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� Monitored particulate air pollution for 85 h (1426 km) in a city while cycling.
� ~50% of Black Carbon (BC) and Particle Number (PN) concentrations were from near-traffic emissions.
� BC and PN were correlated with street type and declined short distances from major roads.
� Presence of nearby trucks was associated with highly elevated concentrations of particulates.
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a b s t r a c t

Inhalation of air pollution during transport is an important exposure pathway, especially for certain
modes of travel and types of particles. We measured concentrations of particulate air pollution (particle
number [PN], black carbon [BC], fine particles [PM2.5], particle size) using a mobile, bicycle-based
monitoring platform during morning and afternoon rush-hour to explore patterns of exposure while
cycling (34 days between August 14 and October 16, 2012 in Minneapolis, MN). Measurements were geo-
located at 1 s intervals along 3 prescribed monitoring routes totaling 85 h (1426 km) of monitoring. Mean
morning [afternoon] on-road concentrations were 32,500 [16,600] pt cm�3, 2.5 [0.7] mg m�3 BC, 8.7
[8.3] mg m�3 PM2.5, and 42 [39] nm particle diameter. Concentrations were correlated with street
functional class and declined within small distances from a major road (e.g., for PN and BC, mean con-
centration decreased ~20% by moving 1 block away from major roads to adjacent local roads). We es-
timate the share of on-bicycle exposure attributable to near-traffic emissions (vs. regional pollution) is
~50% for PN and BC; ~25% for PM2.5. Regression models of instantaneous traffic volumes, derived from
on-bicycle video recordings of nearby traffic, quantify the increase in particle-concentrations associated
with each passing vehicle; for example, trucks were associated with acute, high concentration exposure
events (average concentration-increase per truck: 31,000 pt cm�3, 1.0 mg m�3 PM2.5, 1.6 mg m�3 BC). Our
findings could be used to inform design of low-exposure bicycle networks in urban areas.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

During the past decade, US federal agencies have launched pro-
grams aimed at promoting healthy, sustainable communities (CDC,
2012; HUD, 2012); one commonly cited strategy is to encourage bi-
cycle travel. Cycling can benefit individuals (e.g., increased physical
activity (Andersen et al., 2000; Hamer and Chida, 2008)) and society
(e.g., reduced emissions (Grabow et al., 2011); shifting demand from
the vehicle network (Ewing and Cervero, 2001)). However, decision-
makers have little evidence-based guidance on how best to design
bicycle networks that minimize exposure to environmental hazards
such as particulate air pollution.

Exposure to particulate air pollution is an important risk factor
for cardiovascular disease in urban areas (WHO, 2009). Multiple
studies report adverse health effects associated with within-city
concentration gradients of fine particulate matter (PM2.5 (Jerrett
et al., 2005; Miller et al., 2007)) and that urban air quality is
correlated with the built environment (Bechle et al., 2011; Clark
et al., 2011; Hankey et al., 2012). The within-city health studies of
PM2.5 and mortality (Jerrett et al., 2005; Miller et al., 2007) report
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similar differences in risk as the larger, between-city cohort studies
that have guided policy on ambient air pollution (Pope et al., 2009;
Hoek et al., 2013). In addition, researchers have shown that con-
centrations of traffic-related pollutants on high traffic roads (i.e.,
freeways) decrease rapidly as distance from the roadway increases
(Karner et al., 2010; Zhang et al., 2002; Zhu et al., 2002). A key
question for urban planners is how to best design bicycle networks
to minimize exposure to air pollution.

Exposure to particulate air pollution during transport is an
important exposure pathway (Dons et al., 2011). For example,
detailed measurements on 62 people in Flanders, Belgium found
that the ~6% of people's time spent in transport accounts for an
average of 30% of total inhaled Black Carbon (BC; Dons et al., 2012).
An earlier study in California estimated that in-vehicle exposure to
diesel particulate matter accounted for 28e55% of total exposure
(Fruin et al., 2004). Multiple studies have investigated exposure for
various modes of transport and concluded that cycling is generally
among the most exposed if accounting for breathing rates (Dons
et al., 2012; Bigazzi and Figliozzi, 2014; Int Panis et al., 2010).
Traffic-related pollutants, including pollutants not currently regu-
lated by the EPA (e.g., BC, particle number [PN]), could play a sig-
nificant role in the within-city health disparities related to air
pollution (Gauderman et al., 2007; Peters et al., 2004; Wilhelm and
Ritz, 2002). Exposure to PN and BC while cycling impacts lung
function, exacerbates asthma, and changes heart rate variability
(Strak et al., 2010; Weichenthal et al., 2011). Risk assessment
studies have shown that cycling is overall health promoting (de
Hartog et al., 2010; Rojas-Rueda et al., 2011); however, health
benefits from physical activity may be reduced in the presence of
air pollution for certain health outcomes (i.e., respiratory disease
(Giles and Koehle, 2014; Andersen et al., 2015)).

