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a b s t r a c t

While laboratory studies show that air pollutants can potentiate insulin resistance, the epidemiologic
evidence regarding the association of air pollution with diabetes incidence is conflicting. The purpose of
the present study was to assess the association of the traffic-related nitrogen dioxide (NO2) with the
incidence of diabetes in a longitudinal cohort study of African American women. We used Cox propor-
tional hazards models to calculate hazard ratios and 95% confidence intervals (CI) for diabetes associated
with exposure to NO2 among 43,003 participants in the Black Women's Health Study (BWHS). Pollutant
levels at participant residential locations were estimated with 1) a land use regression model for par-
ticipants living in 56 metropolitan areas, and 2) a dispersion model for participants living in 27 of the
cities.

From 1995 to 2011, 4387 cases of diabetes occurred. The hazard ratios per interquartile range of NO2

(9.7 ppb), adjusted for age, metropolitan area, education, vigorous exercise, body mass index, smoking,
and diet, were 0.96 (95% CI 0.88–1.06) using the land use regression model estimates and 0.94 (95% CI
0.80, 1.10) using the dispersion model estimates. The present results do not support the hypothesis that
exposure to NO2 contributes to diabetes incidence in African American women.

& 2016 Elsevier Inc. All rights reserved.
1. Introduction

In 2012, an estimated 21 million people in the US had diag-
nosed diabetes, of which 95% was type 2, and approximately
8 million more had undiagnosed diabetes (Centers for Disease
Control, 2014).1 Diabetes doubles the risk of cardiovascular disease
incidence and mortality (Go et al., 2013) and is the seventh leading
cause of death (Go et al., 2013). The incidence of diabetes has
doubled over the past 30 years, rising from 3.6/1000 person-years
in 1980 to 7.4/1000 person-years in 2012 (Go et al., 2013; Geiss
et al., 2014). Rates are high in black women: in 2010, 15% of black
women aged 20 and older had prevalent diabetes compared to
Study; LUR, land use regres-
6.2% of white women (Go et al., 2013). While obesity, sedentari-
ness, and other individual-level characteristics are established risk
factors for diabetes (Mozaffarian et al., 2009), attention has re-
cently turned to the potential role of air pollution as an etiologic
agent. In animal studies, fine particulate matter with aerodynamic
diameter r2.5 mm (PM2.5) can instigate several metabolic per-
turbations (e.g., adipocyte and per-vascular fat inflammation, al-
tered adipocytokine expression) that together potentiate the de-
velopment of insulin resistance and diabetes (Rajagopalan and
Brook, 2012). Air pollution has been positively associated with
diabetes prevalence (Lockwood, 2002; Brook et al., 2008; Pearson
et al., 2010; Eze et al., 2014) and diabetes-related mortality (Li
et al., 2014). Whether air pollution contributes to diabetes in-
cidence is an open question which has been addressed in several
cohort studies, with conflicting results (Kramer et al., 2010; Puett
et al., 2011; Coogan et al., 2012; Park et al., 2015). In a German
study (Kramer et al., 2010), significant 15–42% increases in
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diabetes incidence were observed per interquartile range (IQR) of
NO2, depending on how NO2 was estimated. In a Danish cohort,
there was a significant 7% increase in diabetes incidence per IQR of
NO2 among women but not among men (Andersen et al., 2012). In
the Multiethnic Study of Atherosclerosis, levels of nitrogen oxides
(NOx, the sum of NO2 and NO) were not associated with diabetes
incidence (Park et al., 2015). The evidence regarding PM2.5 and
diabetes incidence is also conflicting, with positive associations
observed in some cohorts (Kramer et al., 2010; Chen et al., 2013)
and little evidence of associations in other cohorts (Puett et al.,
2011).

