measurements are assembled in
Table 1. The distributions are presented in Fig. 3A. The background cor-
rection limit BCbg,limit is set to 6000 ng/m3 in this measurement cam-
paign, close to the average background. Higher correction limits did
not improve the BCloc models. In contrast to BC, the PN concentrations
at the background locations are small compared to the in-traffic PN con-
centration. The PNbg,limit could be set to 16,000 pt/cc, close to the max-
imum of the PN background concentration without disturbing the PNloc

model. This could express a physical difference between the PN and BC
particle behavior at the background location, but also a difference in the
measurement technique. Particles coagulate while the distance to the
source increases. This strongly influences the particle count, but has
less influence on mass related measurements.

Box plots of air pollution measurements and the model covariates
are shown in Fig. 3A and B. The wind speed in Bangalore is very low
and never exceeded 2 m/s (wind speeds during the sampling in
Belgium averaged 3 m/s). The noise measurements in Bangalore are
high with LAeq reaching values over 100 dBA and LOLF reaching 90 dB
compared to Ghent where these levels were 70 dBA and 65 dB respec-
tively. The difference between LAeq and LOLF is shown in Fig. 3C. Differ-
ences larger than 25 dB are not unusual in Bangalore and are related
to the regular use of (high frequency) vehicle horns. Several reports
are available on the frequent honking while driving in India (Banerjee
et al., 2009; Sen et al., 2010). No data was removed to accommodate
the potential disturbances of the models due to the honking. In Fig. 3D
the BC10s(t) concentration is shown as a function of LOLF,10s(t) as an il-
lustration of the physical relation between noise and particulate matter
exposure.

3.2. Black carbon and particle number models

Models of BC and PN were developed using two types of dependent
variables: measurements (1) unadjusted and (2) adjusted for back-
ground concentrations. The BCraw model is based on measured BC
concentrations BCraw(t) and investigates the relationship between
BCraw(t) and the covariates LOLF, LHFmLF, wind speed and the logarithm
of the background concentration log(BCbkg(t)). The BCloc model is
based on background adjusted BC exposure BCloc(t) as described in
Eq. (1) and the same set of covariates. The BCloc model investigates
the potential to describe the actual BC exposure in an additive model
similar to the approach in Dekoninck et al., 2013. The parameters of
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the GAMmodels are shown in Table 2. The quality of a GAMmodel and
the relative strength of its parameters are described by the deviance
explained, the intercept, as well as the F-parameter and p-value for
each of its covariates. Since the number of data points in the models is
large compared to the number of covariates, the degrees of freedom is
large and the p-values are in general too small to be used to compare
the covariates. The F-parameters present the relative strength of the
Table 2
Results of the BCraw, BCloc, PNraw and PNloc exposure models.

BCraw BCloc

F p-Value F

Intercept 9.50
(13,359 ng/m3)

8.96
(8103 ng/m3)

Intercept (t value) 1050 706
LOLF 1692 b2e-16 1792
WS 160 b2e-16 121
LHFmLF 116 b2e-16 118
log(BCbkg) 136 b2e-16 51
log(PNbkg)
Deviance explained 45.7% 43.6%
Number of datapoints 8819 8 819
covariates instead. In the BCraw model the intercept and the LOLF have
similar strengths; the other covariates are almost ten times less impor-
tant compared to LOLF. The plots of the splines for bothmodels show the
relation of the parameter to the outcome log(BCloc) (Fig. 4, top and
second row). In the BCloc model, LOLF is even stronger compared to the
BCraw model. The influence of the background adjustment is visible in
the stronger linearity of the spline of the LOLF covariate for smaller
PNraw PNloc

p-Value F p-Value F p-Value

9.54
(13,800 cm−3)

8.29
(3,984 cm−3)

1079 516
b2e-16 1421 b2e-16 1376 b2e-16
b2e-16 176 b2e-16 100 b2e-16
b2e-16 187 b2e-16 165 b2e-16
b2e-16

133 b2e-16 11 6.0e-7
35.8% 33.6%
8 819 8 819

image of Fig.�3
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LOLF. The relative strength of the wind speed and LHFmLF covariate com-
pared to log(BCbkg) in the BCloc model is higher than in the BCraw model
illustrating the effect of the background adjustment. Compared to
Dekoninck et al. (2013), the strength of the wind speed covariate is
low and this is likely due to the low variability of the wind speed in
Bangalore during the measurement campaign. Note that the intercept
of the BCraw model in Bangalore is more than three times the value
observed in Ghent and twice the value of the BCloc model. The splines
in the Bangalore model are similar to the model for Ghent.

