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ABSTRACT: Land Use Regression (LUR) models typically use fixed-site
monitoring; here, we employ mobile monitoring as a cost-effective alternative
for LUR development. We use bicycle-based, mobile measurements (∼85 h)
during rush-hour in Minneapolis, MN to build LUR models for particulate
concentrations (particle number [PN], black carbon [BC], fine particulate
matter [PM2.5], particle size). We developed and examined 1224 separate LUR
models by varying pollutant, time-of-day, and method of spatial and temporal
smoothing of the time-series data. Our base-case LUR models had modest
goodness-of-fit (adjusted R2: ∼0.5 [PN], ∼0.4 [PM2.5], 0.35 [BC], ∼0.25
[particle size]), low bias (<4%) and absolute bias (2−18%), and included
predictor variables that captured proximity to and density of emission sources.
The spatial density of our measurements resulted in a large model-building
data set (n = 1101 concentration estimates); ∼25% of buffer variables were
selected at spatial scales of <100m, suggesting that on-road particle
concentrations change on small spatial scales. LUR model-R2 improved as sampling runs were completed, with diminishing
benefits after ∼40 h of data collection. Spatial autocorrelation of model residuals indicated that models performed poorly where
spatiotemporal resolution of emission sources (i.e., traffic congestion) was poor. Our findings suggest that LUR modeling from
mobile measurements is possible, but that more work could usefully inform best practices.

1. INTRODUCTION

Land Use Regression (LUR) is an empirical approach to
describing the spatial or spatiotemporal variability in air
pollution concentrations.1−4 Most LURs are built for one
urban area, using field campaigns of long-term average
concentrations at many (∼20−200) locations, with the
regression equation then used to estimate concentrations at
locations without measurements. Urban scale models have been
developed for cities in North America,5,6 Europe,7,8 South
Asia,9 East Asia,11 and Australia,12 and for national or
international regions in North America,13,14 Europe,15,16 and
Australia.17 Several reviews summarize LUR and compare to
other methods.1−4,18,19

A limitation of LUR is that input requirements are typically
large;20,21 for example, Hoek et al.19 suggest a minimum of 40−
80 sampling locations to properly specify an urban model. As
such, most LUR models have been limited to pollutants for
which inexpensive sampling is possible (most commonly NO
or NO2) or else suffer from potentially too few measurement
sites for pollutants where sampling equipment is expensive
(e.g., ultrafines, black carbon).9,22,23 A variation of traditional
LUR meant to reduce sampling input requirements is to rotate
(short- and long-duration) fixed-site measurements and adjust

for day-to-day differences in background concentrations with
permanent fixed-sites.9,10

A potential alternative to traditional (i.e., fixed-site) LUR
sampling is mobile monitoring. Mobile monitoring allows for
measuring concentrations with good spatial coverage with a
limited number of monitoring devices, but the researcher must
control for temporal variability in concentrations, e.g., via
separate models by time-of-day. A key advantage to mobile
monitoring is the ability to investigate pollutants that are
expensive to measure and for which LUR would be cost or
labor prohibitive using traditional approaches (with devices
currently available).
A limited number of studies have used mobile monitoring to

explore spatial patterns of air pollution and build LUR models.
Most studies use motor vehicles and are for specific sources
(e.g., woodsmoke,24−26 airports,27 high-emitting vehicles)28 or
locations (e.g., freeways29−31 or neighborhoods).32 Some
studies have measured air pollution on bicycle routes in
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urban areas;33−36 for the bicycle-based studies, regression
models were developed to assess the impact of traffic levels and
mix, but complete LUR models were usually not developed.
Best practices for integrating mobile monitoring into LUR
modeling do not exist.37 We explore, for the first time, how
mobile monitoring campaigns can be designed specifically for
the purpose of building LUR models to make spatial estimates
at locations without measurements for particulate air pollution.
In this paper, we develop LURs for on-road, rush-hour (7−9

am; 4−6 pm) particulate air pollution concentrations in
Minneapolis, MN using bicycle-based, mobile monitoring.
Our data set (3 × 105 individual measurements per instrument)
allowed for development of many LUR models (n = 1224). We
were able to assess important modeling choices (e.g., spatial
and temporal smoothing) due to the spatial density of
concentration estimates (n = 1101) tabulated from our mobile
measurements. We explored how careful design of mobile
measurement campaigns and data postprocessing to control for
temporal variability impacts LUR model performance.