An association of air pollutants with diabetes would be of
particular importance for African American women, because
neighborhoods where African Americans live have higher levels of
air pollution, on average, than predominantly white neighbor-
hoods (Downey and Hawkins, 2008). The purpose of the present
study was to assess the relation of NO2 exposure to incidence of
type 2 diabetes in a large cohort of African American women, the
Black Women's Health Study (BWHS). NO2 is a good marker of
vehicle-related pollutants. A substantial body of evidence suggests
that NO2 is capable of adversely affecting respiratory, cardiovas-
cular and metabolic systems; it is also a key precursor of numerous
secondary pollutants with well-documented adverse health effects
(U.S. EPA, 2016). We previously reported a positive association of
NOx with diabetes incidence among BWHS participants who lived
in Los Angeles (Coogan et al., 2012), and no association of PM2.5

with diabetes in the overall BWHS cohort (Coogan et al., 2016).
2. Methods

2.1. Study population

The BWHS was established in 1995, when 59,000 black women
aged 21 through 69 were recruited mainly from subscribers to
Essence magazine, a general readership magazine targeted to
black women (Rosenberg et al., 1995). The baseline questionnaire
elicited information on demographic and lifestyle factors, re-
productive history, and medical conditions. The cohort is followed
biennially through mailed and Web-based health questionnaires.
All questionnaires are available for viewing at http://www.bu.edu/
bwhs/for-researchers/sample-bwhs-questionnaires/. Follow-up of
the baseline cohort has been complete for 88% of potential years of
follow-up through 2013. The study protocol was approved by the
Institutional Review Board of Boston University School of Medi-
cine. Participants indicate consent by completing and returning
the questionnaires.

The present analysis includes data from the baseline ques-
tionnaire (1995) and eight subsequent follow-up cycles (1997–
2011). There were 45,231 women who at baseline lived in any of
56 metropolitan areas in the United States and had complete in-
formation on body mass index (BMI). Women excluded because
they did not live in the 56 metro areas (n¼11,914) did not differ
from the included women in terms of mean age, BMI, or pre-
valence of diabetes. We further excluded 2228 women with pre-
valent diabetes at baseline, for a total of 43,003 women in the
analytic cohort. Follow-up began at 30 years of age to exclude
potential cases of type 1 diabetes.

2.2. Diagnosis of type 2 diabetes

We defined an incident case of type 2 diabetes as self-report of
doctor-diagnosed diabetes at age 30 or older during follow-up
through 2011. In a validation study, among 227 participants who
met these criteria and whose physicians provided data from their
medical records, the diagnosis of type 2 diabetes was confirmed in
96% (Krishnan et al., 2010). The incidence of diabetes in BWHS
from 1995 through 2013 was 9.5/1000/year. Incidence rates in the
National Health Interview Survey for African Americans aged 20–
79 were 9.5/1000/year in 1997 and 9.9/1000/year in 1999 (Geiss
et al., 2014).

2.3. Estimation of NO2

For all participant addresses over follow-up that fell in the 56
metro areas, we estimated annual NO2 levels for the years 2000–
2010 at the block group level using a spatiotemporal land use
regression (LUR) model. A block group is an area defined by the U.
S. Census that includes between 600 and 3000 people. The model
is described in detail elsewhere (Novotny et al., 2011). Briefly, the
spatial model incorporates year-2006 annual-average NO2 con-
centrations at 369 monitoring stations, 81,670 satellite-derived
estimates of ground-level NO2 concentrations, and satellite- and
ground-based datasets of land uses. Temporal model incorporates
48,886 monthly-average monitoring station values, which are
used to quantify, for each Census block group, local monthly var-
iations relative to the year-2006 spatial LUR. The R2 for the final
spatiotemporal model is 0.80.