We also developed a model for particle number concentrations to
explore if PN behaves similarly to BC. The results are available in
Table 2 and the splines are shown in the two bottom rows of Fig. 4.
The PNraw and PNloc models behave similarly to the BCraw and BCloc

models for all covariates. The intercept of the PNraw model is
13.8 × 103 cm−3 and is reduced to 3900 for the PNloc model due to
the background adjustment. LOLF is the strongest component in both
models; LHFmLF is the second strongest component. The importance of
the background PN concentration and the wind speed is relatively low
in both models and drops in importance in the PNloc model compared
to the PNraw model and is more effective compared to the BC models.
The wind speed covariate is weaker in the PN models than the BC
models. The strength of the LOLF covariate increases in most of the
local models, expressing an improved noise-BC/PN relation after back-
ground adjustment.

In Table 3 the results of the variants of the GAM models for the
different correction functions are presented. The basic model using un-
adjusted BCmeasurements shows thehighest F-value for the LOLF covar-
iate and the highest deviance explained. The noise-BC relation is
consistent in all other models. In the background adjusted models the
strength of LOLF increases and the strength of log(BCbkg) decreases; the
deviance explained does not increase in these models due to loss of
resolution in the dataset for low BC exposure. The alternative approach,
removing themeasurements below the instantaneous background does
not improve the local models.

3.3. International comparison of the noise-based models

Upon completion of data collection in Bangalore it was possible to
compare model results from Belgium and India. To make this compari-
son the total BC exposure is reconstructed by applying the prediction



Table 3
GAMmodel evaluation for the BCraw and BCloc models for different correction and loading functions, sorting based on F(LOLF). The models based on the unadjusted data from Table 2 are
added as a “base” case to allow for comparison. The abbreviated names relate to the first authors of the applied correction functions as listed in Section 2.2.

Model Intercept F(LOLF) F(WS) F(LHFmLF) F(log(BCbkg)) Deviance explained Count AIC

BC raw models
BC (base) 13,324 1692 159 115 135 45.7% 8819 22,204
BC (Virk) 19,456 1652 140 119 136 44.9% 8819 21,772
BC (Kirch) 20,936 1595 131 117 126 43.9% 8819 21,840
BC (Hagler) 13,039 1482 126 115 137 43.0% 8819 23,587
BC (Apte) 13,165 1456 150 78 143 46.0% 7834 19,499
BC (Hagler + Virk) 18,962 1385 105 114 133 41.1% 8819 23,615
BC (Apte + Kirch) 20,267 1371 129 79 145 44.3% 7834 19,269
BC (Hagler + Kirch) 20,388 1331 98 112 125 40.1% 8819 23,741

BC local models (background adjusted)
BCloc (base) 7862 1792 121 118 50 43.6% 8819 28,109
BCloc (Hagler) 7907 1750 118 128 57 43.3% 8819 28,171
BCloc_(Virk) 13,684 1673 106 120 77 43.0% 8819 26,506
BCloc (Kirch) 15,079 1605 102 119 75 42.0% 8819 26,417
BCloc_(Hagler + Virk) 13,655 1599 100 130 81 42.2% 8819 26,810
BCloc (Apte) 7646 1589 137 81 53 44.5% 7834 24,624
BCloc (Hagler + Kirch) 15,023 1529 95 128 78 41.2% 8819 26,773
BCloc (Apte + Kirch) 14,459 1416 113 87 86 42.9% 7834 23,149

PN models (raw + background adjusted)
PN (base) 13,800 1421 176 187 133 35.8% 8819 21,724
PNloc (base) 3984 1376 100 165 11 33.6% 8819 32,600
PN (Westerdahl) 14,045 1422 175 185 132 35.8% 8819 21,828
PNloc (Westerdahl) 4004 1401 100 164 11 33.6% 8819 32,714
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function of the GAM local models on an identical sequence of LOLF while
keeping other covariates constant and adding a background adjustment
for the matching location. Wind speed was set to 1 m/s, LHFmLF to 5 dB
(relatively low traffic speed) and the street canyon index (Belgium-
based model only) is set to a value that represents an urban environ-
ment (0.7). As background exposure the median of the difference be-
tween BCraw and BCloc is used for each location. The results are plotted
in Fig. 5A for Ghent and Bangalore; predictions outside the range of
measured values are shown as dashed lines. The model in Bangalore
lacks resolution for the small LOLF values, resulting in an almost constant
exposure below 65 dB. The BC concentrations in Bangalore are almost
exponential for the higher values of LOLF. A second observation is that
for the range of 50 to 70 dB, BC concentrations in Ghent are higher com-
pared to Bangalore. In addition, a thirdmodel was developed for pooled
data from the two sampling campaigns (giving each dataset equal
weight in the GAM model). The pooled data model could only include
covariates that were available in both cities and is therefore restricted
to LOLF, wind speed and LHFmLF. The authors are aware that the pooled
data model implies similar noise-BC emission relations for both loca-
tions, despite the extremely different fleet composition. Higher air
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Fig. 5. Comparison of Ghent and Bangalore BC prediction for fixedwind speed and LHFmLF value
BC prediction by location based on the pooled data model with matching background adjustm
pollution emission could relate to the noise emission of the vehicles
and is assumed valid within the scope of this comparison. In Fig. 5B
the resulting simulations are presented for the pooled model with the
local matching BC background (3600 ng/m3 for Bangalore and
1600 ng/m3 for Ghent). The simulation is evidently higher for Bangalore
compared to Ghent over the full range.