2. MATERIALS AND METHODS

2.1. Mobile Monitoring Data for LUR Development.
We developed LUR models using mobile measurements of
particulate air pollution.38 Multiple aspects of particulates were
measured using a bicycle-based sampling platform: particle
number (PN) concentration (CPC 3007, TSI, Inc., Shoreview,
MN), black carbon (BC) mass concentration (AE51, AethLabs,
San Francisco, CA), fine particulate (PM2.5) mass concentration
(DustTrak 8320, TSI, Inc.), and particle size distributions
(NanoScan, TSI Inc.). Mobile measurements were collected
with the goal of LUR-development in mind; three sampling
routes were selected to span various levels of traffic, types of
land use, and cover a large number of neighborhoods. The
routes were sampled repeatedly (thereby mitigating the effect
of singular events during any one sampling run) during
morning (7−9 am) and afternoon (4−6 pm) rush-hour (8/
14−10/16/2012); reference measurements were collected at a
central site before and after each sampling run to control for
day-to-day variability in background concentrations among
sampling days. In total, 42 sampling runs (∼85 h of on-road
measurements; 30 [12] runs in the afternoon [morning]) were
completed among the sampling routes.
Measurements were corrected for sampling-artifacts and for

temporal variability to assemble a consistent data set for spatial
analysis. Specifically, we (1) collected reference-site measure-
ments at a central site for 30 min before and after each
sampling run and (2) developed pollutant-specific underwrite
functions to estimate background concentrations during each
sampling run. We adjusted our measurements for day-to-day
differences in background concentrations using a 3-step

process: (1) subtracting instantaneous background concen-
tration estimates (via the underwrite function) from all
instrument-reported concentrations, (2) calculating mean
reference-site (i.e., background) measurements among all
sampling days, and (3) adding the mean reference-site
concentrations (from step 2) to the underwrite adjusted
concentrations from step 1. This process was repeated
separately for morning and afternoon sampling runs. See
Hankey and Marshall38 for details on the measurement
campaign and data postprocessing. Summary statistics of the
unadjusted and adjusted measurements are in Table S1 of the
Supporting Information.
We performed sensitivity analyses to explore how various

parameters (e.g., pollutant averaging time, spatial resolution of
the aggregation of the mobile-measurements) impact LUR
model performance. In total, we developed and examined 1224
separate LUR models; we discuss trends in model performance
for these sensitivity analyses and describe how we chose base-
case models for each pollutant (PN, BC, PM2.5, particle size)
and time-of-day (morning; afternoon).

2.2. LUR Dependent Variables: Spatial and Temporal
Aspects of Data Aggregation. Few studies offer guidance
on how best to aggregate and model mobile measurements
using LUR.37 Our approach is based on aggregating measure-
ments at equal interval distances along the sampling routes.
Then, we use estimates of concentrations from pooled data at
each aggregation location to build LUR models for each
pollutant. We develop separate models for morning and
afternoon to account for temporal variability in the spatial
patterns of concentrations.

2.2.1. Characteristics of the Measurement Distributions at
Aggregation Locations. Our goal is to develop models for
“typical” on-road exposure concentrations during morning and
afternoon rush-hour; as such, our base-case models use
estimates of central tendencies of the measurement distribu-
tions at each aggregation location. We also explored other
distribution summaries to describe spatial patterns of “acute”
(i.e., 75th and 90th percentiles) and “baseline” (i.e., 10th and
25th percentile) concentrations.

