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General procedures, including the estimation of annual average daily 
traffic (AADT) from short-duration counts, have not been established 
for nonmotorized traffic monitoring programs. Continuous counts of 
nonmotorized traffic were collected at six locations on the off-street 
trail network in Minneapolis, Minnesota, in 2011. A new approach for 
estimating AADT values from short-duration counts, the use of day-of-
year factors, is demonstrated. Analyses of variability in count data can 
be used to design a monitoring program that uses both continuous and 
short-duration counts of nonmotorized traffic. Five core conclusions 
may be useful for developing nonmotorized monitoring programs: 
(a) day-of-year scaling factors have smaller error than does the standard 
(day-of-week and month-of-year) method of AADT estimation, especially 
from short-duration counts (<1 week); (b) extrapolation error decreases 
with short-duration-count length, with only marginal gains in accuracy 
for counts longer than 1 week; (c) errors in estimating AADT values 
are lowest when short-duration counts are taken in summer (or spring, 
summer, and fall) months (April through October); (d) the impact of 
sampling on consecutive (successive) versus nonconsecutive (separate) 
days on AADT estimation is minimal but may reduce labor requirements; 
and (e) the design of a traffic monitoring program depends on the accept-
able error, equipment availability, and monitoring period duration. 
Trade-offs in short-duration-count lengths and estimate accuracy will 
depend on resource constraints. Analysts can use day-of-year factors to 
improve the accuracy of AADT estimation. Analyses of variability in 
traffic counts can strengthen the design of monitoring programs.

Traffic counts are the foundation of transportation planning programs. 
Over the past several decades, the FHWA, state departments of 
transportation (DOTs), and local governments have established and 
funded comprehensive networks for counting motor vehicles in each 
state. These agencies also have developed standard procedures 
for monitoring traffic, analyzing counts, identifying traffic patterns, 
extrapolating short-duration counts, and estimating traffic volumes 
at locations where traffic has not been counted (1). Estimated traffic 
volumes from these monitoring programs are used for many purposes, 

including planning, guiding investments, and establishing maintenance 
priorities.

In North America, similar monitoring networks have not been 
established for nonmotorized traffic. Despite efforts to understand 
nonmotorized traffic that date back to the 1970s or earlier, planners 
still lack the tools and data necessary to plan for nonmotorized travel 
(2–4). Most research to date has focused on site-specific effects on 
nonmotorized traffic such as weather, neighborhood demographics, 
and characteristics of the built environment (5–9); less research has 
explored traffic patterns on networks (10). Because efforts to develop 
nonmotorized transportation are growing, the need for robust, local 
programs that count cyclists and pedestrians across networks also is 
increasing (11, 12). For planners interested in nonmotorized travel, 
consistent methods of data collection and analysis that enable better 
descriptions of nonmotorized traffic patterns (e.g., estimates of bicycle 
miles traveled) are needed.

In Europe and in other countries outside North America, where 
the nonmotorized mode share is higher, research on nonmotorized 
travel has focused on similar topics. For example, researchers in 
Berlin have counted bicycles continuously since at least 1983 and 
have shown that daily bicycle traffic varies systematically with tem-
perature, precipitation, and duration of sunshine (13). Studies from 
Australia, the United Kingdom, and New Zealand also focus on  
how weather and neighborhood characteristics affect nonmotorized 
traffic volumes (14–16). Studies in the Netherlands and Sweden show 
that bicycle crashes are inversely correlated with bicycle volumes 
(17, 18). Survey tools frequently are used to estimate mode share and 
explore travel behavior (19–22). A report from the Swedish National 
Road and Transport Research Institute recommends the use of both 
surveys and traffic counts to track two common policy goals: (a) mode 
share of bicycles and pedestrians and (b) trends in nonmotorized 
traffic volumes over time (21, 22).

