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ABSTRACT: Epidemiological studies increasingly rely on exposure
prediction models. Predictive performance of satellite data has not been
evaluated in a combined land-use regression/spatial smoothing context.
We performed regionalized national land-use regression with and without
universal kriging on annual average NO2 measurements (1990−2012,
contiguous U.S. EPA sites). Regression covariates were dimension-
reduced components of 418 geographic variables including distance to
roadway. We estimated model performance with two cross-validation
approaches: using randomly selected groups and, in order to assess
predictions to unmonitored areas, spatially clustered cross-validation
groups. Ground-level NO2 was estimated from satellite-derived NO2 and
was assessed as an additional regression covariate. Kriging models
performed consistently better than nonkriging models. Among kriging models, conventional cross-validated R2 (R2

cv) averaged
over all years was 0.85 for the satellite data models and 0.84 for the models without satellite data. Average spatially clustered R2

cv
was 0.74 for the satellite data models and 0.64 for the models without satellite data. The addition of either kriging or satellite data
to a well-specified NO2 land-use regression model each improves prediction. Adding the satellite variable to a kriging model only
marginally improves predictions in well-sampled areas (conventional cross-validation) but substantially improves predictions for
points far from monitoring locations (clustered cross-validation).

1. INTRODUCTION

Epidemiological research is a critical component underpinning
regulatory standards for air quality, and increasingly relies on
statistical air pollution models. While older research relied on a
few monitors in population centers, this approach provides
insufficient detail about within-urban spatial variability.1

Estimating the health effects of air pollutants often requires
multiregion cohort studies with large sample sizes and requires
characterizing contrasts both within and between regions.
To accommodate health studies over multiple regions, it

often is desirable to develop a single model that can predict to
an entire country2−7 or continent and be efficiently used in
multiple studies. Ideally these models can predict concen-
trations accurately even in areas without ground-level
monitoring data. Imperfect predictions can cause bias and
variability in health effect estimates,8 thus motivating the
development of improved models that minimize exposure
estimation error. A standard approach to building prediction
models for air pollution exposure is land-use regression, where

geographic covariates are inputs to a linear model predicting a
specific air pollutant.9−11,1 Use of remote sensing data derived
from satellite sources has been previously been demonstrated
to add value when incorporated into a nonkriging land-use
regression approach.2 However, research assessing the perform-
ance of satellite data in the context of a spatial kriging model is
limited, particularly for modeling NO2.
Here we develop multiple LUR approaches for predicting

annual averages of ambient nitrogen dioxide (NO2) in the
contiguous United States. Our approach incorporates spatial
regression (universal kriging), as described elsewhere.12 Like
with conventional land-use regression (which does not include
a kriging component), we rely on model parameters estimated
from observed data at regulatory monitoring locations. For the
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base model, we incorporate a large suite of geographic
covariates into the regression component via partial least-
squares regression dimension reduction.
The present analysis focuses on assessing the added

predictive performance of incorporating satellite NO2 data
into the model, as well as a comparison between universal
kriging and nonkriging (i.e., land-use regression) approaches.
For model assessment, we sought to not only evaluate overall
prediction accuracy, but specifically evaluate prediction
accuracy at points located far from monitoring sites. Model
assessment in this contextprediction to areas with poor
monitoring coveragerequired the use of an alternate
validation design, spatially clustered cross-validation. This
approach (which is detailed in methods Section 2.7) comple-
ments conventional cross-validation by evaluating prediction
performance in a monitoring network that is spatially clustered
and has large gaps in monitoring coverage such as the Air
Quality System (AQS) network.
To summarize the overall predictive capability of different

modeling approaches, we present out-of-sample cross-validated
R2 estimates (calculated using the RMSE to reflect bias also; see
Section 2.7) for each model in each year. Specifically, we
compare performance between R2 estimates for models that
incorporated the satellite variable and for models without
satellite data. We additionally compare models with and
without kriging. For each model, we calculated cross-validated
R2 estimates using two different cross-validation designs:
conventional random cross-validation groups and spatially
clustered cross-validation groups. We conclude with a
conceptual discussion of the sensitivity of conventional k-fold
cross-validation statistics to the conditions of the monitoring
network and how this validation design may not be the most
informative estimate of model performance when predicting to
cohort locations.