2.2.2. Temporal Smoothing of Mobile Measurement Data.
We checked for differences in LUR model performance using
various averaging times for the time-series concentration
measurements (i.e., 1, 10, 30, 60, 300 s). We explore how
temporal smoothing of mobile measurements may dampen
spatial variability.

2.2.3. Distance between Aggregation Locations. We
aggregated counts at varying distances (50, 100, 200 m)
along the sampling routes to test how spatial resolution impacts
model performance. As the distance between aggregation
locations decreases, the spatial resolution increases (a benefit

Table 1. Parameters Used To Generate Various Iterations of LUR Models

parameter values for core models
values for sensitivity

analyses

pollutant particle number, black carbon, PM2.5, particle size (same)
time of day morning, afternoon (same)
statistical summary of concentrations at each
aggregation location

mean, median P10, P25, P75, P90

averaging time lowest time average with sufficient model performance
(60 s for BC, particle size; 1 s for PN, PM2.5)

1, 10, 30, 60, 300 s

spatial resolution 100 m 50, 200 m
are concentrations (dependent variable) log-
transformed?

yes no
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for LUR modeling) but the number of measurements per
location decreases (a dis-benefit). Some aggregation locations
using the 50 m version had small sample sizes (see Figures S2
and S3 of the Supporting Information). On the basis of the
average block size in Minneapolis (∼120 m) and requiring the
median sample size at each aggregation location be sufficient to
tabulate distributional parameters (>50 measurements per
location), we chose 100 m as our base-case spatial resolution.
Parameters used to specify the dependent variable (i.e.,

pollutant concentration) in the LUR models are in Table 1. We
primarily focused on three factors when selecting base-case
models: (1) type of pollutant, (2) time of day (morning,
afternoon), and (3) summary metric of the measurements at
each aggregation location. Models employing variations among
other parameters were used to test the sensitivity of the base-
case models to other choices such as averaging time, spatial
resolution, log transformation of concentrations, and modeling
aspects other than central tendencies. We developed and
examined 1224 separate LUR models to explore the effect of
each parameter (i.e., 4 pollutants × 2 times of day × 6
distributional parameters × 5 averaging times × 3 spatial
resolutions × 2 transformations = 1440 potential LUR models;
because fewer averaging times [n = 2] were available for the
NanoScan the total number of actual LUR models was 1224).
2.3. LUR Independent Variables. We assembled four

categories of candidate independent variables: (1) traffic, (2)
land use, (3) population dynamics, and (4) physical geography.
Variables were either point estimates at a specific spatial
location or (more commonly) based on buffers around a
measurement location. We included 14 buffer variables (at 15
buffer lengths each) and 5 point variables, resulting in a total of
215 (i.e., 14 × 15 + 5) variables available for selection in each
model (Table 2). Candidate independent variables were the
same for all models; differences among models are in the
dependent variables.
2.4. LUR Model Building Approach. We built LUR

models using the stepwise regression technique given in Su et
al.39 Specifically, all 215 candidate independent variables are
checked for strength of correlation with the dependent variable
(pollutant concentrations); then, the independent variable
most correlated with the dependent variable is added to the
model. The regression is performed on the included variable
and the remaining candidate variables are then tested for
correlation with the model residuals; again, the most correlated
variable is added to the model. This process repeats until the
last added variable is either not significant (p > 0.05) or has
Variance Inflation Factor (VIF; a check for multicollinearity
with other independent variables) greater than 5. If a variable
was selected at one buffer length we allowed the model to again
select that variable at another buffer length. For each model, we
calculated goodness-of-fit (adjusted R2), mean absolute error,
and mean absolute bias. We explored trends in these metrics
when varying the dependent variable, as described above.
2.5. LUR Model Validation. We performed the following

validation exercises:
Random Holdout Validation. We employed a Monte Carlo

random hold out of 1/3 of the measurement data to use as a
validation data set. We compared model estimates and
observed concentrations (for the hold-out data set) by
correlation to calculate validation R2 values. We repeated this
process 100 times for each model.
Systematic Validation by Sampling Route. We also applied

a more rigorous, systematic validation approach, wherein we

use two sampling routes for model-building, and the third route
for model-testing. This process was repeated for each sampling
route and each model.