We also used a dispersion model to develop a second set of NO2

estimates for 27 of the metro areas, chosen to include the largest
cities and a wide range of pollutant levels. NO2 levels were esti-
mated for the years 2000–2010 using a combination of line source
dispersion modeling of roadway traffic emissions and spatial in-
terpolation of regional background concentrations. Roadway traf-
fic volumes were obtained from the Highway Performance Mea-
surement System for primary and secondary roads for 2012
(http://www.fhwa.dot.gov/policyinformation/hpms.cfm); local
roadways were ascertained from the U.S. Census TIGER files
(https://www.census.gov/geo/maps-data/data/tiger-line.html),
with traffic volumes set to average estimates provided by the
Highway Performance Measurement System for urban areas in
each state. For each roadway segment, a NO2 emissions rate was
computed by multiplying average daily traffic counts by emissions
factors from the U.S. national vehicle emissions inventory,
MOVES2014 (http://www.epa.ov/otaq/models/moves/index.htm).
A Gaussian line source dispersion model (Benson, 1992) and an-
nual hourly meteorology were used to estimate the dispersion of
the roadway emissions at each location. Background NO2 con-
centrations were estimated with a spatial semivariogram and
kriging model, and were added to the roadway-attributable con-
centrations to obtain final NO2 estimates at all participant ad-
dresses over follow-up.

2.4. Ascertainment of covariates

Self-reported height and weight were ascertained at baseline
and weight was updated on all follow-up questionnaires. Smoking
history, alcohol consumption, and hours per week spent in vig-
orous exercise were obtained at baseline and updated on follow-
up questionnaires. In 1995 and 2001, dietary data was obtained
with a 68-item modification of the short form Block-National
Cancer Institute food frequency questionnaire (Block et al., 1990).
We used factor analysis to identify two dietary patterns, one
characterized by high intake of vegetables and fruit and the other
by high intake of meat and fried food (Boggs et al., 2011). In-
formation on household income was obtained in 2003, educa-
tional attainment in 1995 and 2003, and parental history of dia-
betes in 1999.

Participants' residential addresses from 1995 through 2009
were geocoded and linked to U.S. Census data at the block group
level. We used factor analysis to create a neighborhood socio-
economic status (SES) score that included seven census variables
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Table 1
Baseline characteristics according to quintiles of NO2, Black Women's Health Study
participants living in 56 metropolitan areas, 1995a,b.

Quintile of NO2 (range in ppb)

1 (1.0–
12.9)

2 (13.0–16.3) 3 (16.4–
19.9)

4 (20.0–
25.0)

5 (25.0–
37.7)

Age, mean(SD) 38.7
(9.9)

38.7 (10.3) 39.2
(10.8)

39.0
(10.8)

37.7
(10.9)

BMI, mean (SD) 27.4
(6.2)

27.8 (6.5) 27.9
(6.7)

27.7
(6.5)

27.7
(6.6)

Never smoker, % 69 65 63 63 61
Never drinker, % 60 56 55 55 55
College graduate, % 50 46 45 45 44
Household income 4
$100,000 (2003), %

16 14 13 13 11

Parental history of dia-
betes, %

27 26 26 24 25

Z5 h/wk of vigorous
exercise, %

13 13 14 13 14

Highest quintile vege-
table/fruit diet score,
%

17 18 19 19 21

Highest quintile neigh-
borhood SES score, %

33 24 17 15 11

Abbreviations: BMI, body mass index; NO2, nitrogen dioxide; SD, standard devia-
tion; SES, socioeconomic status.

a NO2 estimates from the land use regression model.
b Age-standardized in 5-year increments.
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(median household income; median housing value; % of house-
holds receiving interest, dividend or net rental income; % of adults
aged Z25 years that completed college; % of families with chil-
dren headed by a single female; % of population living below the
poverty line; and % African American). Regression coefficients
from the factor analysis were used to weight the variables for a
combined neighborhood score, with higher scores indicating
higher neighborhood SES.

Ozone levels were estimated using the Environmental Protec-
tion Agency's Models-3/Community Multiscale Air Quality fused to
ground measurements (the “downscaler” model), with a resolution
of 12 km for the years 2007–2008 (U.S. EPA, 1999). Daily estimates
for 8-h maximum levels at census tract centroids were compiled
into annual average concentrations. PM2.5 levels were estimated at
all residential addresses using a two-stage modeling strategy that
incorporated a LUR approach and a Bayesian Maximum Entropy
approach, described in detail elsewhere (Beckerman et al., 2013).