Even though research into the monitoring of nonmotorized traffic 
is growing, the federal, state, and local agencies in the United States 
have not adopted standard methods (23). Key questions remain on 
best practices for most elements of monitoring, including methods 
to scale short-duration nonmotorized traffic counts to estimates of 
annual average daily traffic (AADT) (24–28). The FHWA recently 
published the first chapter on nonmotorized traffic monitoring in 
its authoritative Traffic Monitoring Guide (TMG) (1). The chapter 
offers standard procedures for monitoring motor vehicle traffic and 
recommends a combination of permanent reference sites and mobile 
short-duration sites to characterize spatial patterns in traffic. Auto-
mated continuous counts from reference sites are classified into  
factor groups and used to develop scaling factors. Two scaling factors 
typically are constructed for motor vehicles: month of year (ratio of 

Day-of-Year Scaling Factors and Design 
Considerations for Nonmotorized  
Traffic Monitoring Programs

Steve Hankey, Greg Lindsey, and Julian Marshall

S. Hankey and J. Marshall, Department of Civil Engineering, University of  
Minnesota, 500 Pillsbury Drive Southeast, Minneapolis, MN 55455. G. Lindsey, 
Humphrey School of Public Affairs, University of Minnesota, 130 Humphrey School, 
301 19th Avenue South, Minneapolis, MN 55455. Corresponding author: G. Lindsey, 
linds301@umn.edu.



Hankey, Lindsey, and Marshall 65

average monthly traffic to AADT) and day of week (ratio of average  
day of week traffic to AADT). The scaling factors are applied to several 
short-duration counts to estimate traffic on a street network.

The state of Colorado and several cities, including Portland, 
Oregon, and San Diego and San Francisco, California, have initiated 
nonmotorized traffic monitoring programs based on this approach, 
but general factor groups and factoring procedures have not been 
validated. Because nonmotorized traffic varies more in response 
to weather than motorized traffic does and because weather varies 
regionally within states, extrapolation factors specific to different 
municipalities or regions will be needed.

Researchers recently have addressed three key issues in non-
motorized traffic monitoring: (a) the short-duration-count lengths 
needed to minimize error in extrapolation, (b) the identification of 
factor groups based on hourly traffic patterns, and (c) the develop-
ment of adjustment factors for bicycle traffic. Nordback et al. (27) use 
data from a monitoring network in Boulder, Colorado, to develop 
guidance for short-duration monitoring. They show that short-duration 
counts of at least 1 week are satisfactory for minimizing the magnitude 
of error when using the standard scaling factor approach for motor 
vehicles (i.e., day-of-week and month-of-year factors) and that 
extrapolation error is minimized when monitoring occurs between 
April and October. They recommend that short-duration counts be 
at least 24 h long (preferably 1 week or longer) and corroborate 
findings from the TMG that data from at least five reference sites 
be used to develop factors.

Miranda-Moreno et al. derive four classifications (utilitarian, 
mixed–utilitarian, mixed–recreational, and recreational) from observ-
ing hourly bicycle traffic patterns at 37 locations in five cities (29). 
This classification scheme can be used to define factor groups for 
developing scaling factors. El Esawey et al. use multiple years of 
monitoring data from Vancouver, British Columbia, Canada, to show 
that the use of weekend and weekday factors produces results com-
parable to those of seven day-of-week factors, integrating weather 
considerations into factors improves estimates, and factor reliability 
degrades over time (10).

These findings are expanded by illustrating a new method for 
scaling short-duration counts and showing how a limited number of 
continuous-count sites can inform the efficient design of monitoring  
networks. Specifically, a day-of-year scaling factor (i.e., a scaling fac-
tor for each day of the year; applicable to that year only) is introduced 
as an alternative to the standard (i.e., month-of-year and day-of-week) 
scaling factors. The effect of the length and month of short-duration 
counts on AADT estimation is explored according to Nordback et al. 
(27). Also, the effect on AADT estimates of taking short-duration 
counts on consecutive or nonconsecutive days is demonstrated. Then, 
the implications for design of a comprehensive monitoring program 

are illustrated for a 78-mi (126-km) trail network in Minneapolis, 
Minnesota.