The second step to compare the Ghent and Bangalore models is to
perform a cross validation by predicting the measurements in Ghent
with the model based on the measurements in Bangalore and vice
versa and predicting both measurement campaigns with the pooled
data model. The predicted exposure is aggregated for each sampling
trip and compared to the actual measurements for that trip (see
Fig. 6). The measured vs. modeled prediction correlations are weaker
when transferring models between cities; this result parallels the LOLF-
BC relationship for the two models shown in Fig. 5A. The slope and ab-
solute prediction of the Ghent trips is lower due to the underestimates
of the Bangalore model for LOLF of 50 to 70 dB; the opposite effect is vis-
ible for the trips in Bangalore predicted with the Ghent model for LOLF
larger than 70 dB. The pooled data model is almost identical to the
Ghent model for LOLF below 70 and performs well on the Ghent trips.
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s, dashed lines present extrapolated results outside themeasured range of LOLF (A) and the
ent by location (B).
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Fig. 6. Trip-based comparison and cross validation of the Ghent and Bangaloremodels. Each dot represents the total predicted exposure by trip compared to themeasurement. The green
line indicates the perfect fit; the red line presents the linear fit on the total trip exposure predictions. Correlations (Pearson and Spearman) and linear fit parameters of the trip prediction
are shown for each plot.
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The combined model improves the prediction of the Bangalore trips
compared to the Bangaloremodel significantly due to the improvement
of resolution in the combined model for LOLF below 70 dB. The pooled
data better specifies the LOLF parameter and improves the prediction
for the Bangalore data despite the fact that little data was collected in
Bangalore below 70 dB. This results in correlation of 0.84 for the total
trip exposure fit with the pooled model.

4. Discussion

A monitoring campaign was conducted for independently cross
validating a previously designed model for predicting cyclist exposure
to black carbon on the basis of noise measurements (Dekoninck et al.,
2013) in a completely different socio-economic context. The results
show that indeed the exposure to noise and black carbon is significantly
higher in Bangalore, India, than in Ghent, Belgium. The bicyclist's expo-
sure to BC in Bangalore exceeds the exposure in Belgium by a factor of
four. The range of noise levels observed is at least 10 dBA higher. The ob-
served between-city difference in the range of measured LOLF could be
due to a variety of factors. The first candidate is the fleet composition;
the number of motorcycles and motorcycle-like vehicles is large com-
pared to Belgium and the individual vehicle noise is high. There are
few noise regulations and reducing the individual-vehicle noise is not
considered a priority in India. The second candidate is the lack of bicycle
facilities. During sampling the cyclists traveled among other vehicles
(especially close to motorcycles). Since the concentrations of BC in-
crease exponentially with smaller distance to the tail-pipe, cyclists in
India are exposed to less-diluted exhaust emissions and comparatively
high noise levels.

In addition to the context, the monitoring campaign conducted
in Bangalore also differed slightly in design from previous measure-
ments. An important technical difference is the use of consumer grade
microphones and data acquisition rather than high-quality IEC class 1
graded measurement equipment. As we stated before, using noise as a
proxy for particulate air pollution is beneficial because noise measuring
equipment is significantly cheaper. However this difference in cost is
not high unless noise measurements can be done with consumer
grade equipment. It has been shown previously that consumer electrets
can be used for traffic noise monitoring over long time intervals (Van
Renterghem et al., 2011) but it is also known that these devices may
exhibit noise floors of 35 to 40 dBA. Comparing these values to the
range of observations in Fig. 3 it becomes clear that they will cause no
deviations inmeasurements of noise in streets. The new back-end data-
base and internet based communication with the mobile measurement
equipment showed that it is possible to seamlessly collect, manage and
process measurements of noise and particulate matter simultaneously.
The automated post-processing of the measurements resulted in quick
reporting allowing evaluation of the progress of themeasurement cam-
paign on a daily basis. The monitoring campaign in Bangalore has
shown the feasibility of internet-based measurement campaigns for
noise and air pollution with low latency data storage and processing
distributed across the globe (India, Belgium, USA).