We present results from a mobile, bicycle-based particulate air
pollution measurement campaign in Minneapolis, MN. Previous
studies have used primarily motor vehicles to collect mobile mea-
surements (Fruin et al., 2008; Larson et al., 2009; Su et al., 2013;
Westerdahl et al., 2005; Hudda et al., 2014) and are dispropor-
tionately focused on or near freeways (Aggarwal et al., 2012; Patton
et al., 2014). Some exploratory studies have measured air pollution
on targeted bicycle routes in urban areas (Boogaard et al., 2009;
Hatzopoulou et al., 2013; Hong and Bae, 2012; Van Poppel et al.,
2013; Zuurbier et al., 2010; Van den Bossche et al., 2015). We
designed our measurement campaign to assess three factors of on-
bicycle exposure that have not been addressed in the literature: (1)
estimating the contribution of near-traffic vs. regional emissions,
(2) assessing how concentrations correlate with street functional
class and proximity to major roads, and (3) quantifying acute in-
creases in concentrations attributable to instantaneous traffic
counts in close proximity to a cyclist.

We measured concentrations of PN, BC, and PM2.5 as well as
particle size along 3 routes (~100 km total) repeatedly during
morning and afternoon rush-hours. We developed an approach to
control for temporal variability in background concentrations; thus,
we were able to pool measurements among monitoring days to
explore patterns of exposure while cycling. Our dataset represents
one of the largest bicycle exposure datasets to date (and for on-
roadway measurements in general); our approach to systemati-
cally design routes and account for background concentrations to
isolate the effect of traffic patterns and spatial distribution of
emissions on exposuremakes our study distinct when compared to
previous studies of on-bicycle exposure.

2. Material and methods

We developed a custom, mobile monitoring platform using a
bicycle and a modified bicycle trailer to measure on-road
concentrations of particulate air pollution. We sampled 3 pre-
scribed routes during a consistent time of day to control for hourly
variability in traffic patterns and emissions. Routes were sampled
on a rotating basis; we completed 42 monitoring runs during
morning (7e9am; n ¼ 12) and afternoon (4e6pm; n ¼ 30) rush-
hours on weekdays (8/14/12-10/16/2012). As such, the measure-
ments presented in this paper are representative of rush-hour
concentrations during late summer and fall in Minneapolis. In to-
tal we cycled 1426 km to collect 85.3 h (for each instrument:
3 � 105 individual 1-s measurements) of on-road data.

2.1. The bicycle-based monitoring platform

We modified a commercial bicycle trailer to carry air pollution
instrumentation that measures concentrations of four aspects of
particulate air pollution: (1) TSI CPC 3007 (PN concentration;
>10 nm), (2) AethLabs AE51 micro-aethalometer (BC mass con-
centration), (3) TSI DustTrak 8530 (PM2.5 mass concentration), and
(4) TSI NanoScan (particle size distribution; 10e420 nm). The first
three instruments record measurements at 1 s intervals; the
NanoScan completes one scan per minute. Temporally-resolved
measurements of particles gives information on small-scale
changes in concentrations attributable to acute exposure events
such as vehicles passing in close proximity, crossing over a busy
freeway, or waiting at a stoplight in traffic. Our sampling intake
(~1.7 m above the ground; stainless steel and conductive tubing) is
approximately at the breathing height of a cyclist. The bicycle and
trailer were also equipped with a GPS device, odometer and
speedometer, rear- and forward-facing video cameras, and tem-
perature and relative-humidity data loggers (see Figs. S1 and S2;
Table S1).

