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ABSTRACT: Land-use regression (LUR) is widely used for estimating
within-urban variability in air pollution. While LUR has recently been
extended to national and continental scales, these models are typically for
long-term averages. Here we present NO2 surfaces for the continental
United States with excellent spatial resolution (∼100 m) and monthly
average concentrations for one decade. We investigate multiple potential
data sources (e.g., satellite column and surface estimates, high- and standard-
resolution satellite data, and a mechanistic model [WRF-Chem]),
approaches to model building (e.g., one model for the whole country
versus having separate models for urban and rural areas, monthly LURs
versus temporal scaling of a spatial LUR), and spatial interpolation methods
for temporal scaling factors (e.g., kriging versus inverse distance weighted).
Our core approach uses NO2 measurements from U.S. EPA monitors
(2000−2010) to build a spatial LUR and to calculate spatially varying temporal scaling factors. The model captures 82% of the
spatial and 76% of the temporal variability (population-weighted average) of monthly mean NO2 concentrations from U.S. EPA
monitors with low average bias (21%) and error (2.4 ppb). Model performance in absolute terms is similar near versus far from
monitors, and in urban, suburban, and rural locations (mean absolute error 2−3 ppb); since low-density locations generally
experience lower concentrations, model performance in relative terms is better near monitors than far from monitors (mean bias
3% versus 40%) and is better for urban and suburban locations (1−6%) than for rural locations (78%, reflecting the relatively
clean conditions in many rural areas). During 2000−2010, population-weighted mean NO2 exposure decreased 42% (1.0 ppb
[∼5.2%] per year), from 23.2 ppb (year 2000) to 13.5 ppb (year 2010). We apply our approach to all U.S. Census blocks in the
contiguous United States to provide 132 months of publicly available, high-resolution NO2 concentration estimates.

1. INTRODUCTION

Nitrogen dioxide (NO2) is a key component of urban air
pollution generally associated with traffic-related emissions.
Epidemiological studies have linked NO2 to several adverse
health outcomes, including premature mortality,1−3 lung
cancer,4 and asthma exacerbations.5,6 Predicting spatial and
temporal variability in outdoor air pollution over large
geographical areas has become an important goal for
population exposure assessment, health studies, environmental
justice, and public policy research. Regulatory monitors, which
provide the basis for many investigations, can provide good
temporal resolution, but generally are unable to capture within-
urban variability in pollutant concentration owing to the limited
number of monitors and their proximity.7,8

Land-use regression (LUR) has emerged as a useful tool for
exploring within-urban variability in outdoor air pollution.9

LUR is an empirical-statistical modeling approach that employs
in situ measurements and geographic information system (GIS)
variables to predict concentrations at nonmeasurement
locations. The technique has been used extensively to assess
within-city variability in outdoor air pollution, typically at the
urban level.7,10,11 Recent work has focused on using LUR and

similar GIS techniques to model fine-scale air pollution
concentrations over large geographic regions; we identified 21
such LUR studies (see Table S1). With recent improvements in
data quality, including pollutant measurements from satellite
instruments, LUR has been successfully applied at the
continental scale for the United States,12−14 Canada,15

Europe,16,17 and Australia.18 Such models are useful for
broad-scale cross-sectional exploration of air pollution concen-
trations and exposures.
Nevertheless, while small-scale LUR techniques have been

studied extensively,9 continental-scale LUR modeling requires
further examination. Several studies have suggested 40−100
monitoring locations are necessary to obtain a robust LUR
model; however, these results are based on LUR for urban areas
and small countries rather than continental LUR.9,19−21 Here
we seek to test several aspects of continental LUR, with the
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goal of improving a prior national-scale spatial LUR model of
annual-mean NO2 for the United States.13

While the primary objective of LUR has generally been to
improve the spatial resolution of air pollution estimates,
improving the temporal resolution of LUR models has been a
topic of recent interest.22−32 Most large-scale studies we found
(Table S1) focus on long-term (1−5 year mean) concen-
trations. A few studies estimate monthly14,33−35 and daily36−38

PM10 and PM2.5 concentrations in the United States, one study
estimates monthly NO2 for Australia,