Data anD MethoDs

Since late 2010, TrailMaster active infrared monitors have been used 
to collect continuous counts of nonmotorized traffic at six locations 
on the off-street trail network in Minneapolis. Wang et al. describe the 
procedures used to collect, adjust, validate, and aggregate counts (30). 
In brief, the monitors record a count any time the infrared beam is 
broken; therefore, counts reported here are for mixed-mode traffic 
(i.e., cyclists and pedestrians combined). Traffic volumes for 2011 
varied by an order of magnitude across sites (Table 1).

example of Classifying Locations in Factor Groups

Previously published indexes were used to classify the study sites in 
factor groups (29). This classification is performed as an example; 
in the analyses that follow (e.g., length and month of short-duration 
counts), results are based on pooled scaling factors (i.e., no factor 
groups) because of the small sample size (i.e., six count sites) and to 
be consistent with the recommendation of Nordback et al. to use at 
least five continuous reference sites when calculating scaling factors 
(27). Furthermore, Miranda-Moreno et al. define locations according 
to bicycle traffic; here, their method is applied to mixed-mode trail 
traffic (29).

According to the criteria established by Miranda-Moreno et al., sites 
were classified as utilitarian, mixed–utilitarian, mixed–recreational, 
or recreational (Table 2) (29). Miranda-Moreno et al. use two traffic 
indexes: relative index of weekend versus weekday traffic (WWI) and 
relative index of morning (7 to 9 a.m.) to midday (11 a.m. to 1 p.m.) 
traffic (AMI):

V

V
=WWI (1)we

wd

V

V
=AMI (2)am

mid

where

 Vwe = mean daily weekend traffic volume,
 Vwd = mean daily weekday traffic volume,
 Vam = mean morning (7 to 9 a.m.) traffic volume, and
 Vmid = mean midday (11 a.m. to 1 p.m.) traffic volume.

TABLE 1  Descriptive Statistics for Counts of Off-Street Trail Traffic, 2011

Location
Valid Hours 
of Counts (%)

Annual Traffic 
(number of bicyclists 
and pedestrians)

AADT 
(bicyclists and 
pedestrians)

Segment Length 
[mi (km)]

Distance Traveled  
[mi (km)]

Lake Calhoun Parkway 89 1,308,643 3,585 1.2 (1.9) 1,583,458 (2,548,329)

Lake Nokomis Parkway 93 538,448 1,475 1.2 (1.9) 667,676 (1,074,520)

Wirth Parkway 93 116,765 320 1.5 (2.4) 171,645 (276,236)

Midtown–Cedar 91 738,336 2,023 1.6 (2.6) 1,151,804 (1,853,648)

Midtown–Hennepin 96 720,714 1,975 1.6 (2.6) 1,124,314 (1,809,407)

Midtown–West River Parkway 91 333,395 913 1.4 (2.3) 480,089 (772,628)
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Both the AMI and WWI indexes are meant to identify sites where 
traffic is utilitarian or recreational. For example, sites with a low WWI 
value probably would be utilitarian because weekday traffic exceeds 
weekend traffic. Similarly, a location with a high AMI value also 
would be classified as utilitarian because higher traffic in the morn-
ing peak hour than at midday would indicate largely commute-based 
traffic. The AMI index uses the morning peak hour rather than the 
afternoon peak hour because the afternoon peak hour likely includes 
after-work recreational traffic.

Month-of-Year and Day-of-Week  
Versus Day-of-Year scaling Factors

The method used for extrapolating short-duration counts of motor 
vehicles typically involves using month-of-year and day-of-week 
scaling factors to estimate AADT values. A new day-of-year scaling 
factor is proposed to account better for the greater day-to-day vari-
ability in nonmotorized traffic. Instead of count data being averaged 
across the day of the week and month of the year, 365 separate 
scaling factors are calculated specific to each day of the year.

Importantly, day-of-year scaling factors apply to 1 year only and 
are not necessarily applicable across years. This approach accounts 
for peaks and lows specific to certain days (e.g., poor weather, holi-
days) that may be missed when data are averaged over long periods. 
This approach also should improve performance for short-duration 
counts because the scaling factors are day specific. One limitation of 
scaling factors for nonmotorized traffic is that they are applicable only 
to the city or region where the data are collected; different weather 
patterns in different regions make scaling factors difficult to transfer 
from one region to another. Figure 1 shows the day-of-year scaling 
factors (new method) as well as the day-of-week and month-of-year 
scaling factors (standard method) for 2011 data.

short-Duration Counts: sample Duration  
and Month

Error associated with various lengths of short-duration counts was 
analyzed in AADT estimates according to Nordback et al. (27). Any 
given monitoring location will have day-to-day variability in traffic 
counts because of weather, individual traffic behavior, and other 
variables. In general, the error associated with extrapolating from 
short-duration counts should decrease as the short-duration-count 
length increases. The study analysis aims to find the point of dimin-
ishing return for estimation error as the length of the short-duration 
count increases.