Assessing Spatial Autocorrelation. We explored spatial
autocorrelation among model residuals to assess overall model
fit (using Moran’s I) as well as any patterns in locations where
model estimates were poor. To explore the local patterns of
spatial autocorrelation, we used a Local Indicator of Spatial
Analysis (LISA) developed by Anselin.40

3. RESULTS AND DISCUSSION
We developed a large number of LUR models (n = 1224) to
assess how postprocessing of the mobile measurement data
impacts model performance. Here we summarize key findings;
detailed analyses are in the Supporting Information.

3.1. Model Results: Distributional Parameter at
Aggregation Location. We used six distributional parameters
at the aggregation locations (P10, P25, P75, P90, mean,
median) as dependent variables in the LUR models. Models
generally performed better for median than for mean
concentration (see Figures S5−S8 of the Supporting
Information). In some cases (for PM2.5 and BC in the
mornings), adjusted R2 values were higher for the mean model
than for the median model; however, in all cases absolute error
and bias were either similar or lower for median than for mean
concentrations. Thus, we chose to use median concentrations
for the base-case models.
For the other distributional parameters, model performance

(adj-R2) was best for the lower ends of the distribution (i.e.,
10th and 25th percentile) and worst at the upper ends of the
distribution (i.e., 75th and 90th percentiles). This finding
suggests that lower percentile (cleaner-air) conditions are more
correlated with local land uses than higher percentile (dirtier-

Table 2. Independent Variables Included in Model Building

variable units buffer/point

traffic
length of all roads meters buffer
length of freeways meters buffer
length of major roads meters buffer
length of local roads meters buffer
count of intersections number buffer
length of bus routes meters buffer
count of bus stops number buffer
traffic intensity AADT m−2 point
distance to freeway meters point
distance to major road meters point

land use
industrial land use area square meters buffer
retail land use area square meters buffer
railway land use area square meters buffer
open space land use areaa square meters buffer

population
population density people km−2 buffer
housing unit density house km−2 buffer
median HH income USD buffer

physical geography
elevation meters point
slope grade (%) point

buffers (meters): 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 750, 1000,
1500, 2000, 3000, 5000

aIncludes parks, water, golf courses, and cemeteries.
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air) conditions. Higher-percentile conditions may depend on
idiosyncratic attributes (e.g., the specific types and distances of
vehicles near the monitoring device).
3.2. Model Results: Temporal Smoothing and Spatial

Aggregation. To explore the impacts to model performance
of temporal smoothing, we varied the averaging time of the
mobile measurements. A disadvantage to time-averaging is the
corresponding spatial smoothing of the data; thus, our goal was
to employ time-averaging only when doing so increased the
LUR model performance. Model adjusted R2 was mostly
unchanged (slight increase) with greater time averages
(absolute error and bias also were mostly unchanged). We
chose small (or no) time-averaging to minimize spatial
smoothing: for PN (1 s), PM2.5 (1 s), and particle size (60
s). For BC, an averaging time of ∼60 s was beneficial to model
performance (see Figure 1); this improvement was likely
attributable to smoothing inherent noise in the instrumentation
(microaethalometers can have significant noise at small time
scales, e.g., 1−30 s, especially for mobile monitoring).41