18 and one study estimates
daily NO2 for the northeastern United States.39 Here we seek
to develop an ex post facto approach, employing regulatory
monitoring data to temporally scale estimates from an
improved version of the prior national-scale spatial LUR
model. This general approach has been used to extend the
temporal coverage of urban-scale LUR40−42 and national-scale
satellite-based estimates,43 but to our knowledge has not been
employed for national-scale LUR models. An advantage to this
approach is its low computational requirements; the alternative
approach of LUR model building for each month is
prohibitively computationally intensive, owing to the fact that
geographic predictors need to be calculated (1) at additional
monitor locations for each month and (2) for all Census blocks
whenever a new variable is selected during model building.
Moreover, our approach (using temporal trends derived from
regulatory monitors) may be easily used to extend temporal
coverage to similar long-term LUR models.
We seek to create spatial NO2 surfaces in the continental

United States that provide the excellent spatial resolution
typical for urban-scale LURs (∼100 m scale), cover 100% of
U.S. Census blocks, and provide monthly average concen-
trations for one decade. We focus on NO2 because it has been
shown to be a useful indicator of fresh combustion emissions,
likely representing a mix of toxic species,1,2 and because NO2
concentrations have been shown to correlate with land use,
making it a good candidate pollutant for new LUR models.
Contributions of this paper to the literature include advancing
LUR as a method by (1) testing model robustness to the
number of training sites used for building a continental LUR,
(2) comparing model sensitivity to inclusion of various regional
NO2 predictor variables (e.g., satellite column, satellite surface,
high-resolution satellite, model surfaces from a mechanistic
model), and (3) by presenting a large-scale ex post facto
approach to obtain temporal estimates from an existing
national-scale LUR.

2. METHODS
2.1. Spatial LUR Model. 2.1.1. Existing LUR Model. We

build on a previously developed year 2006 LUR for ground-
level NO2 for the contiguous United States.13 Distinct features
of the model relative to typical LURs included (1) broad
geographic coverage, (2) inclusion of satellite-derived estimates
of ground-level NO2 and of regulatory monitoring data rather
than de novo measurements, and (3) greater temporal coverage
and precision. Model building incorporated six land-use
characteristics (impervious surface, tree canopy, population,
and major/minor/total road length) evaluated for 22 buffers
(100 m to 10 km) and three point-based values (elevation,
distance to coast, and satellite NO2) (Table S2). Model
formulation employed conventional stepwise forward regres-
sion.44 This year 2006 annual mean model explained 78% of
the spatial variability, with low mean bias (22% [overall], 5%
[urban and suburban]). Model R2 and internal leave-one-out

validation may overestimate LUR performance; holdout cross-
validation may provide better evaluation.19,20 The base model is
robust to holdout cross-validation (90% of monitoring data for
model building, 10% for model testing; Monte Carlo random
sampling (n = 500, median R2 = 0.76)). Additional details for
the prior LUR are available elsewhere.13

2.1.2. Regional NO2 Covariates. Novotny et al. report a
∼0.1 increase in model R2 when including satellite-based NO2
as a predictor; other continental LURs report similar
improvements (R2 increase ∼0.02−0.15) .15,17,18 Recent work
suggests that satellite column abundance (total concentration
within a vertical column) may be sufficient to track spatial
patterns in ground-level NO2,

8 in which case converting
column abundance to surface concentrations may be
unnecessary for LUR. Knibbs et al. reported LUR R2 values
of 0.81 when using column abundance, versus 0.79 with
satellite-based surface estimates.18

Here, we compare model performance for LUR employing
various regional NO2 covariates. We consider column
abundance and surface concentrations from two NO2
algorithms for the Ozone Monitoring Instrument (OMI): (1)
a global product (DOMINO, version 1.0.2, collection 3, http://
www.temis.nl) and (2) a higher resolution U.S.-only product
(BEHR, version 2.0A, http://behr.cchem.berkeley.edu/
TheBEHRProduct.aspx).45 For California and Nevada, NO2
estimates were 30% lower for BEHR than for DOMINO over
remote regions, but 8% higher (BEHR vs DOMINO) over
polluted regions.45 Surface concentrations are estimated from
GEOS-Chem surface-to-column ratios, as in Novotny et al.13

We also include modeled NO2 from a 12 km WRF-Chem
chemical transport model (CTM) simulation for North
America.46 Finally, we include linear combinations of satellite
+ WRF-Chem NO2 surfaces, calculated as the sum of
standardized surfaces. We do this because when satellite and
WRF-Chem NO2 covariates are offered together during model
building, both are selected into the final models. Standardized
surfaces are obtained by dividing each grid estimated by the
U.S. spatial mean concentration.