2. MATERIALS AND METHODS

2.1. Modeling Extent and Regions. We developed
statistical models for the contiguous United States (i.e.,
excluding Alaska and Hawaii). In order to more flexibly
model NO2, we subdivided the country into three ad hoc
modeling regions (“East”, “Mountain West”, and “West
Coast”)12 shown in Figure 1. The goal of using separate
modeling regions was to allow different modeling parameters
for different areas of the countries. These regions were chosen

to reflect terrain differences (specifically ruggedness) which
might have an effect on kriging parameters. These regions have
been used previously and shown to be improve predictive
performance in a similar context.12 Modeling parameters
differed by region as explained in the statistical methods
section below.

2.2. Monitoring Data. We averaged daily NO2 concen-
trations from the AQS network to the calendar year at each
monitoring site (1990−2012). To avoid seasonality bias, we
excluded sites that had an inconsistent time-series in a year.
Specifically, we excluded sites in years with fewer than 244
monitored days (i.e., 69% of days) or with a sequential gap of
45 days or greater. In order to stabilize the residual variance, we
transformed the monitoring data to the square root scale.12,13

2.3. Geographic Covariates. We used a geographic
information system (GIS) to calculate covariates representing
land-use characteristics that could predict spatial variability in
air pollutants. We calculated 801 geographic covariates which
fall into two categories: proximity variables, measures of
proximity to a nearest feature, and buf fer variables, measures
of geographic features within a given radius. Proximity variables
include measures of distance to major roadways (specifically
roads classified as A1, A2, and A3 according to the census
feature class) as well as distance to commercial zones, airports,
ports, railroads, and railyards. Buffer variables measure the sum
(area, length, or count) or average of various features within a
given radius. For every feature, we estimated several buffer
variables of different radii. Specific buffer variables included
measurements of the area of each USGS land-use classification
(both 1990 and 2000), and the average Normalized Difference
Vegetation Index (NDVI) value, sum of roadways lengths (A1,
A2, and A3), to name a few. For a more detailed sample of the
covariates we used, see the Supporting Information and
Sampson el al. or Mercer et al.12,14

We calculated the values of each geographic variable at
monitoring locations using ArcMap version 10.2. We then
excluded variables with undesirable qualities for modeling.
Exclusion criteria were based on the distribution of each
variable calculated at monitoring locations. Specifically, we
excluded variables where 80% or more of the values were the
same, and variables with z-score values greater than 10 in the
monitoring data set. Removing variables with outliers in the
monitoring data set (i.e., based on z-score), avoids modeling
with potentially unreliable variables which might lead to
occasional extreme predictions in the prediction data set. We
additionally removed land use variables whose maximum
observed buffer area is less than 10% to avoid modeling with
rare (low-percentage) land-use types that might lead to a less
stable model. Because the set of monitoring locations differed
by year, we applied this variable exclusion process separately for
each year, and therefore the number of variables remaining after
exclusions differed by year (range: 345−370). Out of the 801
geographic covariates we calculated using GIS, 418 of these
variables were used in at least one model after exclusions.

2.4. Dimension Reduction using Partial Least Squares.
Due to the large number of correlated geographic variables, we
used a dimension reduction technique to simplify the model
selection process. We chose partial least-squares (PLS) because
it is specifically designed to deal with large sets of collinear
variables and maximizes covariance between the predictors and
outcome while minimizing overfitting via dimension reduc-
tion.15 Incorporating PLS regression into the prediction
approach both avoids overfitting of models, and most effectively

Figure 1. Year 2006 NO2 monitoring locations. EPA Air Quality
System (AQS) monitoring locations in year 2006 meeting our
completeness criteria. Point color indicates the region to which each
monitor belongs.
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chooses predictors from a high dimensional geographic
database.15 We performed PLS separately for each modeling
year. We considered models including the first 2, 3, 4, and 5
PLS components, and then selected the optimal number of PLS
components via cross-validated performance as described in
Section 2.7.
2.5. Satellite Data. The satellite data source and

preprocessing methods have been described previously.16,17

Briefly, total tropospheric NO2 was measured via satellite
images from the Ozone Monitoring Instrument (OMI) on the
Aurora satellite. Images were taken with a resolution of 13 × 24
km2 at nadir between 12:00−15:00 local time. Columnar
satellite data from 2005 to 2007 were averaged to the calendar
year and processed to estimate ground-level annual average
estimates using the GEOS-Chem reactive transport model.16,18