Based on a one-year dataset of commuting noise and black carbon
measurements, two parameters derived from the noise spectrum
were found to bemost suitable for explaining the 10 second aggregated
BC exposure of cyclists: LOLF and LHFmLF. In addition, it was found that
including wind speed measured at a nearby weather station and an in-
dicator for the street geometry — expressing how strong it resembles a
canyon — improved the performance of the proposed GAM model. In
the current study, street geometry could not be included. Nevertheless,
the goodness of fit of the GAM model extracted in this study confirms
that the choice of (noise) parameters is valid also in a completely differ-
ent socio-cultural context. With this fixed choice of noise parameters,
the proposed prediction of in-traffic exposure to black carbon can thus



97L. Dekoninck et al. / Environment International 74 (2015) 89–98
be used in a variety of international settings using a small dataset of
combined noise and BC measurements to validate the model coeffi-
cients. Aethalometer-based black carbon measurements are sensitive
to measurement error and therefore several corrections and loading
functions have been proposed in literature (Apte et al., 2011; Hagler
et al., 2011; Kirchstetter and Novakov, 2007; Virkkula et al., 2007;
Westerdahl et al., 2005). It was found (Table 3) that the choice of correc-
tion and loading function has a limited influence on the model coeffi-
cients and hardly affects model performance (deviance explained and
AIC). The model is robust against these corrections. A possible expla-
nation for this is that the model already smoothed out most of the
measurement errors that are also eliminated by the aforementioned
corrections.

Based on the theoretical consideration that measured levels of BC
have both a local origin, mainly caused by traffic, and a more regional
origin including industrial, heating, and distant traffic, the measured
BC concentration is split in a local and a background concentration.
The rationale for treating a background contribution separately in the
proposed models is that noise levels could be an indicator for the local
traffic contribution to the overall level but are not expected to be in-
dicative for the origin of background contributions. However, it has
also been pointed out that a measured background concentration
could also be a good indicator for dispersion of air pollutants in general
since it strongly depends on weather conditions (Dominici et al, 2002).
In the proposed models the former is included by subtracting the back-
ground from the rawmeasurement data, the latter is partially captured
by a multiplicative factor included as a log(BCbkg) factor in the GAM
model for log(BCloc). The factor log(BCbkg) in the GAM model for
log(BCraw) is added to illustrate the effect of the additive approach in
the models. Because of the strong non-linearity of the GAM, there is
no strict separation between additive and multiplicative. Yet, the fact
that the strength of the log(BCbkg) factor decreases once an additive cor-
rection for background has been applied indicates that the additive ap-
proach is valid. It results in a model explaining 45.6% of variance and
could therefore be a valid alternative for the explicit background correc-
tion introduced in Section 2.3. An important issue however is how well
the backgroundmeasurements capture the background exposure varia-
tion due to long term meteorological conditions. Here, the background
measurement location is inside the city of Bangalore andmight be influ-
enced by the diurnal pattern of in city traffic related air pollution expo-
sure partiallymasking the long termbackground conditions. The quality
and the properties of the BC backgroundmeasurement location are im-
portant when employing an additive modeling approach. Still, this
method for taking into account background concentrations could
serve as a source of inspiration for mobile air pollution measurement
processing in general.

A model using the same noise parameters was also established for
particle number. The variance explained by this model is somewhat
lower than for the BC model. PN concentration is also mainly related
to traffic exhaust, but even more variable than BC, the lower variance
explained is therefore expected. The background adjustment did not re-
quire strong restrictions through PNbg,limit to achieve a performant BCloc
model. This suggests a different spatial behavior of the relation between
local and background exposures for PN compared to BC. BC background
is probably more sensitive to local non-traffic related exposure com-
pared to PN. Also physical differences between the two quantities
could explain this difference. BC is mass based and does not distinguish
between the sizes of the particles. PN is known to increase near tail-
pipes and decreases strongly due to the coagulation processes at larger
distances from the source, reducing the number of particles faster with
distance from the source compared tomass based quantities. Themete-
orological situation is therefore likely to have less influence on the back-
ground PN compared to background BC. The noise–PN relationship can
be stronger compared to noise–BC relationship.