2.1.3. Alternative Models. Using relative measures (e.g.,
bias), the Novotny et al. model exhibits better model
performance in urban and suburban (mean bias: 5%) locations
than rural (71%) locations.13 Moreover, Figure 1 (top panels)
shows the Novotny et al. LUR NO2 surface for the continental
United States compared to the WRF-Chem and DOMINO
NO2 surfaces. This figure indicates broad agreement among
methods, but marked by regional differences between the
methods, including overestimation by the LUR of the low
concentrations in the rural and remote Mountain West.
Potential causes of the discrepancies include differences in
the association between land use and NO2 for urban/suburban
versus for rural locations or monitor locations that do not
adequately span the (independent) variable space. Regional
discrepancies in Figure 1 generally correspond to elevation
(e.g., the Rocky Mountains, California’s Central Valley) and
tree canopy (see Figure S1).
Monitor locations are not representative of elevations in the

continental United States; the interquartile range (IQR) of the
monitors’ elevation is 0−300 m, yet 65% of the continental U.S.
land area is >300 m. Additionally, the capacity of tree canopy as
a sink for NO2 is likely small;47,48 however, tree canopy has a
negative coefficient, and the magnitude of its effect (β × IQR =
−0.91) is similar to that of major roadways (β × IQR = 0.97).13

In the model, tree canopy likely represents a land use with little
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or no combustion sources in urban/suburban areas, but in rural
areas this variable is effectively acting (incorrectly in the model)
as a large sink for NO2. Here, we address these discrepancies by
(1) truncating elevation to the IQR (all values over 300 m are
set to 300 m) and (2) removing tree canopy as a potential
independent variable.
We attempt to further address poor model performance in

rural areas by testing two alternative modeling approaches: (1)
We employ the natural logarithm of NO2 concentration as the
dependent variable. Here, model building is as above, but with
the dependent variable changed to the natural logarithm of year
2006 annual average NO2 concentration. (2) We develop
separate models for urban versus rural areas, by first subdividing
EPA monitoring data into urban (plus suburban) versus rural.

2.1.4. Spatial Model Evaluation. We evaluate all spatial
models on the basis of R2, adjusted R2, mean error, absolute
error, mean bias, and absolute bias (eqs S1−S4). After selecting
a final base spatial LUR model, as an additional sensitivity
analysis, we use a Monte Carlo random sampling approach to
explore model stability as a function of the number of training
locations used for model building. Briefly, we conduct model
building using random subsets of monitoring data (5%, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%), and evaluate the
model’s ability to predict concentrations at the remaining
locations. For each subset size, performance metrics are
calculated for 500 iterations.

2.2. Monthly NO2 Surfaces. 2.2.1. Overview of Temporal
Scaling. We also expand on our prior work by incorporating an
order of magnitude more data for the dependent variable (11
years instead of 1 year) and by developing an approach that
reflects spatiotemporal variability. We start with 11 years
(2000−2010) of hourly in situ NO2 measurements for all U.S.
EPA regulatory monitoring stations in the contiguous United
States.49 We calculate monthly mean concentrations for each
monitor for months meeting the EPA reliability criterion of at
least 75% of hourly values.
We calculate monthly scaling factors, which account for

monthly deviations relative to the reference year, at each
monitoring location using the following equation:

=
C

x
SF

LUR ( )im
im

i2006 (1)

Here, SFim is the scaling factor for monitor i and month m, Cim
is the monthly mean monitor concentration, and LUR2006(xi) is
the year 2006 LUR model estimate at the location (xi) of
monitor i. We then create a scaling surface for each month (for
a total of 132 months) by spatially interpolating the monthly
scaling factors; we tested three interpolation techniques: (1)
kriging (Bayesian kriging, ArcGIS 10.2), (2) inverse-distance
weighting (IDW), and (3) nearest-neighbor (NN). (Further
derivation of these interpolated scaling surfaces is given in the
Supporting Information.) These monthly scaling surfaces are
applied to the year 2006 LUR to create monthly NO2 surfaces:

= ×x x xLUR( ) LUR( ) SS( )m m2006 (2)

where LUR(x)m is the LUR model estimate at point x for
month m, LUR(x)2006 is the year 2006 LUR model estimate at
point x, and SS(x)m is the (spatially varying) scaling surface
value for month m at location x interpolated from the scaling
factor (SFim) values at monitor locations.