Model performance was generally better in the afternoons
than mornings. This effect could be attributable to differences
in the spatial patterns of pollutants during those times of day
(e.g., lower background concentrations and spatial variability in
the afternoons) or could be a result of fewer sampling runs in
the morning (n = 12) than in the afternoon (n = 30). Model

adjusted R2 was highest for PN concentrations (adjusted R2 ∼
0.5), moderate for both PM2.5 and BC concentrations (adjusted
R2 ∼ 0.3−0.5), and lowest for particle size (R2 ∼ 0.25).
As described above, we aggregated the mobile measurements

at specific distances along the sampling routes. As a sensitivity
analysis, we generated models for aggregation intervals of half
(50 m) and double (200 m) the base-case, 100 m. We found
(see Figure 1) little difference in model performance by the
spatial resolution of aggregation locations. Figures S9−S12 of
the Supporting Information summarize results by spatial
resolution and time-averaging interval; in general, model
performance was effected more by time-averaging than spatial
resolution.

3.3. Base-Case LUR Models. We chose the spatial
resolution of base-case models (i.e., 100 m aggregation) to
ensure that aggregation locations provided sufficient sample
sizes to estimate concentrations and by assessing changes in
model performance under alternate spatial resolutions (50, 200
m). One exception is that, for particle size, we chose models
based on the 200 m aggregation because the NanoScan’s
minimum time resolution is 1 min (a time that corresponds to
∼260 m traveled at an average speed of 10 mph). As described
above, we chose median (rather than mean) concentrations at
aggregation locations, strived to minimize time-averaging when
possible, and used log-transformed dependent variables. To

Figure 1. LUR model performance by averaging time and distance between aggregation locations.
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evaluate our choice of base-case models, we also summarized
models that performed best (based on adjusted R2) for each of
the eight model cases (i.e., each pollutant and time of day).
Table 3 shows the 8 base-case models and the “best” models.
In general, base-case models performed similarly to the

“best” models. Variables selected in the “best” models were
similar to those in the base-case models. Adjusted R2 was only
slightly lower for the base-case models. However, absolute
error, bias, and absolute bias were similar between the two
groups of models; this result indicates that although model
adjusted R2 was slightly higher for the “best” models, error in
concentration estimates was similar among the models. In most
cases, the “best” models included more spatial (mostly 200 m)
and temporal (mostly 60 s) smoothing of the data. Because
error and bias were generally similar between the two groups of
models, it is possible that the higher R2 values in the “best”
group is a result of a reduction in the variability of the model
input concentrations from spatial and temporal smoothing.
Absolute bias was low for all models (2−18%) and lower for
pollutants with less spatial variability (PM2.5 [ ∼5%], particle
size [∼3%]) than for the traffic-related pollutants, which

exhibited higher spatial variability (PN [∼13%], BC [∼18%]).
Our base-case models had moderate R2 values and small
absolute bias; this result is perhaps explained by the limited
spatial variability in our concentration estimates (especially for
the afternoon). Repeating our methods in cities with more
spatial variability in particulate concentrations may improve R2

values, assuming those variations correlate well with land uses.
Table 4 shows independent variables (with corresponding

buffer sizes) selected in each base-case model. To compare
model results among pollutants we calculated fully normalized
model coefficients by multiplying each coefficient by the
following factor: difference between the 95th and 5th percentile
independent variable value divided by the difference between
the 95th and 5th percentile dependent variable value (i.e.,
pollutant concentration). The normalized model coefficients
represent the number of 95th/5th percentile differences that
pollutant concentrations will increase with each 95th/5th
percentile difference increase in the corresponding independent
variable. In most of the base-case models, a small number of the
independent variables accounted for a large proportion of the
variance explained. In six [two] of the eight models, the first