2.2. Instrumentation and data processing

Post-processing the data, to account for known measurement-
artifacts, for each instrument is described below. The NanoScan
did not require adjustments; instead this instrument was checked
against a laboratory-based reference instrument at TSI, Inc. (R2:
0.99; Fig. S3). Flow and zero checks were performed daily on all
instruments before monitoring. We corrected for differential lag
times among instruments (Fig. S4; Table S2).

For micro-aethalometer data, we removed spurious spikes due
to mechanical shock using the method of Apte et al. (2011) and
applied the Kirchstetter and Novakov (2007) correction for particle
loading. The former algorithm resulted in 1% (morning) and 2%
(afternoon) of the data being removed as spurious. DustTrak data
were real-time corrected for relative humidity (Both et al., 2011;
Chakrabarti et al., 2004). We created and applied a mass calibra-
tion using filter measurements (Casella Apex Pro pump, BGI
cyclone, PTFE filters with pore size of 2.0 mm) to account for the
local optical properties of particles at the study site (mass calibra-
tion R2: 0.82; Fig. S5). For the 1.2% of on-roadmeasurements greater
than the manufacturer-specified maximum concentration of
100,000 particles cm�3, we applied the correction fromWesterdahl
et al. (2005).

2.3. Monitoring route selection

We selected 3 monitoring routes (~32 km each) in the City of
Minneapolis (Figs. S6eS9). Routes were chosen to cover many land
uses and many neighborhoods, to sample at multiple distances
from common emission-sources (e.g., major roads; the central
business district), and to cover all street classifications while
oversampling bicycle facilities (e.g., bike lanes or off-street trails).
Routes were sampled repeatedly during morning and afternoon
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rush-hours; routes were sampled in both forward and reverse
directions.

The monitoring routes were distributed more equally among
road types (arterial: 33%, collector: 19%, local: 19%, and off-street
trails: 29%) than the City as a whole (arterial: 14%, collector: 14%,
local: 64%, and off-street trails: 7%; see Table S5). We selected
routes so that 53% of the total distance is on a bicycle facility (i.e.,
off-street trail, on-street lane or marking; 14% for the City). Land
uses that may influence concentrations had good spatial coverage
among our routes. For example, land uses within 25m of the routes
included retail (35%), industrial (16%), and open space (34%).

2.4. Reference site measurements and adjusting for background
concentrations

To record day-to-day differences in background concentrations
we collected measurements at a reference site for 30 min before
and after each monitoring run (we did not have the necessary
equipment to maintain a permanent reference site). The reference
site was a 15 ha park on the Mississippi River ~300 m from the
nearest major road (Fig. S10).

As a second estimate of background concentrations, we devel-
oped instrument-specific underwrite functions that identify the
cleanest concentrations measured on-road (specifically, the 1st
percentile concentration within a moving 30-min window; see
Table S7). This approach aims to capture times when we sampled
from air parcels with as little impact as possible from nearby
sources, i.e., the closest to “background” one can find on-roadway
during those 30 min.

The two approaches (measurement at a clean urban reference
site; underwrite function to identify clean on-road air parcels)
allow for correction for differences in daily background concen-
trations. We then apply the temporal (i.e., daily background)
correction, as follows: (1) the underwrite function was generated
for each time-series (i.e., monitoring run), (2) for each data point
the corresponding underwrite concentration estimate was sub-
tracted from the instrument-reported measurement, (3) a “typical”
background concentration was calculated by averaging reference
site measurements among all runs, and (4) that value was then
added to all underwrite-adjusted measurements from the second
step. This process was performed separately for morning and af-
ternoon monitoring runs. (See Fig. S11 for an example monitoring
run with corresponding underwrite functions; see Fig. S12 for a
comparison of trip-averaged on-road, reference site, and under-
write estimate concentrations.)

2.5. Statistical analyses

2.5.1. Pollutant averaging time
We explored two aspects of time-averaging the mobile moni-

toring data: (1) correlations among pollutants, and (2) how those
correlations depend on averaging-time. The former question sheds
light on potential similarities or differences among pollutants in
emission sources, transport and transformation in the atmosphere,
and proximity to and density of emission sources. The latter
question is important in part because specific instruments or spe-
cific monitoring campaigns might use different averaging times; to
our knowledge, the influence of averaging time on pollutant cor-
relations is unexplored in the literature.