First, count periods (n = 50) were randomly pulled from year-
2011 counts as a basis for the analysis. An average scaling factor was 
calculated for each location and count period based on an average 
of the other five locations. Then, short-duration counts were scaled 
to AADT values and compared with actual AADT for that location. 
Mean absolute error was calculated for comparison. This analysis 
was repeated for short-duration-count periods of 1 day, 3 days,  
1 week, 2 weeks, and 1 month. It was performed for both the standard 
method of deriving scaling factors and the new day-of-year method.

The impact on estimation error of taking short-duration counts 
during different months also was explored. For each count period 
length, the random sample was stratified by month to assess whether 
some months seemed to be better for estimating annual traffic. 
Again, this analysis was repeated for all count period lengths (1 day, 
3 days, 1 week, 2 weeks, and 1 month) and both methods of scaling 
to AADT values. Then, the equipment needs associated with different 
short-duration-count lengths were estimated.

Design scenario: Planning a short-Duration 
Count Campaign In Minneapolis

As a practical example of the decisions needed to implement a 
comprehensive monitoring program for any traffic network, a design 
scenario was created for a hypothetical short-duration monitoring 
program on the Minneapolis off-street trail network. The aim of the 
program is to estimate annual miles traveled for the entire trail net-
work. The process entails choosing monitoring segments, developing 
protocols for count length, and scaling to estimated AADT for each 
segment when monitoring must be completed in a specific amount of 
time. In this scenario, counts are collected over 7 months at 78 loca-
tions and 125 monitoring sites (because bike and pedestrian traffic is 
separate at some locations). From these assumptions, the number 
of counters necessary to complete the monitoring campaign was 
calculated for different short-duration-count lengths.

Also explored was whether sampling on consecutive or non-
consecutive days (e.g., five temporally separate 1-day samples versus 
one 5-day sample) affected error in the estimated AADT value. 
AADT estimation error is presented as well as the additional labor 
needed to complete a sampling campaign where counters are relocated 
more frequently.

ResuLts

The analysis is tailored to inform decisions on how to plan a moni-
toring program for the trail network in Minneapolis. Results led to 
five main conclusions:

1. Day-of-year scaling factors result in smaller error than the stan-
dard factors (day-of-week and month-of-year) in estimated AADT, 
especially for short-duration (<1 week) counts.

2. Extrapolation error decreases with the length of the short-
duration counts, with only marginal gains in accuracy for counts 
longer than 1 week.

3. Extrapolation error is lowest when short-duration counts are 
taken when volumes are highest—here, in summer (or spring, 
summer, and fall) months (April through October).

4. The impact on AADT estimation of sampling on consecutive 
versus nonconsecutive days is minimal, but sampling on consecutive 
days likely reduces labor requirements and is more efficient.

TABLE 2  Classification Criteria for 
Potential Factor Groups of Reference Sites

Location Type WWIa AMIb

Utilitarian <0.8 >1.5

Mixed–utilitarian 0.8–1.25 0.75–1.5

Mixed–recreational 1–1.8 0.35–1

Recreational >1.8 <0.35

Note: Adapted from Miranda-Moreno et al. (29).
aRelative index of weekend versus weekday traffic.
bRelative index of morning (7–9 a.m.) to midday  
(11 a.m.–1 p.m.) traffic.
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5. The design of a traffic monitoring program depends on the 
acceptable error, equipment availability, and monitoring period dura-
tion. Trade-offs in short-duration-count lengths and estimate accuracy 
will depend on resource constraints.

example of Factor Group Classification  
for Reference sites

The WWI and AMI values were calculated for each location, and the 
locations fell into two categories: mixed–utilitarian and mixed–
recreational (Table 3). Even though the feasibility of applying these 
methods separately was explored for these two factor groups, pooled 
results are reported for all six locations because the AMI values in 
these two categories overlap and because if the reference sites were 
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FIGURE 1  Seasonal, daily, and hourly trail traffic patterns: (a) month-of-year and day-of-week scaling factors, (b) day-of-year scaling factors, 
(c) hourly proportion of weekday traffic, and (d ) hourly proportion of weekend traffic.