Table 3. Base-Case Models Compared to “Best” Models As Measured by Adjusted R2

modela

spatial
resolution

(m)

time
average
(s)

aggregation
distribution
parameter R2 Adj R2 absolute error

bias
(%)

absolute
bias (%)

number of independent
variables included

base-case models
PM2.5 morning 100 1 median 0.31 0.30 0.71 μg m−3 <1 7 14
PM2.5 afternoon 100 1 median 0.50 0.49 0.23 μg m−3 <1 3 12
particle number morning 100 1 median 0.50 0.50 5290 pt cm−3 3 18 18
particle number afternoon 100 1 median 0.48 0.48 1230 pt cm−3 <1 8 7
black carbon morning 100 60 median 0.29 0.28 0.55 μg m−3 3 18 16
black carbon afternoon 100 60 median 0.43 0.42 0.16 μg m−3 3 18 15
particle size morning 200 60 median 0.30 0.29 1.97 nm <1 5 8
particle size afternoon 200 60 median 0.22 0.20 0.72 nm <1 2 11

“best” models
PM2.5 morning 200 60 mean 0.49 0.48 0.80 μg m−3 <1 7 13
PM2.5 afternoon 200 30 median 0.57 0.56 0.25 μg m−3 <1 3 14
particle number morning 200 60 median 0.58 0.56 5570 pt cm−3 2 17 19
particle number afternoon 100 60 median 0.61 0.60 1450 pt cm−3 <1 8 26
black carbon morning 100 60 mean 0.35 0.35 0.58 μg m−3 3 18 14
black carbon afternoon 200 60 median 0.49 0.47 0.15 μg m−3 2 16 13
particle size morning 200 60 median 0.30 0.29 1.97 nm <1 5 8
particle size afternoon 200 60 median 0.22 0.20 0.72 nm <1 2 12

aAll models shown here employ log-transformed concentrations as the dependent variable.

Table 4. Fully Normalized Coefficients and Buffer Sizes for the Base-Case LUR Modelsa,b

aHere, all model coefficients were fully normalized by multiplying by the following factor: difference between 95th and 5th percentile independent
variable values divided by the difference between 95th and 5th percentile pollutant concentration values. bEach entry in the table shows fully
normalized coefficients with the corresponding buffer length in meters in parentheses.
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two [three] variables accounted for over half of the final R2

(Tables S2−S9 of the Supporting Information). We created
plots of β × IQR vs the partial R2 for each independent variable
to visually depict how each independent variable contributed to
the base-case models (Figures S13−S16 of the Supporting
Information). Variables that were the most important (i.e., high
β × IQR and high partial R2) were those related to separation
from emission sources (e.g., open space area, distance from
major roads, length of low-traffic roads) and proximity to and
density of emission sources (e.g., industrial area, house density,
length of high-traffic roads). Figure 2 shows model estimates of
afternoon rush-hour concentrations for the City of Minneap-
olis.

A unique aspect of our approach to build LUR models is the
density of concentration estimates in the study area (1101
locations here, versus 20−200 in a typical LUR). Among the
base-case models, 23 variables (24% of the total) employ buffer
lengths <100 m; the proportion was slightly higher for the
traffic-related pollutants (BC [29%]; PN [30%]). These
variables included length of major roads (n = 6), retail area
(n = 6), house density (n = 3), and bus routes/stops (n = 3).
Selection of these variables at a small spatial scale suggests that
activity centers (e.g., origins [house density], destinations
[retail areas]) and busy travel routes (e.g., major roads and bus

routes/stops) are important to the small-scale variation in
traffic-related pollutants.
Some variables switched direction at different buffer lengths.

For example, when open space was selected at a buffer length of
1500 m or less, the coefficient was always negative and the
magnitude was largest for the smaller buffer sizes (e.g., 25m).
However, when open space was selected at a buffer length of
>1500 m, the coefficients were positive. That result is likely
attributable to confounding factors; for example, many of the
off-street trails sampled (often colocated with open space) are
old rail corridors, near freeways, or near activity centers. For
Minneapolis, the open space variable (at large buffer sizes) may
better capture these colocated emission sources than other
variables. If we had forced variables to have a specific sign (e.g.,
open space must have a negative coefficient) we would not
have uncovered this aspect of the data (yet the resulting model
may be more applicable to other locations).
To test how our temporal adjustment for day-to-day