2.5.2. Share of concentrations attributable to near-traffic emissions
We estimated the share of the instrument-reported concentra-

tion that is attributable to near-traffic emissions (as compared to
regional sources); following Apte et al. (2011), we calculated the “4”
parameter using trip-averaged concentrations:
4 ¼ ðConroad � CambientÞ=Conroad (1)

where Conroad is the instrument-reported, on-road mobile mea-
surement and Cambient is the underwrite estimate of background
concentration.

2.5.3. Particulate concentrations, street functional class, and
proximity to major roads

One strategy to reduce exposure to air pollution on bicycle
networks is to locate facilities (e.g., bike lanes or shared spaces)
where concentrations are relatively low. We summarized our
measurements by two characteristics of the road network: (1)
street functional class and (2) distance from a major (i.e., high-
traffic) road. We explored how those two characteristics of the
road network impact exposure while cycling. For this analysis, we
used a 60 s time average for PN, PM2.5, and particle size; we used a
180 s time average for BC to minimize negative BC values when
applying the underwrite function (see the Supplemental material
and Table S7).

2.5.4. Regression models of video-derived traffic counts and particle
concentrations

We collected a total of 4.5 h of video (5.3% of the total on-road
monitoring time) during four monitoring runs (2 morning [10/10/
2014 & 10/15/2014] and 2 afternoon [10/10/2012 & 10/11/2014]).
We randomly selected 118 on-street locations (~1% of the available
video data) to manually count instantaneous traffic volumes for
three vehicle-types: passenger vehicles, trucks, and buses. To be
counted, vehicles had to be operating and located within one city
block of themeasurement location (traveling in either direction). At
some high traffic locations it was difficult to count vehicles from the
instantaneous screenshot of the video alone due to various ob-
structions. For those locations, video footage near the randomly
selected timestamp (approximately ±10 s) was used to estimate the
number of vehicles that would be in the screenshot had the view
not been obstructed. Counts of each vehicle type (i.e., passenger
vehicles, trucks, buses) were used as independent variables in
regression models to estimate particulate concentrations.

Regressions were performed using the “on-road” (i.e.,
instrument-reported minus “background” [underwrite] estimates)
pollutant concentrations as the dependent variables. Since mea-
surements were pooled frommornings and afternoons (and among
3 different monitoring days) we aimed to remove the effect of day-
to-day changes in background concentrations from this analysis. As
a sensitivity analysis, we instead used uncorrected instrument-
reported values; results were similar for PN and BC but re-
gressions performed poorly for particle size and PM2.5. We report
results for the on-road component of pollutant concentrations in
our base case models; as such our results should be interpreted as
the “local” or on-road component of concentrations.

3. Results and discussion

We collected a total of 127.3 h of measurements (on-road:
85.3 h; reference site: 42 h), covering a total of 1426 km. The
average cycling speed during the monitoring runs was 16.4 kmph
(4.6 m/s). During morning monitoring runs mean (interquartile
range [IQR]) weather parameters were: 8.3 �C (6.1e10.6 �C), 70%
(63e77%) relative humidity, and 9.0 kmph (4.8e11.2 kmph) wind
speed; during afternoon monitoring runs weather parameters
were: 24.4 �F (20e30.5 �C), 31% (25e36%) relative humidity, and
14.5 kmph (9.7e20.9 kmph) wind speed. Table 1 gives descriptive
statistics for the background-adjusted concentrations (1 s, i.e., no
time averaging). (Unadjusted concentrations are in Table S8.)



Table 1
Summary statistics of on-road concentrations.a

Pollutant n Arith. mean Geo. mean Std. dev. Geo. std. dev. P10 P25 P50 P75 P90

Morning (n ¼ 12 monitoring runs, 24.2 h)
PN (pt cm�3) 86,983 35,003 28,924 37,677 1.7 17,252 19,801 25,347 37,068 56,318
BC (mg m�3) 86,951 2.7 2.5 1.4 1.4 1.7 1.9 2.3 3.0 4.0
PM2.5 (mg m�3) 86,983 10.9 10.5 4.8 1.3 8.6 9 9.8 11.4 14.2
Size (nm) 86,983 43.2 42.6 8.0 1.2 35.8 39.9 42.6 45.4 50.4
Afternoon (n ¼ 30 monitoring runs, 61.1 h)
PN (pt cm�3) 220,097 18,401 16,534 16,374 1.4 12,458 13,141 14,678 17,961 25,318
BC (mg m�3) 147,681 0.8 0.7 0.6 1.6 0.4 0.5 0.7 0.9 1.4
PM2.5 (mg m�3) 211,234 9.4 9.1 6.3 1.2 8.1 8.1 8.6 9.5 10.4
Size (nm) 213,687 40.1 39.5 7.6 1.2 34.5 37.7 39.3 41.1 45.6