2.5. Statistical methods

We used Cox proportional hazards models to estimate hazard
ratios (HR) and 95% confidence intervals (CI) for the incidence of
diabetes per IQR of NO2 (9.7 ppb). Person-time was calculated
from the start of follow-up in 1995 until the occurrence of dia-
betes, loss to follow-up, death, or end of follow-up, whichever
happened first. NO2 was modeled as the overall mean of levels
estimated for 2000–2010 at all addresses where a participant had
lived during follow-up, weighted by time spent at each address
(overall mean). This metric accounted for spatial but not temporal
variability in NO2 levels; the overall mean at each location did not
vary, regardless of what year a women lived there. To account for
temporal trends in NO2 levels, we used a second metric that was
the average of levels estimated before diagnosis, weighted by time
spent at each address (temporal mean); this metric varied ac-
cording to year. For example, the overall mean for an address
where a woman lived in 2005 was the average of all available NO2

levels (2000–2010); the temporal mean for that address in 2005
was the average of NO2 levels for 2000–2005. Follow-up using the
temporal mean was from 2001 to 2011 to coincide with the years
for which NO2 values were estimated. We assessed the propor-
tional hazards assumptions using Schoenfeld residuals. The use of
penalized splines did not improve model fit compared with the
linear model.

All models were adjusted for age in 1-year intervals, 2-year
questionnaire cycle, and metro area (n¼56). To a basic model that
included only these variables (model 1), we added individual-level
covariates that by themselves changed the coefficient for NO2 by at
least 10% (model 2): BMI (weight in kg/height2 in m) (o25, 25–29,
30–34, 35–39, Z40), years of education (r12, 13–15, 16, Z17), h/
week vigorous exercise (none,o5, Z5), diet pattern as indicated
by vegetable/fruit diet pattern score (quintiles) and meat/fried
foods diet pattern score (quintiles), and smoking status (never,
past, current o15 cigarettes/day, current Z15 cigarettes/day). We
then added neighborhood SES (continuous) (model 3). The addi-
tion of ozone and PM2.5 to model 3 did not materially change HRs
and did not improve model fit, so are not included in the final
models.

We conducted analyses stratified by neighborhood SES, BMI,
age, education, hypertension, vigorous exercise, western diet score
and smoking status. Deviations from multiplicative joint effects
were assessed by the likelihood ratio test comparing models with
and without interaction terms. We estimated HRs among women
who did not move during follow-up. We also estimated HRs se-
parately for women who lived in Los Angeles to compare with
results from our previous study (Coogan et al., 2012).
3. Results

NO2 levels at baseline for the 56 cities in the study area esti-
mated from the LUR model ranged from 1.0 ppb to 37.7 ppb with a
mean of 18.6 ppb (SD¼6.5). The 25th and 75th percentiles were,
respectively, 13.9 ppb and 23.6 ppb. For the 27 cites for which we
estimated NO2 levels with the dispersion model, the estimates
ranged from 5.1 ppb to 40.7 ppb, with a mean of 19.2 ppb
(SD¼5.5); 25th and 75th percentiles were 14.6 ppb and 24.3 ppb,
respectively. The distribution of NO2 across the U.S. and the loca-
tion of the 56 cities included in the analysis is shown in the
Supplementary Material. NO2 levels fell over time, from a mean of
21.9 ppb in 2000 to 14.8 ppb in 2010 using the LUR model, and
from 23.0 ppb to 14.7 ppb using the dispersion model. The
Spearman correlation coefficient between the two NO2 estimates
was 0.89.

Age, BMI, level of vigorous exercise, and history of parental
diabetes were similar across quintiles of NO2 (Table 1). Neighbor-
hood SES was the factor most strongly associated with NO2 ex-
posure: 33% of participants in the lowest quintile of NO2 resided in
the highest SES neighborhoods, whereas only 11% of those in the
highest quintile of NO2 lived in the highest SES neighborhoods.
The lowest NO2 quintile was also characterized by having more
participants of higher education and income and fewer partici-
pants who smoked.