When comparing the models for Ghent and Bangalore, it is clear
that the Bangalore model lacks observations for LOLF below 65 dB and
overestimates BC below that level as compared to the model for Ghent
(Fig. 5). Similarly, the dataset collected in Ghent lacks observations
with LOLF above 70 dB which results in underestimation of BC concen-
tration at high noise levels in an extrapolated model. Extracting model
parameters from the pooled data (Fig. 5B) results in a single smooth re-
lationship which is indicative for a common ground truth in the rela-
tionship between LOLF and log(BC). When cross-validating the average
exposure to BC during bicycle trips by comparing model predictions to
measurements some interesting conclusions canbedrawn. As expected,
the correlation between model and measurement decreases when
model coefficients from the other areas are used. However, using the
model based on pooled data, the correlation improves for the Bangalore
trips (Fig. 6 bottom right) while it does not deteriorate for the Ghent
data (Fig. 6 top right) both compared to the correlation with the
model based on local data. This suggests a strong underlying relation-
ship between noise and BC concentrations capable of distinguishing
spatial variability beyond the disturbance of background and meteo-
rological effects on the air pollution exposure measurements.

The authors suggest extending these measurement campaigns and
using similar approaches for other traffic-related air pollutants in differ-
ent countries. The quality of the background measurement site is an
issue worth further investigation for future international deployment
of this approach. Detecting and quantifying the contribution of the
local traffic to the instantaneous exposure in environments where
emissions from local traffic are low as compared to the ambient con-
centrations is crucial to improve the models. This can and should be
achieved by several adjustments in the measurement setup. Extending
the measurements to more variable meteorological conditions and ex-
tending the scope of themeasurements to covermore spatial variability
are two potential improvements. This technique attributesmobilemea-
surements based on physical parameters, adding value to the current
practice of manual qualification of traffic based on video footage. The
simultaneous noise measurements add knowledge to the exposure
measurements in an unprecedented temporal resolution enabling the
disentanglement of the variation of the in-traffic exposure into a local
traffic related component, the meteorological influences and back-
ground exposure. It also enables the use of random sampling in partici-
patory measurement campaigns since the traffic is instantaneously
documented in space and time. As illustrated in Table 3, the technique
can be used in the future to compare the BC correction functions, poten-
tially distinguishing between short term variation related to actual
physical changes in the instantaneous exposure and variation related
to instrumentation errors.

5. Conclusions

Exposure to traffic-related air pollution is strongly related to local
traffic dynamics which can be characterized by spectral noise measure-
ments. The physical relationship between noise and particulate air pol-
lution was confirmed using an inexpensive noise measurement node in
an entirely different socio-cultural setting (Bangalore, India) than previ-
ous work in Belgiumwith high-quality noise measurement equipment.
The consumer grade noise measurement setup results in mobile noise
measurements that are accurate enough to predict air pollution expo-
sure. The full technical setup consisting of inexpensive measurement
nodes combined with a back-end database and data post-processer en-
abled fast and accurate in-traffic sampling and reporting. Despite the
significant differences between the local traffic conditions in Ghent,
Belgium and Bangalore, India the mobile BC models behave similar.
Moreover, trip exposure estimates based on a model fitted on pooled
data from both monitoring campaigns correlate better with measure-
ments. Sampling strategy has a strong impact on the properties of the
models, low exposure route sampling is as important in the measure-
ment campaigns as achieving proper quantification along the high
exposure roads. Splitting the measurements in an instantaneous back-
ground concentration and a local contribution gave similar results as
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in previouswork; however, high background concentrations can reduce
the spatial resolution of themethod in low exposure streets. The charac-
teristics of the background measurement location have a strong impact
on the additive modeling approach and should be carefully considered
in future projects. As an alternative, introducing background concentra-
tion as a log-additive term in the GAM model also increased the ex-
plained variance in a way that is partly complementary to separating
background concentrations in an additive way.

Implementing this technique in places where only a few parameters
change has the potential to disaggregate the effects of factors influenc-
ing in-traffic exposure (e.g., vehicle fleet, biking facilities, driving behav-
ior and meteorology). For example, in the case of Belgium with its high
number of diesel vehicles, a comparison with a similar European city
but with a different fleet mix could allow for the quantification of the
impact of diesel fuel related policy.

An identical model with the same noise covariates is valid aswell for
themobile PNmeasurements, extending the potential of themethodol-
ogy. The first results on PN for the additive modeling approach suggest
that PN is less sensitive to properties of the background measurement
location compared to BC. The international validation of this method
for two important traffic-related pollutants (BC and PN) demonstrates
the potential to evaluate within-city spatial patterns of particulate air
pollution based on noise measurements in a variety of urban settings.
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