a All values are 1s measurements. Particle size values were assigned to each 1s location during 60 s scans resulting in a sample size for analysis that is equal to the datasets
based on 1s measurements. BC values are reported using a 180 s time average to reduce inherent noise in data from the micro-aethalometer.
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3.1. Correlations between measurements as a function of averaging
time

We applied two approaches to calculate time-average values
from the instruments: (1) moving averages (here, the size of a
dataset remains unchanged) and (2) interval averages (since the
original data are at 1 s, here the sample size is reduced by a factor
equal to the averaging time in seconds). Trends in between-
pollutant correlations were similar using both methods; the mov-
ing average method results are presented in Fig. 1.

Overall, PN and BC exhibited the strongest correlation (R2:
0.05e0.64); this outcome is likely because PN and BC are indicators
of traffic-related air pollution and thus are elevated near traffic
emissions. BC's correlations with PM2.5 and particle size were
modest (R2: 0.06e0.28). PM2.5 and particle size showed moderate
correlation as averaging time increased (R2: 0.26 for 1 h time
average). PN correlated with neither particle size nor PM2.5 (R2:
0.001e0.02).

Correlation between parameters generally increased with
averaging time until about 1e5 min; for averaging times greater
than 5 min, correlations did not noticeably increase (exception:
moderate increases between particle size and PM2.5). This finding
suggests that smoothing the time-series data to greater than
60e300 s will not yield significantly greater insight into how these
parameters interact (yet would sacrifice temporal and spatial
resolution).
Fig. 1. Correlations (R2) of particulate matter parameters as a function of averaging
time.
3.2. Estimating share of exposure due to near-traffic emission
sources

We estimated the share of instrument-reported concentrations
attributable to near-traffic emission sources (4). Fig. 2 shows the
distribution of trip-averaged 4 values by pollutant and time of day.

As expected, 4 was higher for the traffic-related pollutants (BC
and PN) than for PM2.5. PN and PM2.5 had lower 4 values in the af-
ternoon than in the morning; this result is presumably attributable
to the increased dilution that occurs in the afternoons owing to in-
creases inmixing height and surfacewind speeds. However, for BC,4
was higher in the afternoon than in the morning. This result is
perhaps explained by the changes in background concentrations of
BC during the course of the day as compared to the other pollutants.
PM2.5 and PN background concentrations decreased modestly over
the course of the day (PM2.5: 8.0 mg m�3 [morning], 7.8 mg m�3 [af-
ternoon]); PN: 15,000 particles cm�3 [morning], 12,000 particles
cm�3 [afternoon]). BC background concentrations decreased more
drastically (1.5 mg m�3 [morning], 0.3 mg m�3 [afternoon]). Since BC
background concentrations approached zero during the afternoon,
any spike in instrument-reported concentrations would be attrib-
uted to near-traffic emissions, thus overall increasing the value of 4
Fig. 2. Estimated proportion of instrument-reported, trip-averaged concentrations
attributable to near-roadway emissions (dot: mean; line: median; whiskers: 5th and
95th percentile).
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in afternoon relative to morning. Our 4 parameter estimates are
similar to those of Apte et al. (2011) (study site: New Dehli, India) for
PM2.5 (this study (Apte et al., 2011) mean4: 28 [30]%) but smaller for
BC (48 [68]%) and PN (51 [86]%). This difference could perhaps be a
result of more roads in Minneapolis having near background-level
concentrations, differences in the selection of routes in each study,
or differences in vehicle fleets or fuels in each city.

3.3. Particulate concentrations and street characteristics

Road networks are designed in a hierarchal fashion to group
streets into classes according to their desired service (typically, by
expected motor-vehicle traffic volumes). We stratified our moni-
toring routes by four classes: arterial, collector, local streets, and
off-street trails; Fig. 3 summarizes the mobile measurements by
street functional class.