For the present analyses, we calculated annual averages for all
three years at each monitoring location using a raster-to-point
conversion technique (Moore neighborhood average). We
combined the three calendar year averages into a single variable
estimating the average satellite-measured ground-level NO2 for
2005 to 2007. We then transformed the satellite data to the
square-root scale to match the scale of the outcome variable.
2.6. Statistical Model. The statistical approach for spatial

prediction has been described previously.12 Briefly, we used
universal kriging which combines linear regression with a
distance-based spatial smoothing model for the covariance
between points. The benefit of this spatial smoothing approach
over conventional land-use regression is that it leverages
correlation in the regression residuals to improve predictions.
Universal kriging was chosen because it is a likelihood-based
method which allows simultaneous estimation of smoothing
parameters and regression parameters (whereas other methods
smooth on the residuals using a two-staged approach). We
modeled each year of NO2 separately such that PLS
components, regression coefficients, and residual spatial
parameters differed by year, thereby allowing for flexibility to
model changes over time. We modeled annual average NO2
separately by region such that each region had its own
regression coefficients and variograms to account for spatially
varying differences in geographic factors across the United
States. A previous analysis showed improved performance using
this regionalized approach.12

To determine the added performance attributable to the
satellite variable, we modeled each year with and without this
variable. We included the satellite variable directly as a spatial
covariate in the model rather than combined with the other
geographic covariates as input to the PLS procedure. This
approach allowed us to directly compare model performance
due to the inclusion of the satellite variable in particular.
The formula for the models without the satellite variable can

be written as

β β ε= + × +Y s X s s( ) ( ) ( )j j j0, 1,

where ·(s) indicates a variable is modeled or calculated as a
function of space. Y(s) denotes the square root of annual
average NO2 values at monitoring locations. X(s) denotes the
matrix of spatially varying PLS components. ε(s) indicates
spatially varying residuals, modeled using universal kriging.12

Subscripts j indicate separate parameters for each region.
The models with the satellite variable are

β β β ε= + × + × +Y s X s Z s s( ) ( ) ( ) ( )j j j j0, 1, 2,

where Z(s) denotes the spatially varying square root of ground-
level estimated satellite data averaged over 2005 through 2007.
To determine the added performance from kriging, we

modeled each year with and without kriging. The “without
kriging” models are land-use regressions that did not model
spatial dependence in the residuals and instead treated the
residuals as independent and identically distributed with a
constant variance.

2.7. Cross-Validation and Model Assessment. We used
cross-validation for two purposes: (1) to compare performance
among model types (there were four model types per year: with
kriging and satellite; with kriging but not satellite; with satellite
but not kriging; and, with neither satellite nor kriging); (2) to
select the optimal number of PLS components for each year
and model type. As mentioned above, each model year and type
was fit four times (using 2, 3, 4, or 5 PLS components); we
selected the optimal number of PLS components separately for
each model type in order to ensure fairness when comparing
model types that would otherwise have different amounts of
flexibility (i.e., comparing a kriging model with a nonkriging
model). We defined the optimal number of PLS components
based on the aggregate performance over all years for each
model type. Specifically, we averaged R2 values across modeling
years separately for each combination of model type and for
each number of PLS components, then, for each modeling type,
selected the number of PLS components with the highest R2

averaged over all years.
We performed cross-validation on the entire modeling

approach including variable exclusions, PLS regression, and
universal kriging. To facilitate more precise comparison
between models with and without satellite data and between
models with and without kriging, cross-validation groups (of
the same cross-validation approach) were identical for models
of the same year.
We used two methods to assess prediction performance:

conventionally designed cross-validation (20-fold) and spatially
clustered cross-validation (20-fold). Both approaches estimate
out-of-sample model performance; they differ in how the
training and test data sets are sampled.
For conventional cross-validation, we divided monitoring