Over follow-up from 1995 through 2011, 4387 cases of incident
diabetes occurred. Table 2 shows the HRs for diabetes for the two
exposure metrics (overall mean and temporal mean) and for the
two methods of NO2 estimation (for 56 cities using the LUR esti-
mates and for 27 cities using the dispersion model estimates). In
the 56 cities, the model 1 HR using the overall mean was 1.09 (95%
CI: 1.00, 1.19). It was reduced to 0.96 (95% CI: 0.88, 1.06) upon
addition of covariates in model 2. The model 2 HR using the
temporal mean was 0.94 (95% CI: 0.85, 1.04). Additional control for
neighborhood SES reduced the overall and temporal mean HRs to
0.90 (95% CI: 0.82, 1.00) and 0.88 (95% CI: 0.79, 0.98), respectively.
In the 27 cities, the HRs were similar although slightly smaller
than those in the 56 cities.



Table 2
Incidence of diabetes per IQR (9.7 ppb) increase in NO2 using two NO2 estimation
methods, BWHS 1995–2011.

Exposure metric Cases/per-
son years

Model 1a

HR (95% CI)
Model
2 HRb (95%
CI)

Model 3 HRc

(95% CI)

Using NO2 estimates from LUR model for 56 cities
Overall mean 4387/

453,221
1.09 (1.00,
1.19)

0.96 (0.88–1.06) 0.90 (0.82,
1.00)

Temporal mean 2813/
258,680

1.06 (0.96,
1.17)

0.94 (0.85, 1.04) 0.88 (0.79,
0.98)

Using NO2 estimates from dispersion model for 27 cities
Overall mean 3520/

365,288
1.05 (0.90,
1.23)

0.94 (0.80, 1.10) 0.89 (0.75,
1.04)

Temporal mean 2242/
207,048

1.02 (0.86,
1.21)

0.92 (0.77, 1.09) 0.85 (0.71,
1.02)

a Adjusted for age, questionnaire cycle, and metro area.
b Model 2 adds BMI (weight in kg/height2 in m) (o25, 25-29.9, 30–34.9, 35-

39.9, Z40), years of education (r12, 13–15, 16, Z17), h/week vigorous exercise
(none, o5, Z5), vegetable/fruit diet pattern score (quintiles) and meat/fried foods
diet pattern score (quintiles), and smoking status (never, past, o15 cigarettes/day,
Z15 cigarettes/day).

c Model 3 adds neighborhood SES (continuous) to model 2.

Table 3
Incidence of diabetes per IQR (9.7 ppb) increase in NO2 in strata of covariates, NO2

estimates from LUR in 56 cities, exposure metric¼overall mean.

Cases/PYs Model 2 HR (95% CI)n

Neighborhood SES
Quintile 1 1081/85,569 0.89 (0.67, 1.18)
Quintile 2 934/86,213 0.99 (0.75, 1.29)
Quintile 3 879/88,921 0.95 (0.74, 1.21)
Quintile 4 833/95,834 0.79 (0.62, 0.99)
Quintile 5 660/96,683 0.84 (0.66, 1.07)

Interaction p-value: 0.77

BMI
o25 298/135,021 1.22 (0.83, 1.79)
25–29 1184/154,702 1.04 (0.86, 1.25)
Z30 2905/163,498 0.97 (0.87, 1.10)

Interaction p-value: 0.83

Age
o40 655/133,509 0.94 (0.75, 1.19)
40–54 2200/224,159 0.97 (0.86, 1.10)
Z55 1532/95,553 1.04 (0.89, 1.20)

Interaction p-value: 0.72

Education
rHS 980/71,966 0.98 (0.78, 1.24)
Some college 1476/142,585 0.97 (0.81, 1.16)
College graduate 1926/238,024 0.98 (0.85, 1.13)