2.2.2. Monthly NO2 Surface Evaluation. To determine the
goodness of fit of our monthly NO2 surfaces, we estimate the
concentrations at each monitor location (i.e., excluding the
monitor where the estimate is being made and using the
remaining data to predict that at this location) and compare
these estimates with the observed monitor concentrations. We
evaluate model performance via spatial-only, temporal-only,
and combined spatiotemporal comparisons. To determine
spatial-only performance, we calculate R2 statistics for each
month (132 months) using monthly mean concentrations, and
for each year (11 years) using annual mean concentrations. To
determine annual and long-term temporal-only performance,
we calculate R2 statistics of monthly mean concentrations for
each monitor location with at least 75% of months (at least 9
months for annual and 98 months for 11 years) of
measurements. We determine long-term (132 months) and

Figure 1. Top panels: ground-level NO2 concentrations for the
continental United States from 0.1° DOMINO satellite-derived
estimates (top left), the 12 km WRF-Chem chemical transport
model (top right), the Novotny et al. LUR model (bottom left), and
the final spatial LUR model used here (bottom right). Bottom panels:
modeled winter (January) and summer (July) ground-level monthly
mean NO2 concentrations for Los Angeles (LA) and New York
(NYC) employing a 100 m grid for display purposes.
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annual spatiotemporal performance using all monitor months.
We report the mean error, absolute error, mean bias, and
absolute bias (eqs S1−S4). We also investigate summary
statistics by distance to the nearest monitor (<10, <25, 25−50,
and >50 km), and by U.S. EPA-designated location type
(urban, suburban, rural). To assess the performance of the
model where there are people, we present population-weighted
evaluations of the model performance, based on the U.S.
Census population within a 1 km buffer of the monitor
location. We assess within-city performance by calculating the
above performance metrics for all monitors located within a
single urban area, for the 10 urban areas with the most
monitors. Monthly residuals were tested for Moran’s I spatial
autocorrelation using ArcGIS 10.2. Finally, as a sensitivity
analysis, we compare the monthly NO2 surface approach
described above to (1) monthly LUR models for year 2006, (2)
estimates from satellite-based measurements, and (3) a
standard non-LUR approach: IDW interpolation of the
monthly mean monitor values.

3. RESULTS

3.1. Spatial LUR Model. 3.1.1. Regional NO2 Covariates.
We tested seven approaches for estimating regional NO2
(DOMINO satellite column and surface estimates, BEHR
satellite column and surface estimates, the 12 km WRF-Chem
model, linear combinations of DOMINO and WRF-Chem,
linear combinations of BEHR and WRF-Chem). We find that
the continental LUR employed here is relatively insensitive to
the choice of regional NO2 covariate, but including no regional
NO2 covariate degrades performance (R2 = 0.77−0.81 among
models with regional NO2, versus R

2 = 0.66 if no regional NO2
variable is included). Models using satellite column NO2
perform slightly better than those employing satellite-based
surface estimates (see Table S3); this finding is consistent with
a previous LUR of NO2 for Australia

18 and suggests that the
extra steps needed to estimate surface concentrations from
satellite column measurements may be unnecessary for LUR
models. We find that a model using a linear combination of
satellite + WRF-Chem provides the best predictive power (R2 =
0.81); we employ that regional NO2 covariate (DOMINO +
WRF-Chem) for analyses below.
3.1.2. Alternative Models and Final Model Selection. As

mentioned above, we attempted to addresses the prior
overestimation of low concentrations in the rural and remote
mountain West by truncating the elevation variable at the IQR
of monitor locations and by removing tree canopy as a land-use
variable. Table 1 shows the resulting model. With these
changes, the overall model performance diminishes slightly (R2

= 0.79, mean absolute error 2.3 ppb, mean bias 18%, mean
absolute bias 34%) and the performance at rural monitors is
largely unchanged (see Table 2); however, Figure 1 (top
panels) shows that the resulting model better captures the

regional NO2 patterns exhibited by the WRF-Chem and
DOMINO estimates.

Tables S4 and S5 show the two alternative LUR models
(natural logarithm, urban + rural). Table S6 shows the model
performance for the same two models and for our core LUR.
Model performance is worse when using the natural logarithm
of NO2 (overall R

2 = 0.64 vs 0.79 for the traditional model),
and similar (0.80) for the urban + rural model. Further
investigation of the alternative models is given in the
Supporting Information; overall, the alternative models were
not strongly superior to the core model. We employ the
traditional LUR as the base spatial model for the remainder of
the analysis.
Figure 2 shows the model performance (median and IQR R2

among n = 500 Monte Carlo iterations per comparison) as a
function of the number of monitor locations used in model
building. Figure S2 shows similar plots for absolute error and
bias. Our final spatial LUR (derived from n = 369 monitoring