TABLE 3  Factor Groups Available at Current Sites

Location WWIa AMIb Factor Group

Midtown–Hennepin 1.19 0.77 Mixed–utilitarian

Midtown–Cedar 1.02 0.95 Mixed–utilitarian

Lake Calhoun Parkway 1.52 0.50 Mixed–recreational

Lake Nokomis Parkway 1.45 0.65 Mixed–recreational

Wirth Parkway 1.44 0.74 Mixed–recreational

Midtown–West River Parkway 1.34 0.84 Mixed–recreational

aRelative index of weekend versus weekday traffic.
bRelative index of morning (7–9 a.m.) to midday (11 a.m.–1 p.m.) traffic.
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separated into two groups, the minimum number of locations for 
factor groups (as recommended by Nordback et al.) would not be 
met (27). Even though the variation in traffic across sites is compa-
rable (Figure 1), pooling factor groups may increase estimation error 
at some sites. As monitoring occurs at more sites, the use of separate 
factor groups may be feasible. Because monitoring has not occurred 
on other segments, whether any sites in Minneapolis fall in the other 
two categories (utilitarian and recreational) could not be determined. 
To establish a more robust reference site network, continuous counts 
should be added in five or more locations for all factor groups.

aaDt estimation error and  
short-Duration-Count Length

As described earlier, 50 random count periods (1 day, 3 day, 1 week, 
2 weeks, and 4 weeks) were used to explore the impact of short-
duration-count length on AADT estimation error. Mean absolute 
error was calculated among locations and count periods for both 
methods of scaling counts to AADT (Figure 2). Results indicated 
that the day-of-year scaling factors had smaller AADT estimation 
error than the standard (month-of-year and day-of-week) factors. 
This effect was especially pronounced for short count periods and 
attenuated as the count period approached 1 month. For example, 
the AADT error when extrapolating from 1-day counts with the 
new method was slightly more than 20%; error when the standard 
method was used was nearly 40%. The point of diminishing return for 
minimizing error from extrapolation seemed to be 1 week, similar to 
the findings of Nordback et al. (27).

To illustrate the greater need for resources to implement longer 
short-duration counts (or the limitations associated with the avail-
ability of portable counters for short-duration counts), the number 
of portable counters needed to complete the short-duration counts 
at 78 trail locations was plotted over a 7-month monitoring period. 
[Assumptions: 125 monitoring sites (because of separated traffic), 
one visit per site for each short-duration-count length, and monitor 
relocation takes 1 day.] For example, if only two counters are avail-

able, then the maximum short-duration-count lengths possible in the 
7-month limit would be 3 days. With this constraint, the expected 
estimation AADT error would be 15% with the day-of-year factors 
and 27% with the standard factors. Figure 2 illustrates how an analyst 
can estimate equipment needs to obtain desired levels of accuracy 
within a fixed monitoring period. For example, to achieve an error 
of 11%, short-duration counts would need to be 2 weeks long, and 
eight portable counters would be needed.

Deploying short-Duration Counts  
in Different Months

The impact on AADT estimation error of sampling in different months 
was explored by stratifying the results from the random sample by 
month (Figure 3). This analysis was repeated for the standard and 
new methods of scaling to AADT. The day-of-year scaling factors 
performed better than the standard factors. The difference is larger 
for the shorter count periods; as the count duration increased, the dif-
ference between results using the standard and new scaling methods 
diminished. AADT estimation error across months was nearly equal 
for the two scaling methods for multiweek count durations.

For both methods, error in estimated AADT was greatest when 
the weather patterns were most variable in Minneapolis (early spring 
and late fall) and lowest in the summer and near-summer months. 
Use of the day-of-year scaling factors seemed to stabilize the error 
during summer and near-summer months to an ∼10% error for the 
medium to long count durations. These results indicate that short-
duration counts are best undertaken from April through October with 
the day-of-year factors. This finding corroborates the results that 
Nordback et al. obtained by using the standard factors (27).