Interaction p-value: 0.89

Hypertension
No 1932/310,669 1.05 (0.91, 1.21)
Yes 2455/142,551 0.91 (0.80, 1.04)

Interaction p-value: 0.19

Vigorous exercise
o5 h/week 4157/407,886 0.97 (0.88, 1.07)
Z5 h/week 187/41,596 0.69 (0.37, 1.27)

Interaction p-value: 0.60

Smoking
Never 2344/281,409 0.93 (0.81, 1.05)
Past or current 2037/170,892 1.04 (0.90, 1.21)

Interaction p-value: 0.11

Meat/fried food diet pattern score
Quintile 1 700/87,221 0.90 (0.69, 1.18)
Quintile 2 755/85,892 0.77 (0.60, 1.00)
Quintile 3 814/86,307 1.10 (0.85, 1.42)
Quintile 4 866/86,104 0.98 (0.77, 1.24)
Quintile 5 965/84,832 1.00 (0.80, 1.25)

Interaction p-value: 0.96

n Adjusted for the following, unless the variable is the stratifying variable: age,
questionnaire cycle, metro area, BMI (weight in kg/height2 in m) (o25, 25–29.9,
30–34.9, 35–39.9, Z40), years of education (r12, 13–15, 16, Z17), h/week vigor-
ous exercise (none,o5, Z5), vegetable/fruit diet pattern score (quintiles) and
meat/fried foods diet pattern score (quintiles), and smoking status (never, past,
o15 cigarettes/day, Z15 cigarettes/day).
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The variables most responsible for the change between the
model 1 and 2 HRs were BMI, followed by smoking. Because some
animal data and epidemiologic data in children indicate that air
pollution may be positively associated with weight gain (McCon-
nell et al., 2015), and may mediate an association of air pollution
and diabetes, we assessed the HRs (using the overall mean) ex-
cluding BMI: the model 2 HR was 1.03 (95% CI: 0.94, 1.13) using the
LUR NO2 estimates and it was 0.99 (95% CI: 0.95, 1.16) using the
dispersion model NO2 estimates. Corresponding model 3 HRs,
excluding BMI, were 0.91 (95% CI: 0.82, 1.00) and 0.87 (95% CI:
0.74, 1.02).

Neighborhood SES and NO2 levels were inversely correlated:
the Spearman correlation coefficient in the 56 cities combined was
�0.24; city-specific correlations ranged from �0.12 (San Francis-
co) to �0.75 (Trenton, NJ). We calculated HRs in the metro areas
where the magnitude of the correlation between NO2 and neigh-
borhood SES was lowest (Spearman ro0.25) and highest
(rZ0.40). These analyses used overall mean NO2 estimates from
the LUR model. In the category of lowest correlation, the model
1 and model 3 HRs were, respectively, 1.10 (95% CI: 0.94, 1.29) and
1.02 (95% CI: 0.87, 1.21). In the category of highest correlation, the
model 1 and 3 h were 1.15 (95% CI: 0.99, 1.33) and 0.85 (95% CI:
0.72, 1.00).

Table 3 shows model 2 HRs using the overall mean in strata of
covariates, based on NO2 estimates from the LUR model in the 56
cities. The HRs in the two highest quintiles of neighborhood SES
were reduced (quintile 4 HR¼0.79 (95% CI: 0.62, 0.99), quintile
5 HR¼0.84 (95% CI: 0.66, 1.07)), and the HR in the lowest category
of BMI was increased (HR¼1.22, 95% CI: 0.83, 1.79). There was,
however, no evidence of statistical interaction between NO2 and
neighborhood SES, BMI, age, education, presence of hypertension,
level of vigorous exercise, smoking, or diet pattern (all P for
interaction 40.05). We calculated HRs among women in the 56
cities who did not move (2078 cases in 185,285 person-years): the
model 2 HR using the overall mean was 1.02 (95% CI: 0.88, 1.17)
and using the temporal mean it was 1.04 (95% CI: 0.88, 1.22).