Table 1. Final Model Using the Traditional LUR Approach

parameter units β std error p > |t| partial R2 IQR β × IQR

intercept ppb 2.44 0.41 <0.01
DOMINO + WRF-Chem NO2 unitless 0.72 0.036 <0.01 0.62 6.3 6.0
impervious (800 m) % 0.085 0.0094 <0.01 0.75 43 4.9
elevation (truncated) km 11.1 0.17 <0.01 0.76 0.27 1.9
major roads (800 m) km 0.30 0.056 <0.01 0.78 3.2 0.91
residential roads (100 m) km 2.82 1.04 0.01 0.78 0.27 0.77
distance to coast km −1.2 × 10−3 3.8 × 10−4 <0.01 0.79 630 −0.72

Table 2. Model Performance for Final Spatial LUR Model

R2 adj R2

mean
error
(ppb)

mean abs
error
(ppb)

mean
bias
(%)

mean abs
bias (%)

all 0.79 0.79 −0.30 2.3 18 34
urban 0.76 0.76 −0.78 2.4 −1 18
rural 0.50 0.49 0.39 2.4 57 75
population-
weighted

0.81 0.81 −0.71 2.4 −1 17

Figure 2. Median and interquartile range R2 for Monte Carlo random
sampling for n training monitors employed in model building out of
369 possible monitor locations. Above ∼150−200 monitors, the
model building R2 is stable and is consistent with the holdout R2.
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locations) is robust to large holdout evaluations; for example,
median R2 values for model building vs holdout data sets are
0.79 vs 0.77 with 20% holdout (n = 295 monitors in model
building) and 0.79 vs 0.76 with 50% holdout (n = 184 monitors
in model building). For cases with more than ∼150−200
monitors in model building, the model building R2 is stable and
is similar to the holdout R2. This suggests that large-scale LUR
may require more locations than the ∼40−100 locations
suggested for smaller scale LUR19−21 to obtain a robust model.
The IQR of the holdout R2 is ∼0.1 for holdout subsets of 10−
20%, suggesting a need to use large holdout subsets (here, ∼
50%) or systematic holdouts (e.g., 10-fold 10% holdout) or to
conduct Monte Carlo approaches so model evaluation is not
effected by unusual holdout subsets.
3.2. Monthly NO2 Surfaces. On the basis of EPA data for

11 years, on average 370 (IQR = 362−381) monitors meet the
reliability criteria each month. The average (IQR) monthly
mean NO2 concentration (ppb) during the 11 years is 12.4
(9.9−14.6), and decreased from 15.2 (13.1−17.6) in year 2000
to 9.3 (7.2−11.4) in year 2010; population-weighted values
have a mean of 19.5 (IQR: 16.1−22.3) for the 11 years,
reflecting a 42% decrease overall, from 23.2 (21.1−25.0) in year
2000 to 13.5 (10.6−16.3) in year 2010. Mean concentrations
over the 11 years are higher for urban (16.2) and suburban
(13.6) locations than for rural (6.0) monitors. NO2
concentration decreases observed here (for unweighted
concentrations: 0.59 ppb y−1, ~4.7% y−1; for population-
weighted concentrations: 1.0 ppb y−1, 5.2% y−1) correspond to
significant reductions in NOx emissions throughout the United
States.50 The long-term temporal trend varies spatially (IQR:
29−42% [3.3−7.3 ppb] decrease in annual average NO2
concentration), and includes increasing concentrations at a
small number of rural locations (5% of monitors). These trends
are consistent with findings from satellite-based measurements,
and support the use of a spatially varying temporal scaling
surface.51,53 Table 3 and Tables S7 and S8 summarize monthly
NO2 surface estimates for the three temporal scaling
techniques. All three methods perform similarly well, with the
kriging method performing slightly better than IDW and NN.
The resulting NO2 surfaces (kriging, IDW, NN) predict, on a
population-weighted average, 82% (kriging), 79% (IDW), and
80% (NN) of the spatial-only variability, 76%, 73%, and 74% of
the annual temporal-only variability, and 85%, 84%, and 84% of

the combined spatiotemporal variability in U.S. EPA-monitored
NO2 concentrations. (Unweighted R2 values are 0.81, 0.78, and
0.79 [spatial only], 0.73, 0.69, and 0.70 [temporal only], and
0.84, 0.81, and 0.82 [spatiotemporal].) From here forward, we
will focus primarily on the monthly NO2 estimates employing
kriging temporal scaling. The model mean bias and absolute
error are low (21% and 2.4 ppb, respectively), consistent with
the previously published year 2006 spatial LUR model. For
illustrative purposes, we apply the final national NO2 surface
estimates to a 100 m grid for two cities (Los Angeles, CA, and
New York, NY; see Figure 1). This figure illustrates month-to-
month variability in the modeled spatial patterns.
Table 3 and Figure S3 show predicted versus observed