Design scenario: Planning a Count Campaign  
in Minneapolis

For this design scenario, (a) segments are chosen for short-duration 
counts and (b) trade-offs are explored between short-duration-count 
length and labor requirements. The design scenario shows that 
data from some continuous-count sites can inform decisions about 
how and where to develop larger-scale monitoring programs for 
nonmotorized traffic.

Choosing Trail Segments for Sampling

To locate counters and estimate AADT and miles traveled, the net-
work must be divided into distinct segments with consistent traffic 
flows. Because no counts currently exist on most of the network, 
segments for this example were chosen using local knowledge of trail 
traffic (e.g., staff members at the Minneapolis Park and Recreation 
Board and the City of Minneapolis were consulted and the authors’ 
knowledge of trail traffic was used). Break points typically were 
assigned at feeder facilities (e.g., streets with bicycle facilities) or 
natural generators of trail traffic (e.g., parks or beaches).

In total, 78 segments were identified that averaged 1 mi (1.6 km)  
in length, including sites with the reference monitors (range: 0.28 
to 1.8 mi [0.45 to 2.9 km]; see Figure 4). Because users can access 
trails from informal access points as well as intersections and because  
limited information is available on traffic levels between monitor-
ing points, whether traffic flows on these individual segments are  
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FIGURE 2  Mean absolute AADT estimation error using standard 
(black dashed line) and new (red solid line) scaling methods [number 
of counters needed to complete design scenario (7-month sampling 
campaign) is denoted by blue staircase-shaped plot].
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consistent and whether 78 segments is the optimal number is unknown. 
However, for Minneapolis, available evidence suggests that mile-long 
segments are a reasonable starting place.

Allocating count sites likely is best undertaken as an iterative 
process; future monitoring would provide more data and potentially 
a stronger basis for site selection. In motorized vehicle monitoring,  
traffic segments are determined iteratively by examining variation in 
traffic flow through a network link. The Minnesota DOT has estab-
lished criteria for determining traffic segment breaks that consist of 
acceptable relative changes in traffic flow for ranges of motor vehi-

cle AADT values (e.g., for AADT values between 1,000 and 4,999, 
increases in traffic along the segment of more than 20% call for a 
break) (31). On the Midtown Greenway, given that the variation in 
nonmotorized AADT between the Cedar and Hennepin monitoring 
sites is only 2%, it is reasonable to assume flow between the sites is 
consistent. Given the large (∼120%) difference in flow between the 
West River Parkway and Cedar sites, subdivision into one or more 
segments is appropriate. Future work could usefully include field 
validation by monitoring different points in a segment, to determine 
within-segment consistency in traffic flows.
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FIGURE 3  Estimated mean absolute AADT error, stratified by month, with both methods of 
scaling: (a) 1-day short-duration count, (b) 3-day short-duration count, (c) 1-week short-duration 
count, (d ) 2-week short-duration count, and (e) 4-week short-duration count.
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Estimating Feasibility of Various Short-Duration 
Count Lengths with Constrained Resources

Next, a scenario analysis was performed to explore how best to 
implement short-duration counts and what count lengths would be 
possible. Calculations assume the following:

1. All 78 trail segments must be monitored at least once in a 
single monitoring period.

2. Sampling will occur during the months with the lowest mean 
AADT estimation error (April through October [210 days]) (Figure 3).

3. Six sets of monitoring equipment are available for short-duration 
counts in addition to the six reference locations.

4. Because bike and pedestrian traffic is separate at some loca-
tions, some segments will require multiple counters (one counter, 47; 
two counters, 27; three counters, 4) and a 10% subsample of the 
segments will be resampled for internal validation (one counter, 5; 
two counters, 2; three counters, 1). The total number of monitoring 
sites is 125.

5. The time to relocate monitors is assumed to be 1 day, resulting 
in 21 days lost to relocation per count cycle (i.e., time to count all 
segments).