locations randomly into 20 groups across regions. The set of
monitors in one group (the test set (5%)) was excluded and
then the modeling approach was performed on the remaining
monitors (the training set (95%)). The model fit on the training
set was used to make predictions to monitors in the test set,
resulting in out-of-sample predictions at those monitoring
locations. This process was repeated 20 times, until all groups
served as the test set once, thereby creating out-of-sample
predictions for all monitoring locations.
We additionally performed cross-validation using groups that

were selected to be spatially clustered in a design we refer to as
spatially clustered cross-validation. We determined clusters
using a k-means algorithm in the R Project for Statistical
Computing stats package (specifically the kmeans function)19

using a prespecified number of clusters for each region based
on the distribution of monitors by region such that spatially
clustered cross-validation groups were contained entirely within
regions. For more detail on this approach, see the Supporting
Information.
We used spatially clustered cross-validation to assess model

performance in areas far from monitoring locations. Calculating
prediction validity at unmonitored locations is not possible, so
we designed our approach to simulate prediction at
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unmonitored locations by predicting to left-out groups of
spatially clustered monitors. The resulting predictions represent
model performance when extrapolating to unmonitored regions
such as the large areas lacking monitors in the AQS network
(e.g., see Figure 1).
We used the predictions from conventional and spatially

clustered cross-validation to calculate model performance
statistics. Specifically, we squared the predictions at monitoring
locations (to back-transform from the square-root scale) such
that validation statistics represent prediction accuracy on the
native scale. We chose R2 based on the root mean squared error
of prediction (RMSEP) as our primary performance metric;20

this value is computed as 1-(RMSEP2/Var(Obs)) and differs
from the R2 computed as the squared correlation. Specifically,
the RMSEP-based R2 value incorporates bias such that biased
models have lower R2 values compared to the correlation-based
R2 value which only reflects precision. Since each year has four

models (with and without satellite data; kriging and non-
kriging) and two cross-validation designs (conventional and
spatially clustered), we calculated eight R2 values per year.

■ RESULTS

3.1. Data. From 1990 through 2012, the number of
monitors meeting the completeness criteria varied between 271
and 361. Figure 1 shows the locations of NO2 monitors in
2006; the substantial clustering of AQS sites observed there is
consistent across the modeling years. The interquartile range of
the monitoring data in 2006 was 8.1 ppb.

3.2. Modeling Predictions and Assessment. Figure 2
shows predictions from kriging models (with and without
satellite NO2) mapped on a 25 × 25 km2 national grid in
selected years (1990, 2006). Predicted NO2 values tend to be
higher in urban (versus rural) areas, and to some extent for
rural areas in the East (compared to West and Mountain West).

Figure 2. National predictions smoothed from estimates at grid locations spaced 25 km apart. Predicted annual average 1990 and 2006 NO2 values
on a 25 × 25 km national grid illustrate differences in the spatial distribution over time and between models with and without satellite data. All
predictions shown are from models with 2 PLS components.

Figure 3. Year 2006 national predictions on a 25 km grid comparing models with and without satellite data, stratified by distance to nearest
monitoring site. Color represents point density (to represent overplotting). Points below the identity line represent predictions that were lower in
the satellite model than comparable predictions in the model without satellite data.
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Subtle differences are notable in the national grid predictions
between models with and without satellite data. Figure 3
demonstrates these differences by comparing national grid
predictions between kriging models with and without satellite
NO2 data in the year 2006, showing that the largest differences
between model predictions are at locations farthest from
monitoring locations. Typically, incorporating satellite data led
to further decreases to already-low predictions. The inter-
quartile range of the year 2006 kriging model national grid
predictions was 18.0 ppb for the satellite model and 15.9 ppb
for the nonsatellite model. Model predictions at monitoring
locations (using conventional random cross-validation) had
interquartile ranges consistent with the IQR of the measured
monitoring data: 8.2 ppb for the satellite model and 8.3 ppb for
the nonsatellite model.
Selected models included between 2 and 4 PLS components,

with fewer for kriging models (range: 2−3 PLS components)
than for nonkriging models (3−4 components) (Table 1).
Satellite models have a slight trend of fewer PLS components
compared to nonsatellite models (both satellite and nonsatellite
models have a range of 2−4 components).