differences in background concentrations (see Hankey and
Marshall38) influenced model performance, we reran all base-
case models using unadjusted concentrations. Mean adjusted R2

decreased by 0.02 and mean error and absolute bias increased
for all models (see Table S10 of the Supporting Information).
We also reran all models using pooled measurements from
morning and afternoon sampling runs. Model adjusted R2

increased slightly (mean increase: 0.06); however, we chose
to model each time period separately to preserve differences in
spatial patterns of pollutant concentrations by time of day.

3.4. LUR Model Validation. In general, validation R2 values
(resulting from the Monte Carlo 1/3 hold-out analysis) were
slightly lower than for the full models (average gap between
model-building and model-testing R2 is 0.07; for a 10% hold-
out and the gap decreased slightly to 0.06), suggesting that
goodness-of-fit statistics reported here may be slightly over-
estimated (see Figure S17 of the Supporting Information).
Models were not robust to the systematic validation

approach (i.e., using data from two routes to predict the
third). R2 values were low for predicted vs observed
concentrations for nearly all validation models (see Figures
S18−S25 of the Supporting Information). This finding is
perhaps because of how we chose sampling routes. We strived
to span the variable space for many predictor variables among
all three routes. However, since sampling routes were
completed in 2 h periods, we were not able to balance
spanning all factors within each individual route. Thus, in this
case the systematic validation approach may be an overly lofty
criterion for an acceptable model based on our sampling
method.
In general, model residuals showed moderate spatial

autocorrelation using Moran’s I (see Table S11 of the
Supporting Information). As the search radius increased,
Moran’s I decreased suggesting that spatial autocorrelation is
mostly an issue at small geographic scales. Most model residuals
(∼90%) were not flagged by the LISA procedure; among the
flagged values, most were locations where the model under-
estimated concentrations: at congested locations during rush-
hour (e.g., high-traffic arterials near entrances to freeways;
Figure S28−S29 of the Supporting Information). During
sampling runs, we were sometimes unable to pass through
the congestion at these locations and instead were forced to
wait in idling traffic. Our models likely underestimate
concentrations in the congested areas because temporally
resolved spatial information on congestion was not available for

Figure 2. LUR model estimates for rush-hour in Minneapolis, MN.
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use in the LUR models. Our traffic intensity metric, based on
annual average daily traffic, does not capture hourly variations
in traffic.
We tested whether bicycle speed could be used as a proxy for

vehicle congestion by including mean bicycle speed as a
candidate independent variable in the model building process.
This approach did not change model performance (see Table
S13 of the Supporting Information); adding this variable was
likely not effective because bicycle speed is not only affected by
motor vehicle congestion but also by other factors (e.g., hills;
presence of a stop sign or traffic light).
3.5. Model Performance as a Function of Hours of

Data Collected. We designed our study to capture “typical”
concentrations by sampling the same routes repeatedly on
different days. A question related to this approach is how many
sampling runs are needed for concentration estimates to
converge. To explore this issue we built LUR models separately
depending on the number of sampling runs completed. We
found that model adj-R2 increased as the number of sampling
runs completed increased. However, the magnitude of increase
diminished as more sampling runs were completed (see Figure
3 for afternoon sampling runs; Figure S31 of the Supporting
Information for morning sampling runs). This finding suggests
that, for conditions considered here, additional sampling runs
(beyond ∼40 h in Figure 3) may only add incrementally to
model performance. Further work is needed to replicate this
finding in other urban areas.
3.6. Implications of Using Mobile Monitoring to Build