PN and BC were modestly elevated on arterials and collectors as
compared to local streets and off-street trails. Particle size and
PM2.5 did not vary much by street classification. Concentrations
were higher in mornings than in afternoons; the between-road
type difference in concentrations was slightly more pronounced
during mornings than afternoons for PN (morning [afternoon]
arterial to local median ratio: 1.31 [1.20]) but the opposite for BC
(morning [afternoon] arterial to local median ratio: 1.13 [1.36]). The
upper ends of the distributions (i.e., 75th and 90th percentiles)
showed larger between-road type differences than central
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tendencies (i.e., mean and median) suggesting that short-duration
exposures to elevated concentrations are more likely to occur on
major roads.

Since concentrations are moderately elevated on major roads, a
logical approach to building a bicycle network might be to locate
routes (i.e., bicycle lanes or shared spaces) on local streets instead of
arterials or collectors. Fig. 4 shows concentrations for two cate-
gories of roads: (1) major roads (i.e., arterials and collectors) and (2)
local roads adjacent to major roads. The local roads are separated
into 4 groups by distance from the nearest major road.

PN and BC concentrations on local roads decrease with
increasing distance from a major road (changes are smaller for
PM2.5 and particle size). Similar to street functional class, these
patterns were slightly more pronounced for mornings than for af-
ternoons for PN (morning [afternoon] median major road to local
road [101e200 m] ratio: 1.34 [1.18]) and the opposite for BC
(morning [afternoon] medianmajor road to local road [101e200m]
ratio: 1.15 [1.28]). Again, differences were larger for the upper ends
of the distributions than for central tendencies.

Overall, these results suggest that moving bicycle traffic one
block away from major roads has the potential to reduce exposure
to PN and BC. For example, a typical block in Minneapolis is about
120 m; using that distance as a basis, mean exposure during
morning rush hours would be reduced by 31% (16%) for PN (BC) and
90th percentile exposure would be reduced by 40% (24%) upon
moving from a major road to a parallel local road.
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We tested if concentrations were lower on roads with bicycle
lanes as compared to no facility. Differences in central tendencies
were small (e.g., morning [afternoon] mean differences for no fa-
cility vs. a bike lane were �5% [2%] for PN and �7% [0.06%] for BC)
with small differences for acute exposure, e.g., morning [afternoon]
90th percentile differences were �11% [�3%] for PN and �15%
[�14%] for BC.
3.4. Regression models of video-derived traffic counts and
particulate concentrations

Table 2 shows summary statistics for the video-derived vehicle
counts for the 118 randomly selected locations (see Fig. S13 for
spatial distribution of the locations and vehicle traffic volumes). As
expected, passenger vehicles were most common (87% of vehicles);
buses (12%) and trucks (1%) are rarer. Passenger vehicle counts
Table 2
Vehicle counts from the video (number of vehicles per image).

Passenger vehicle count Truck count Bus count Total count

Mean 4.8 0.1 0.7 5.6
IQR 1e7 0e0 0e1 1e8
P5eP95 0e15 0e1 0e3 0e15
were correlated with street functional class (Table S9), with the
highest counts on arterials (7.1) followed by collectors (3.7) and
local roads (1.2).

We used counts of each vehicle type as independent variables in
a regression analysis to assess changes in on-road concentrations
associated with traffic. We ran models for various time averages
(i.e., 1 to 1800 s) for each pollutant. In general we found smaller
time averages (e.g., 1e60 s) performed better in regression analysis
than longer time averages (likely owing to the fact that our vehicle
counts are instantaneous). For averaging times larger than 60 s,
model R2 dropped rapidly (see Table S10). In all cases, small time
averages (e.g., 10e30 s) performed better than 1-s measurements.
This result is likely because the instantaneous air pollution mea-
surements may or may not include the time when most of the
vehicles in the video image are passing the monitoring platform
(e.g., the bicyclemay pass through themicro-plumes of the vehicles
in the image 10e30 s before or after the image was recorded). For
this reasonwe used slight temporal smoothing of the data (i.e., 30 s)
for the models presented here.