6. Relocation of portable counters requires 8 h or 1 person-day.

Long-duration, consecutive-day counts require few samples per 
location; short-duration, nonconsecutive counts allow more tempo-
rally separate samples at each location. To determine whether long 
or short count periods are better, nine scenarios were constructed. For 
each scenario, day-of-year scaling factors are used to calculate mean 
AADT estimation error and the proportion of days used to relocate 
monitors. Count cycles (i.e., the length of time needed to sample all 
segments) were repeated until the 7 months expired. For example, for a 
1-day count period, five count cycles could be completed in 7 months; 
for a 5-day count period, one count cycle could be completed in  
7 months. To simulate the 1-day count period (Scenario 1), 5 days were 
selected at random from each reference location between April and 
October, and AADT was estimated on the basis of those observations. 
This process was repeated for each location and scenario (Table 4).

FIGURE 4  Design scenario: trail segments (78 total) for short-duration-count and 
continuous-count sites [reference location icons scaled by AADT: sum 5 78.5 mi; 
mean 5 1.0 mi; minimum 5 0.28 mi; maximum 5 1.8 mi (1 mi 5 1.61 km)].
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Figure 5 shows mean absolute AADT estimation error and time 
required for relocation in each scenario; scenarios compare the effect 
of sampling on consecutive versus nonconsecutive days (i.e., as count 
period length increases, counts are collected on consecutive days; 
short-duration-count periods are resampled at different times of year). 
The mean error does not differ much across scenarios, thus suggest-
ing that the choice between consecutive and nonconsecutive days is 
not significant, but more labor is required to relocate the monitors 
multiple times for short durations (e.g., 50% of days in Scenario 1  
versus 10% of days in Scenario 9) (Table 4). Furthermore, more count 
data are collected in Scenario 9 (1,121 count-days) than in Scenario 1 
(623 count-days). This analysis does not include a margin of error 
that may be important for unexpected events that may arise (e.g., lost 
data, vandalism, or human error). To account for contingencies, the 
better choice may be a short count duration (e.g., 1 week) that allows 
for extra sampling time if needed and only slightly increases the time 
required to relocate monitors.

DIsCussIon oF ResuLts

Analyses show that use of day-of-year scaling factors results in lower 
error in estimated AADT than are obtained with standard day-of-week 
and month-of-year factors, especially for estimates from short-duration 
counts of 1 week or less. The study analyses corroborate and general-
ize the findings of Nordback et al. that errors in estimated AADT are 
minimized when short-duration counts are taken between April and 
October and that short-duration samples of more than 1 week result in 
only marginal improvements in estimated AADT (27). Also, results 
demonstrated that short-duration counts taken on consecutive days 
rather than randomly selected days produce similar estimated AADT 
values when the day-of-year scaling factors are used, thus indicating 
that analysts can minimize labor costs by conducting short-duration 
counts on consecutive days. The results highlight the need to custom-
ize monitoring strategies for local monitoring networks. One example 
was illustrated for a 78-mi (126-km) trail network in Minneapolis.

TABLE 4  Description of Design Scenarios for 210 Total Available Sampling Days

Scenario
Count Period 
(days)

Count Days 
Per Cycle

Days Per Cycle 
(with relocation)

Number of 
Cycles Possible

Relocation 
Days

Total 
Days

Person Hours 
for Relocation

1 1 125  42 5.1 105 208 840

2 2 249  62 3.4 70 187 560

3 3 374  83 2.5 53 166 420

4 4 498 104 2.0 42 208 336

5 5 623 125 1.7 35 125 280

6 6 748 145 1.4 30 145 240

7 7 872 166 1.3 26 166 210

8 8 997 187 1.1 23 187 187

9 9 1,121 208 1.0 21 208 168
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FIGURE 5  Mean absolute AADT estimation error and person-hours  
required to relocate monitors for each short-duration-count scenario  
(bars 5 standard error).
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The proposed approach that uses day-of-year scaling factors has 
several limitations, including the following:

1. Day-of-year scaling factors can be used only in metropolitan 
areas with similar daily weather patterns and not across larger regions 
or states. Additional research is needed to determine the geographic 
scale over which day-of-year factors can be used. That scale may 
vary across regions within states.

2. Day-of-year scaling factors are useful only for the year for which 
they are calculated. Therefore, they are not as general as the factors 
used in the standard approach. From a practical perspective, whether 
it matters depends on the overall monitoring scheme and schedule for 
producing estimated AADT. As long as continuous monitoring sites 
are operating, year-specific day-of-year factors can be produced. If 
short-duration counts are taken annually, then AADT can be estimated 
accurately. In many cases, the accuracy improvements may warrant 
the use of day-of-year factors. If resource shortages preclude taking 
continuous counts in a given year, then the use of standard factors may 
be necessary (though less accurate).