monthly mean monitor values by distance to the nearest
monitor. Model performance is generally better for locations
within 10 km (mean spatial R2 = 0.80, mean temporal R2 =
0.72, spatiotemporal R2 = 0.82, mean absolute error 2.6 ppb,
mean bias 3%) and within 25 km (0.82, 0.73, 0.84, 2.5 ppb,
12%) than for locations between 25 and 50 km (0.70, 0.79,
0.77, 2.1 ppb, 23%) and further from (>50 km) nearby
monitors (0.71, 0.69, 0.75, 2.2 ppb, 40%); differences among
those four groups are greater for the mean bias than for the R2

value. The mean absolute error is similar among the four
location types. The spatial-only year 2006 LUR explains, on a
population-weighted average, 71% (unweighted 72%) of the
spatial variability in monthly mean concentrations for the years
2000−2010. Figure S4 exhibits spatial-only, temporal-only, and
spatiotemporal R2 values for each year using monthly mean
concentrations for each monitor. Model performance is good,
with R2 values generally >0.70. The annual temporal R2 shown
is typically greater than for the long-term (2000−2011)
temporal performance (R2 = 0.72 [unweighted], 0.77
[weighted]). Monthly spatial-only correlation coefficients are
given in Figures S5 and S8.
Figures S6 and S7 show plots analogous to those in Figures

S3 and S4 but for urban, suburban, and rural monitor locations.
Monitor performance is better for urban (mean spatial R2 =
0.76, mean temporal R2 = 0.76, mean spatiotemporal R2 = 0.80,
mean absolute error 2.6 ppb, mean bias 1%) and suburban
(0.76, 0.76, 0.81, 2.4 ppb, 6%) locations than for rural locations
(0.63, 0.63, 0.69, 2.0 ppb, 78%). As above, differences in the
mean absolute error are small, and differences in the mean bias
are larger. Urban and suburban locations typically outperform

Table 3. Summary of Monthly Mean NO2 Estimates Using Kriging Temporal Scalinga (2000−2010)

mean
spatial
R2

mean
temporal

R2
spatiotemporal

R2

mean
concn
(ppb)

mean
error
(ppb)

mean abs
error (ppb)

mean
bias (%)

mean abs
bias (%)

mean (IQRb) distance to
nearest monitor (km)

all
population-
weighted

0.82 0.76 0.85 19.6 −0.3 2.7 2 18 32

unweighted 0.81 0.73 0.84 12.4 −0.05 2.4 21 38 48 (13−50)
distance to nearest
monitor

<10 k 0.80 0.72 0.82 16.3 −0.5 2.6 3 22 6 (4−8)
<25 km 0.82 0.73 0.84 15.4 −0.1 2.5 12 28 13 (8−18)
25−50 km 0.70 0.79 0.77 10.6 −0.06 2.1 23 40 36 (29−40)
>50 km 0.71 0.69 0.75 9.5 0.1 2.2 40 57 133 (65−158)

urban classification
urban 0.76 0.76 0.80 16.2 −0.5 2.7 1 20 12 (7−16)
suburban 0.76 0.76 0.81 13.6 −0.02 2.4 6 22 30 (21−38)
rural 0.63 0.63 0.69 6.0 0.4 2.0 78 95 104 (36−136)

aAll values except those in the first row are unweighted metrics. bIQR is the interquartile range.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.5b02882
Environ. Sci. Technol. 2015, 49, 12297−12305

12301

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b02882/suppl_file/es5b02882_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b02882/suppl_file/es5b02882_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b02882/suppl_file/es5b02882_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b02882/suppl_file/es5b02882_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b02882/suppl_file/es5b02882_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b02882/suppl_file/es5b02882_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b02882/suppl_file/es5b02882_si_001.pdf
http://dx.doi.org/10.1021/acs.est.5b02882


rural locations for each year (Figure S7), except for the mean
absolute error. Population-weighted performance metrics (see
above and Table 1) are similar to urban- and suburban-only
metrics, in part because a minority (∼19%) of the population
lives in rural areas.53 This fact emphasizes the potential utility of
these models for estimating exposures. We found limited
evidence of spatial autocorrelation in model residuals. For the
months with significant values (102 of 132 months with p <
0.05), Moran’s I coefficients were negative and small (values
range from −0.05 to −0.22).
We assess the within-urban performance of our monthly