Results for particle size were weak and in the opposite direction
as expected (i.e., increased particle size with traffic); this may be a
result of the relatively larger time resolution of the NanoScan (60 s)
which may be too large to capture the instantaneous impact of
traffic events. Table 3 shows regression results for the 30 s time
averagemodels of PN (model-R2: 0.27), BC (R2: 0.23), and PM2.5 (R2:
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0.14); results for particle size and all other averaging times are in
Table S10.

Model coefficients were largest for trucks, moderate for buses,
and relatively small for passenger vehicles. The impact of one
additional car (within a city block) on concentrations was generally
not statistically significant for PN and BC, but was significant for
PM2.5 (p < 0.01); for trucks, the impact was significant (p < 0.01 for
PN and BC; p < 0.05 for PM2.5) for all models. On average, each one
truck increased 30 s average on-bicycle concentrations by 31,000
particles cm�3, 1 mg m�3 PM2.5, and 1.6 mg m�3 BC based on our
regression results.

To better assess the impact of traffic counts on concentrations
we multiplied the variable coefficients by the difference between
the variable 95th and 5th percentile for each model. Since truck
counts were infrequent it was necessary to use the difference be-
tween the 95th and 5th percentile rather than a smaller range (e.g.,
IQR) to include all independent variables. (The truck counts IQR is
0; see Table 2.) Fig. 5 shows plots of this parameter (b � 5th/95th
percentile difference) as a function of averaging time for PN, BC, and
PM2.5.

Several interesting results are shown in Fig. 5. First, trucks
(although infrequent) seem to have a large impact on PN and BC.
Trucks were the most important variable in the models for those
pollutants for all averaging times. In both the PN and BC models,
buses had the second highest impact followed by passenger vehi-
cles. For PM2.5, all vehicle types had a similar influence in the
regression, which could potentially be a result of the more regional
nature of PM2.5 as compared to PN and BC. Fig. 5 also highlights that
10e60 s time averages are likely the appropriate time-scale of the
impact of these passing vehicles.

To compare model results among pollutants we fully normal-
ized the coefficients in the 30 s time average regressionmodels. The
model bs have units of dependent variable over independent var-
iable (i.e., concentration/vehicle count). To compare among models
we multiplied each b by this factor: difference between 95th and
5th percentile vehicle counts/difference between 95th and 5th
percentile concentration. We performed this normalization for the
30 s time average models (Table 3; a particle size model was not
available for that time resolution).

The fully normalized bs are 8.5 (PN) and 4.2 (BC) times higher
for trucks than for passenger vehicles; normalized bs for buses are
1.9 (PN) and 2.1 (BC) times higher than for passenger vehicles.
These results indicate the importance of buses and trucks (despite
their infrequency relative to cars) in explaining variations in on-
road concentrations. At the same time, they might also reflect
that our results are confounded by other factors. For example, truck
Table 3
Regression results (30 s time average) based on video-based vehicle counts.a,b

Model b 95th/5th Independent

Particle number
Passenger 243 pt cm�3 vehicle�1 15 vehicles
Truck 30,607*** pt cm�3 vehicle�1 1 vehicles
Bus 2284* pt cm�3 vehicle�1 3 vehicles
PM2.5

Passenger 0.06*** mg m�3 vehicle�1 15 vehicles
Truck 0.99** mg m�3 vehicle�1 1 vehicles
Bus 0.21* mg m�3 vehicle�1 3 vehicles
Black carbon
Passenger 0.02 mg m�3 vehicle�1 15 vehicles
Truck 1.57*** mg m�3 vehicle�1 1 vehicles
Bus 0.26*** mg m�3 vehicle�1 3 vehicles

a Model-R2: PN (0.27); BC (0.23); PM2.5 (0.14). Constant: PN (7520); BC (0.62); PM2.5 (
b *** denotes p-value <0.01; ** denotes p-value < 0.05; * denotes p-value < 0.10.
c Normalized bs are interpreted as the number of 95th/5th percentile interval increases