For the kriging models, the difference between average
conventional cross-validated R2 values comparing satellite and
nonsatellite models is only 0.01 (0.85 versus 0.84) (Table 1).
For the nonkriging models, the difference in averages is 0.09
(0.81 versus 0.72). Figure 4a shows a comparison of
conventional cross-validated R2 model performance by year.
In kriging models without satellite data, R2 values ranged from
0.78 to 0.88. In kriging models with satellite data, values ranged
from 0.80 to 0.89. In most years, the difference in performance
between kriging models with and without satellite data is small
with the satellite models performing slightly better (range:
0.00−0.03). Models without kriging had lower R2 values and
more improvement in performance with satellite data: satellite
model R2 values ranged from 0.72 to 0.85 and nonsatellite
model R2 values ranged from 0.61 to 0.77.
R2 values are lower for all models under the clustered cross-

validation approach compared to conventional cross-validation.
Differences in model performance between models with and
without satellite data are also larger under clustered cross-
validation. According to the spatially clustered cross-validation
approach, the difference in average R2 values between satellite
kriging models and nonsatellite kriging models is 0.10 (0.74
versus 0.64). For the nonkriging models, the difference in
clustered R2 averages is 0.13 (0.72 versus 0.59). Comparing

clustered cross-validation across years, R2 values range from
0.66 to 0.80 for kriging models with satellite NO2 and from
0.50 to 0.70 for kriging models without satellite NO2 (Figure
4b). Under the spatially clustered cross-validation design, test
set monitors tend to be far from training monitors. Specifically,
the average distance between a test-set monitor and its nearest
training-set neighbor for the clustered cross-validation design
ranged from between 235 and 281 km by year compared to
between 30 and 50 km by year for the conventional cross-
validation design (also see Table S3 in the Supporting
Information).

4. DISCUSSION

To model annual average ambient NO2 concentrations in the
contiguous U.S., we developed a PLS land-use regression that
included or omitted kriging, and included or omitted satellite-
derived estimates. This modeling approach performed con-
sistently well over a 23-year period with conventional cross-
validation R2 values ranging from 0.78 to 0.88 in kriging models
without satellite data.
Since we modeled NO2 concentrations on the annual average

scale, model performance is a reflection of spatial variability in
long-term averages or “chronic exposure”. The U.S. EPA’s
National Ambient Air Quality Standards for NO2 include two
averaging times: a 1 h standard and an annual average standard.
NO2 models that predict long-term spatial contrasts are
important for longitudinal cohort studies designed to
investigate progression of chronic health outcomes; by
comparison, models that predict short-term temporal contrasts
are more appropriate for panel studies of biomarkers or acute
mortality/morbidity studies such as time series studies.21

Modeling each type of exposure contrast has its uses, but
spatial contrasts can be more challenging to predict accurately
due to the phenomenon of spatial misalignment.22 Therefore,
the high overall predictive accuracy of this approach is
particularly notable. However, a feature of the modeling
approach used here is that it was designed for use on long-
term average observations, and would not be the best approach
for estimating exposure on the acute (daily) time-scale because
it is not designed to deal with seasonal or short-term
correlation over time.
We chose to model each year separately; this approach allows

for more flexible prediction of secular changes in NO2
concentrations by independently estimating changing relation-
ships between land-use regression covariates and monitored
NO2 concentrations over time.

4.1. KRIGING

Models with kriging performed better than models without
kriging. This difference in performance existed despite the fact
that we allowed the optimal number of PLS components to be
different between model types (i.e., allowing nonkriging models
to use more geographic covariate components). This suggests
that kriging models predict variability in NO2 that cannot be
predicted by the land-use data. Kriging models even performed
slightly better than their land use regression alternatives under
the clustered cross-validation design, suggesting that spatial
smoothing is effective even at relatively large distances (average
distances between test and training monitors were 235−281
km).