NO2 estimates by considering model performance separately in
the 10 urban areas (UAs) with the most available monitors.
Model performance varies among UAs (Table 4), but generally
suggests reasonable within-urban predictive power (spatial R2 =
0.25−0.75, temporal R2 = 0.52−0.90, spatiotemporal R2 =
0.61−0.79), even when considering only one UA at a time, as in
Table 4. For the three cities with an average of at least 10
monitors (Los Angeles, New York, Houston), within-urban
model performance is similar to the nationwide model
performance. Scatterplots in Figure S9 of predicted vs observed
concentrations for LA and NYC (see Figure 1) show strong
model−measurement agreement.
As a sensitivity analysis, and to compare to the temporal

scaling approach developed here, for year 2006, we developed
12 monthly LURs (i.e., using the same LUR model building
procedure outlined above, but with monthly mean NO2
monitor concentrations as the dependent variable). Model
performance for the monthly LUR models (and the
corresponding performance for spatial LUR + temporal scaling)
are given in Table S9. The base-case spatial LUR + temporal
scaling approach exhibits better model performance than the
individual monthly LUR models (spatial R2 = 0.77−0.84 [LUR
+ temporal scaling] vs 0.65−0.76 [monthly LUR], mean bias
14−26% vs 19−32%, mean absolute error 2.0−2.7 ppb vs 2.3−
3.4 ppb). This finding highlights the potential difficulty in
fitting monthly LUR models, and the utility of our temporal
scaling approach.
We also tested the value of our approach by comparing our

monthly estimates against (1) straightforward satellite-only
estimates of surface concentrations (DOMINO) and (2)
standard IDW interpolation of monitoring-station-only data.
Summary statistics are in Tables S10 (DOMINO, 2005−2007)
and S11 (IDW, 2000−2010). As expected, our core LUR +
temporal scaling approach outperforms the two alternatives for

predicting temporal variability (mean temporal R2 = 0.73 [LUR
+ temporal scaling], 0.42, [DOMINO], 0.64 [IDW]), spatial
variability (mean spatial R2 = 0.81 vs 0.45 and 0.51), and
spatiotemporal variability (R2 = 0.84 vs 0.35 and 0.59). The
mean bias is approximately 3 times lower for the LUR +
temporal scaling than for IDW (21% vs 64%), and the mean
absolute error is 1.7 times lower for the LUR + temporal scaling
than for IDW (2.4 ppb vs 4.1 pbb). These findings illustrate the
utility of the land-use information and LUR for predicting
spatial variability, and the utility of the temporal scaling
approach described here for predicting spatiotemporal
variability.

4. DISCUSSION

We created national-scale monthly NO2 surfaces for the
contiguous United States using fixed-site regulatory monitors,
satellite-derived NO2 estimates, and GIS-derived land-use data.
The resulting surfaces exhibit good spatial, temporal, and
spatiotemporal predictive performance (overall R2 = 0.84), with
spatial resolution typical of urban LUR models (∼100 m). The
large spatial and temporal coverage of our model is useful for
national-scale longitudinal research on outdoor air pollution
(e.g., population exposure assessment, epidemiology, environ-
mental justice, surveillance, public policy) with excellent spatial
resolution. For example, a cohort study of exposures during
pregnancy could use NO2 estimates provided here to explore
impacts of exposure by pregnancy month or trimester. To
facilitate future research, we estimated monthly NO2
concentrations at the centroid locations for all ∼8 million
Census blocks in the contiguous United States (blocks are the
smallest area enumerated by the U.S. Census); this data set is
publicly and freely available online [see the Supporting
Information].
With relative measures (% rather than ppb), the model

exhibits the greatest predictive power in urban and suburban
locations. This finding supports the use of our LUR + temporal
scaling model for population-based research. (Most [∼81%] of
the U.S. population lives in urban or suburban areas.53) Rural
monitors are, on average, further from nearby monitors (Table
3) and experience cleaner concentrations, and may suffer from
greater relative error in estimating monthly scaling factors. In
absolute terms (ppb rather than %), errors appear similar for
urban, suburban, and rural areas. The correlation between NO2
emissions (and concentrations) and GIS-derived land uses may
be greater in urban areas than in suburban areas. Here, model

Table 4. Summary of Within-City Monthly Mean LUR Estimates (2000−2010) for the 10 U.S. Cities with the Largest Number
of NO2 Monitors

city
mean (range) number of

monitors
mean

spatial R2
mean

temporal R2
spatiotemporal

R2
mean error

(ppb)
mean abs error

(ppb)
mean bias

(%)
mean abs bias

(%)