each predictor variable.
traffic could be correlated with industrial land use or with higher
vehicle traffic in general (thus capturing not only truck traffic but
other co-located emission sources). To test those two ideas (i.e.,
whether we passed trucks more often in high traffic areas or in-
dustrial areas), we divided the randomly selected measurements
into two groups: locations with and without trucks. We then
calculated the industrial area within a 50 m buffer of each location.
There was no statistically significant difference in vehicle traffic
between location types (passenger vehicle [bus] count p-value:
0.94 [0.22]); however, truck traffic was more likely to be located in
industrial areas according to this dataset (p < 0.01; see Table S11).
As a sensitivity analysis we included tempurature, relative hu-
midity, wind speed, and industrial land use as independent vari-
ables in the 30 s time average regression models (see Table S12).
Inclusion of these variables increased model-R2 slightly (average
increase: 0.12). However, there were only slight changes in the
magnitude (and significance) of the coefficients for vehicle counts;
thus, we chose to report models including only vehicle counts here.
Despite the possibility of confounding factors, larger diesel vehicles
(e.g., buses and trucks) are heavier emitters than smaller gasonline
vehicles (EPA, 2008) and are responsible for at least a portion of the
elevated concentrations.

3.5. Implications for on-bicycle exposure and future research

We successfully collected a large, mobile monitoring dataset to
assess on-bicycle exposure to particulate air pollution in Minne-
apolis, MN. Our work builds on previous exploratory studies of on-
bicycle exposure by systematically designing our mobile moni-
toring dataset to control for temporal variability in concentrations.
Our mobile monitoring approach allowed for quantification of
various factors relating the spatial distribution of mobile emission
sources to on-bicycle exposure.

We designed ourmeasurement campaign to control for seasonal
and time-of-day temporal variability in concentrations (i.e., we
monitored only in the fall during rush-hours). By doing so we were
able to explore how small-scale spatial shifts in cycling routes (e.g.,
moving away from high traffic roads) impact exposure. At the same
time, we were not able to explore patterns of exposure during
different seasons or during non-rush hour times-of-day. We found
that particulate concentrations were relatively higher during
morning rush-hour as compared to afternoons; that finding sug-
gests both spatial location of cyling routes and decisions about
when to cycle are important aspects of exposure.

Our study highlights several areas that could be explored in
future research. For example, we did not have sufficient equipment
variable 95th/5th dependent variable Fully normalized bc

50,848 pt cm�3 0.07
50,848 pt cm�3 0.60
50,848 pt cm�3 0.13

4.13 mg m�3 0.23
4.13 mg m�3 0.24
4.13 mg m�3 0.15

3.79 mg m�3 0.10
3.79 mg m�3 0.42
3.79 mg m�3 0.21

1.19).

of the dependent variable (i.e., concentrations) for each 95th/5th interval increase in



Fig. 5. Variables for the PN, BC, and PM2.5 regression models shown as model b � 5th/
95th percentile difference. Results show relative impact of truck traffic on small time
scales as compared to other vehicles and time averages.
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to deploy a permanent reference site. Instead we developed an
approach involving reference measurements before and after
monitoring runs and employing an underwrite function to estimate
background concentrations; future research could test this method
by comparing with fixed-site reference measurements. We used
video-derived traffic counts to assess each passing vehicle's effect
on exposure; identifying publicly available data on instantaneous
traffic patterns (e.g., designing monitoring routes to include auto-
mated traffic recorders) would provide a more comprehensive
understanding of how traffic patterns influence acute exposure
events.

4. Conclusions

We cycled 1426 km to collect 85.3 h (for each instrument:
3 � 105 individual 1s measurements) of on-road particulate con-
centrations (PN, BC, PM2.5, particle size) during rush-hours
(7e9am; 4e6pm) in Minneapolis, MN. We found that local (i.e.,
near-traffic) emissions were important contributors to exposure
concentrations (e.g., local sources accounted for ~50% of the
instrument-reported PN and BC concentrations). Particulate con-
centrations were generally elevated during morning rush-hour (as
compared to afternoons) andwere correlatedwith street functional
class; on average, local roads slightly removed from major roads
had lower particulate concentrations (e.g., PN and BC concentra-
tions were ~20% lower on local roads 1-block from major roads).
On-bicycle concentrations were correlated with instantaneous
traffic patterns within 1 block of the mobile monitoring platform.
Trucks were associated with significant acute exposure events; for
example, each truck accounted for an average concentration-
increase of 31,000 pt cm�3, 1.0 mg m�3 PM2.5, 1.6 mg m�3 BC). Our
work yields insight into nuances of how a low-exposure bicycle
network could be designed; for example, moving bicycle facilities
from high-traffic roads to adjacent local roads or avoiding co-
locating bicycle and truck traffic.
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