3. Day-of-year factors only can be applied retroactively, after the 
end of a calendar year, when all daily reference site counts have been 
recorded. This aspect has practical implications. Use of the standard 
approach enables state DOTs to post estimated AADT values as soon 
as short-duration counts are available because the estimates reflect 
general or average traffic patterns. For example, a state DOT that 
verifies a 48-h count of vehicular traffic collected in April can post the 
updated AADT value immediately because factoring calculations are 
embedded in the software. Whether delay poses a problem depends 
on the urgency of the need for estimates and their accuracy. Trade-offs 
may be warranted in cases such as the allocation of maintenance 
resources. In addition, the use of day-of-year factors may be com-
bined with the standard approach to produce more timely estimates 
that can be revised after the end of the year. This hybrid approach 
probably would need multiple years of continuous data to estimate 
the proportion-of-year factor because the length of the nonmotorized 
travel season will vary from year to year.

One limitation of the study example, but not the proposed method, 
is that day-of-year factors were estimated for combined factor groups 
(i.e., mixed–recreational, mixed–utilitarian) because this network 
currently has only six reference monitoring sites. In practice, the 
number of continuous reference sites needed to enable factor devel-
opment for different factor groups depends on the traffic patterns 
that exist at other locations in the network. Factor groups only can be 
determined iteratively, as data are obtained from short-duration counts 
and analyzed and the variation in patterns is determined across sites. 
As data for short-duration counts are obtained, some segments may 
need to be combined and others broken up. Given the recommenda-
tion of five continuous monitors per factor group by Nordback et al. 
and the classification criteria adapted from Miranda-Moreno et al., 
15 reference sites would be needed if recreational locations also exist 
in the network and 20 locations if both recreational and utilitarian 
sites exist (27, 29). The likely effect of pooling factor groups is to 
overestimate the error associated with this method of extrapolation. 
Error can be reduced by refining factor groups.

This scenario illustrates how analysts can work within time and  
equipment constraints to maximize efficiency in data collection. This 
approach involves maximizing the short-duration-count lengths, 
thereby increasing the accuracy of estimated AADT derived from 
those lengths. The study example included a 7-month window for 
short-duration counts, but the number of months or season of year 

appropriate for short-duration counts may vary regionally or for 
different weather patterns. Year-round short-duration counts may be 
feasible in places with arid or subtropical climates, for example; the  
appropriate seasons for monitoring may be different in new locations. 
The time required to relocate portable counters is an important figure 
of merit, with the common goal of reducing that time. The person-
hours required for relocation were estimated but did not include 
other resource requirements, such as travel to monitoring sites, time 
addressing site vandalism, or time spent maintaining equipment per-
formance; most (but perhaps not all) of these resource requirements 
may scale proportionally as the number of monitors used increases. 
Overall, the scenario demonstrated how an agency could monitor a 
78-mi (126-km) trail network in 1 year with a few reference sites and 
six portable counters. As more agencies implement comprehensive  
monitoring programs, their results will aid understanding of program 
design.

ConCLusIons

Use of day-of-year scaling factors results in better estimated AADT 
values than use of standard day-of-week and month-of-year factors 
because day-of-year factors better account for variations in traffic 
associated with daily variations in weather and other factors. Analysts 
with responsibility for nonmotorized traffic monitoring programs 
may want to consider the day-of-year factoring approach to augment 
or replace existing approaches. For monitoring programs of pre-
determined length (e.g., 1 year), analysts should monitor when vol-
umes are highest (e.g., April through October in temperate zones) and 
preferably for at least 1 week [although results acceptable for some 
uses (e.g., ±20%) may be obtained with count durations of only 24 h]. 
By increasing the number of portable counters for short-duration 
monitoring, analysts can increase monitoring program efficiency. 
Future research also should focus on the validation of counting and 
scaling methods across regions; additional study of comprehen-
sive monitoring programs in other regions is needed to confirm the 
implications of the design scenario.
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