Los Angeles 16 (11−18) 0.59 0.80 0.77 0.4 3.6 10 20
New York City 12 (9−15) 0.75 0.73 0.79 0.6 3.2 8 19
Houston 10 (6−11) 0.61 0.86 0.78 0.2 1.8 7 18
Washington, DC 9 (6−10) 0.61 0.81 0.77 −0.6 2.4 0.2 17
Chicago 7 (6−10) 0.57 0.52 0.62 −0.7 3.6 −2 17
Philadelphia 7 (4−8) 0.66 0.76 0.73 0.4 2.2 5 14
St. Louis 6 (1−9) 0.66 0.65 0.76 −0.1 1.9 3 15
San Diego 6 (5−8) 0.32 0.79 0.61 0.2 3.4 7 27
Pittsburgh 6 (4−6) 0.38 0.74 0.62 −0.7 2.5 −2 18
Phoenix 5 (1−7) 0.25 0.90 0.67 −0.01 3.4 4 16

median 7 0.60 0.78 0.75 0.1 2.9 5 17
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performance generally is similar or better for population-
weighted metrics than unweighted metrics. The three methods
of creating temporal scaling surfaces (kriging, IDW, NN)
performed similarly well, suggesting that temporal scaling is
relatively robust to the selection of interpolation technique.
Moreover, this approach for temporal scaling (interpolating
temporal trends from regulatory monitors) is straightforward
and simple to implement. Alternative methods of temporal
scaling (e.g., use of a CTM) may be more complex and require
greater expert knowledge and computational resources to run.
Satellite measurements offer another potential source of
temporal scale factors; however, temporal scaling with that
approach may be complicated by the need to combine data
from several instruments with differing overpass times and
retrieval algorithms.52 Improved spatial and temporal resolution
from future satellite measurements (e.g., Sentinel-5 Precursor,
TEMPO) may improve the spatial performance of satellite-
based LUR models and could provide an alternative temporal
scaling approach.54,55

The model spatial-only performance (mean R2 = 0.81) is
consistent with that of other continental-scale NO2 models (R

2

= 0.61−0.78; see Table S1)13,15−17 and most urban- and
national-scale LUR models for long-term average NO2.

9

Spatiotemporal performance based on monthly mean estimates
(R2 = 0.84) is consistent with published monthly PM10 (R

2 =
0.76) and PM2.5 (R2 = 0.79−0.85) estimates in the United
States.14,34,35 Hart et al.12 estimated annual average NO2

concentrations for the years 1985−2000 in the United States
with similar modeled spatiotemporal performance (R2 = 0.88 vs
0.84 here, using annual mean concentrations). Kloog et al.36,37

predicted daily mean PM2.5 for the years 2000−2008 in New
England and the Mid-Atlantic states with similar spatial R2

(0.69−0.86) and spatiotemporal R2 (0.73−0.90) and slightly
better temporal R2 (0.73−0.91). Lee et al.39 predicted daily
mean NO2 for the years 2005−2010 in New England with
similar spatiotemporal R2 (0.79). These daily models, using a
mixed effects modeling approach, offer excellent temporal
coverage; to our knowledge, they have not been applied on a
national scale.
Our results provide useful information for future continental

LUR building. We found that model performance was relatively
insensitive to the type of regional NO2 covariate used (here,
satellite-based ground level, satellite-based column total,
DOMINO versus BEHR satellite data, 12 km CTM); the
satellite column NO2 slightly outperformed satellite-based
surface estimates. These findings suggest that, for the purposes
of LUR, it might be unnecessary to employ a CTM to convert
satellite column measurements to surface estimates. Moreover,
our findings indicate that the number of monitors needed to
build a robust continental LUR (>150−200) is greater than
that for a smaller scale LUR, and that large holdout subsets,
systematic holdout, or Monte Carlo approaches may be needed
to adequately evaluate the model performance.
Our model combines the spatial predictive power of LUR

with the temporal coverage of the EPA monitoring network.
The resulting model exhibits slightly better temporal predictive
performance than IDW interpolation of monthly mean monitor
values (on average, temporal-only R2 = 0.73 [LUR + temporal
scaling] vs 0.64 [IDW]), but with the greatly improved spatial
performance (on average, spatial-only R2 = 0.81 vs 0.51,
spatiotemporal R2 = 0.84 vs 0.59) typical of LUR.7
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