4.2. Satellite Data. Using a conventional 20-fold cross-
validation design there were only minor differences between

Table 1. Average R2 Values (1990-2012) Comparing All
Model Typesa

conventional CV clustered CV

satellite
covariate kriging

# PLS comp avg. R2 # PLS comp avg. R2

yes no 3 0.81 4 0.72
no no 4 0.72 4 0.59
yes yes 2 0.85 2 0.74
no yes 2 0.84 3 0.64

aCross-validated MSE-based R2 values were averaged over all
modeling years (1990−2012) models with and without satellite data
and with and without kriging for both conventional cross-validation
and clustered cross-validation. Models with between 2 and 5 PLS
components were considered, but only the set of models with the
highest average R2 values are shown.
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the R2 values of the kriging models with and without satellite
data (avg. cross-validated R2 values 0.85 versus 0.84,
respectively). The satellite data only marginally improved
model performance by conventional standards, although even
this modest improvement may be enough to justify its inclusion
in future analyses. More notably, for both kriging and
nonkriging models, adding satellite NO2 data to the models
substantially improved performance under the spatially
clustered cross-validation design. This improvement occurred
even though we allowed for flexibility in the optimal number of
geographic components, suggesting that satellite data provide
performance improvements that cannot be replaced by
additional geographic covariates when it is necessary to
extrapolate spatially.
A potential limitation of the data was our use of NO2 satellite

data restricted to years 2005−2007. However, model perform-

ance improvements by incorporating satellite data were not
restricted to those years, indicating that the 2005−2007 average
satellite data is providing predictive spatial information that is
not limited to that time-period.
Performance metrics based on spatially clustered cross-

validation may broadly represent the validity of our modeling
approach under the less-than-ideal circumstance of predicting
to locations far from AQS monitors, as may be the case in a
national cohort study given the geographic range of participants
and the substantial gaps in the monitoring network (Figure 1).
Therefore, despite only minor improvements in conventional
cross-validation performance, the substantially improved
spatially clustered cross-validation performance of the satellite
model over the nonsatellite model may indicate that the
satellite data are particularly good at predicting to far-from-
monitor locations compared to our other geographic covariates.

Figure 4. (a) R2 values by year, estimated using conventional cross-validation. (b) R2 values by year, estimated using spatially clustered cross-
validation. Cross-validated R2 values (conventional and clustered) comparing models with and without satellite data and models with and without
kriging. The number of PLS components in each model is the same for each linethat is, for each combination of modeling characteristics (with
and without satellite data and with and without kriging), but differs between lines. See Table 1 for the number of components chosen for each
combination of modeling characteristics. *R2 values are calculated as 1-(RMSEP2/Var(Obs))
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Given the nationally consistent relationship between the
satellite data and ground-level NO2 concentrations,23,24 it is
unsurprising that this variable leads to better performance far
from monitoring locations.
Incorporating satellite data into future models may improve

health effect estimation in subsequent epidemiologic analyses
through a reduction in measurement error.8,20 To characterize
how satellite data specifically affected estimates, we compared
predictions at national grid locations. Comparing predictions
from models with and without satellite data, Figure 3 indicates
that incorporating satellite data into the model tended to result
in small decreases in predicted concentrations at national grid
locations far from monitoring stations compared to the
nonsatellite predictions, which tended to have low values to
begin with. Predictions from the satellite model may therefore
have a larger range in estimated exposure. If these predictions
are more accurate, then the increased exposure contrasts might
lead to better inference in epidemiologic studies.20 Additionally,
participants living far from AQS monitors may be character-
istically different from those living closer to monitors, meaning
that less exposure misclassification may reduce bias in the
health effects analysis.
4.3. Kriging versus Satellite Land-Use Regression. We

observed that, using conventional cross-validation, given a
choice between kriging and land-use regression with satellite
data, kriging performed slightly better (kriging land-use
regression without satellite data versus nonkriging land-use
regression with satellite data: avg. R2 0.84 versus 0.81).
However, with clustered cross-validation, we observed the
opposite trend such that satellite data performed better than
kriging (avg. R2 0.72 versus 0.64). The daily spatial resolution
of satellite data is relatively coarse, with pixels being
approximately 13 × 24 km2 (at the annual average, ∼12 km
resolution). This satellite data cannot provide information on
spatial variability at a scale smaller than this. Kriging is
comparatively better suited to modeling smaller-scale variability
given a dense monitoring network, and it is therefore
reasonable that the kriging would out-perform satellite data
when predicting to proximal monitors (as in conventional
cross-validation). On the other hand, the satellite data provides
relatively nationally consistent predictive information, whereas
a limitation of the smoothing component of kriging is that it
models small-scale variability only in well-monitored regions.
These approaches therefore complement each other. The
highest model performance, regardless of cross-validation
approach, was observed in models with both kriging and
satellite data, so we ultimately conclude that a combination of
both satellite data and kriging is superior for many applications.
R2 values calculated using spatially clustered cross-validation