LUR Models. There are a limited number of studies that use
mobile monitoring to develop LUR models. Even fewer studies
design measurement campaigns with the goal of using models
to make estimates at all spatial locations in a study area. Table 5
summarizes prior studies by pollutant and model performance.
Only three studies designed measurements with the goal of
spatial extrapolation; all were for woodsmoke (two in
Vancouver, Canada; one in upstate New York). Most studies
collected measurements using motorized vehicles and many
focused at least partly on freeways. Many of the studies
included real-time traffic estimates as predictor variables; this
approach precludes the possibility of extrapolating estimates to
locations without automated traffic counts. Our models
performed similarly to the other studies, which is reassuring
given our limitations (nonmotorized vehicle; lack of real-time
traffic data). Model R2 values displayed in Table 5 reflect
differences in reporting methods (R2 versus adjusted R2, cross-
validated versus not) and suggest only modest performance: of
the 20 R2/adj-R2 values listed in the table, only three are greater
than 0.6.
A key advantage to mobile monitoring for LUR-development

is the spatial density of measurements. Our data aggregation
approach resulted in a large number of concentration estimates
for modeling (i.e., n = 1101 for the base-case models; n = 550−
2202 for the sensitivity analyses) relative to typical fixed-site
LUR models (n ∼ 20−200). Our approach allowed for two
notable differences in how we assembled independent variables.
First, our models included buffer sizes (25−100 m) that are
smaller than is typical for LUR models making it possible to
investigate small-scale changes in land use that may impact
concentrations. Second, because our study area is for only one
municipality (i.e., City of Minneapolis), we were able to
assemble GIS data that has more detail than is typically
available at larger scales (e.g., regional or national level models).
For example, we were able to use better information on street

classification (freeway, arterial, collector, local) than is available
from state or national databases (federal, state, municipal
roads) and define specific land uses (e.g., retail area and
industrial area) that may correlate with concentrations.
Merging temporal and spatial aspects of LUR modeling is an

ongoing and worthwhile goal for explaining exposure patterns.
We isolated specific times of day (i.e., morning and afternoon
rush-hours) to control for hour-of-day differences in the spatial
patterns of particulate concentrations. A limitation to modeling
spatiotemporal patterns of pollutant concentrations is the
necessary input data. For example, we used GIS based variables
in our LUR models. We hypothesize that our models
underestimate higher concentrations due to the poor
spatiotemporal resolution of traffic-related input data (i.e.,
congestion patterns). This issue may be especially important for
models that isolate specific times of day.29 More work is needed
to generate input data for LUR modeling that reflects the
spatiotemporal nature of emission sources.
An important outstanding research question is whether

short-duration (e.g., hourly) estimates of concentrations can be
scaled to longer-term (e.g., annual-average) concentration

Figure 3. LUR model performance by hours of mobile measurements
for afternoons. Included in both panels are values for the model
building and validation (10% hold-out) data sets. Fewer sampling runs
were completed for black carbon.
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estimates. For example, our LUR models were developed for
specific time periods (7−9 am, 4−6 pm; late summer);
however, most studies of air pollution and health use annual-
average concentrations. A little-studied topic is what
uncertainty exists with scaling concentration estimates and
what number of mobile-monitoring measurements would be
needed at a short-duration site to reliably scale to long-term
averages (or from on-road concentrations to near-road
concentrations).
Our measurement campaign was carried out in a relatively

clean urban area. For some pollutants and times-of-day (i.e.,
afternoon PM2.5 and BC) we observed limited spatial variability.
This suggests that for certain combinations of pollutant, time-
of-day, and urban area our approach may offer limited benefits
over fixed-site monitoring. At the same time, our approach’s
ability to capture even small variability in concentrations is
promising for using mobile measurements in LUR. Systematic
evaluation of our approach in other cities, seasons, and times-
of-day would help identify scenarios when our approach would
offer the most benefit over fixed-site monitoring.
Our work suggests that LUR modeling from mobile

measurements is possible; further investigation would help to
determine best practices and make results more generalizable.
Future research should aim to refine mobile measurement
campaigns in systematic ways to tailor the data sets for use in
LUR models.
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