were consistently lower compared to those of the conventional
cross-validation design. Reduced performance under clustered
cross-validation compared to conventional cross-validation was
observed not only in kriging models but in land-use regression
without kriging. It has been previously shown that land-use
regression models have reduced performance in areas on which
the model has not been fit, particularly if those areas differ in
land-use type or topography,9 and that prediction error in land-
use regression is not uniform even across the range of
monitored data.25 Similarly, the predictive performance of
kriging models is also spatially varying8,26 (with the advantage
that kriging can produce standard errors of estimation which
model such uncertainty as a function of space). In either case of
universal kriging or nonkriging land-use regression, clustered

cross-validation represents extrapolation to prediction locations
in unmonitored regions, so it is expected that models would
demonstrate reduced performance relative to the conventional
random cross-validation designs.

4.4. Cross-Validation. The difference in performance
between cross-validation designs implies that conventional
cross-validation may provide more limited insight into model
performance than is typically appreciated. Nonrandom spatial
selection of cross-validation groups has been implemented
previously,27 including at least once in the air pollution
literature,28 but relatively little research has explored the
sensitivity of the estimation of model performance to validation
designs in the context of air pollution modeling. In air pollution
applications it has been previously shown that leave-one-out
(LOO) cross-validation overestimates performance compared
to random k-fold cross-validation designs in the context of land-
use regression,25 and more generally it has been shown that
leave-one-out cross-validation may incorrectly estimate per-
formance.29 Similarly, our results indicate that conventional k-
fold cross-validation designs appear to overestimate predictive
performance for locations far from the monitors. Under
conventional cross-validation design (k-fold or LOO), even
though predictions are technically made to “out-of-sample”
observations, the spatial averaging and regression coefficients
are estimated from nearby observations (with spatially
correlated errors), leading to model assessment using
unrepresentatively similar observations that may not reflect
the amount of extrapolation in prediction to participant
locations. While conventional cross-validation may be appro-
priate for estimating prediction to points that are representative
of areas near monitors, clustered cross-validation is more useful
for assessing model performance when predicting to unsampled
areas far from monitors, which may occur when estimating
exposure for some residential locations in epidemiologic
cohorts. The limitations of conventional cross-validation may
be particularly notable in a spatially clustered monitoring
network such as the AQS; in this scenario, due to the mismatch
between the distribution of residential locations and the
distribution of monitors, random cross-validation may only
represent predictive accuracy for a relatively small subset of
participants living in areas covered by monitors. Alternate
validation techniques such as spatially clustered cross-validation
may therefore be necessary in spatial modeling to fully
characterize performance.
A limitation of this modeling approach is that it relies on

regular observations across the modeling period, and therefore
would not be well-suited to model annually a pollutant like
ozone which may not have year-round monitoring at some
sites. Additionally, any regionalization approach that relies on
one-model-per-region carries the disadvantage of spatial
discontinuities. While this is a limitation that may cause more
variable predictions near the region borders, the approach does
provide for model flexibility that has been shown to improve
predictions overall. The strengths of our partial-least-squares
modeling approach are its regional-flexibility, multiple years of
modeling, and good predictive performance. A previous version
of this model has been used in epidemiologic analysis30 and this
advanced modeling approach is appropriate for epidemiological
analyses in a variety of U.S. cohorts due to its national coverage.
In conclusion, we found that kriging models had superior

performance to nonkriging models and that satellite-based
models had superior performance to nonsatellite models.
Satellite data may be especially useful for predicting in locations
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far from the monitoring network. The spatially clustered
validation design in particular showed performance increases
with the satellite data. Our findings emphasize the importance
of careful consideration of validation methods and spatially
varying predictive performance in air pollution modeling.
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