In Los Angeles (277 cases/34,070 person-years), using estimates
from the LUR model, the model 2 HR using the overall mean was
1.23 (95% CI: 0.87, 1.72). Using estimates from the dispersion
model, the model 2 HR was 1.50 (95% CI: 0.90, 2.49). We have
previously reported a 25% increase in diabetes incidence (95% CI:
7–46%) per IQR of NOx (12.4 ppb) for BWHS participants who lived
in Los Angeles, with follow-up from 1995 to 2005 (183 cases/
33,657 person-years) (Coogan et al., 2012). Whenwe duplicate this
past analysis, but extend follow-up through 2011 as in the present
study, the HR was reduced to 1.18 (95% CI: 1.00–1.38). The prior
published results are not strictly comparable to the present results
because NOx was used rather than NO2. Furthermore, NOx was
estimated from a LUR model different from that in the present
report. In addition, in the prior report NOx was estimated only for
2006, and a slightly different set of covariates were included in the
final model. Therefore, to calculate a more comparable HR, we
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assigned year 2006 NO2 estimates from the prior LUR model to Los
Angeles locations in the current analytic cohort, with follow-up
from 1995 to 2011. Using those NO2 estimates, the model 2 HR per
9.7 ppb (IQR in the present report) was 1.15 (95% CI: 0.82–1.61).
4. Discussion

In this large population of African American women, NO2 levels
were not associated with diabetes incidence. Results were con-
sistent regardless of which model was used to estimate NO2 levels
(LUR or dispersion model) and which exposure metric was used
(overall mean or temporal mean).

In the current report, the HRs for Los Angeles were higher than
for the nationwide cohort. The variation could have occurred by
chance. However, prior studies reported larger air pollution effects
on mortality in Los Angeles than in national models (Jerrett et al.,
2005). There could be a more toxic mixture of air pollution in Los
Angeles due to the presence of major port facilities and a relatively
higher contribution from traffic and diesel exhaust. We are unable
to test this hypothesis directly because the monitoring data nee-
ded to predict markers of diesel, such as elemental carbon, are
unavailable. Furthermore, in our earlier report from Los Angeles,
we reported a statistically significant HR of 1.25 per 12.4 ppb NOX

with follow-up from 1995 to 2005 (Coogan et al., 2012); when we
repeated that analysis with follow-up extended to 2011, the HR fell
to a nonsignificant 1.18. In the current analysis of NO2, the HR
(based on LUR estimates) was a nonsignificant 1.23. The attenua-
tion in the HRs with the longer follow up may have occurred due
to substantial reductions in NO2 and NOx that occurred during the
period from 2006 to 2011, creating potential measurement errors
in our exposure estimates. During this period, the California Air
Resource Board implemented a comprehensive regulatory pro-
gram aimed at reducing emissions from ports and on truck routes.
Accountability studies of this program showed that large and
spatially differentiated reductions in NO2 and NOx occurred during
this period, with the largest reductions occurring along truck
routes known as “goods movement corridors”. The proportionately
larger reductions along these corridors compared to other busy
roads with lower truck volumes or to background residential areas
would have created the potential for measurement error in our
current exposure estimates because our current models may not
have captured the lower emissions from trucks. The differential
emissions reductions in specific zones would have imparted a
Berkson error structure to the effect estimates (i.e., inflating the
standard errors of the HRs). Additional classical error could have
occurred due to random changes in other areas outside the goods
movement corridors that may have attenuated the estimates to-
ward the null (Molitor et al., 2007; Thomas et al., 1993; Molitor
et al., 2006).

Three other prospective studies have assessed NO2 or NOx and
diabetes incidence (Park et al., 2015; Andersen et al., 2012; Kramer
et al.,. 2010). In 9 years of follow-up in the Multiethnic Study of
Atherosclerosis (Park et al., 2015), the HR per IQR of NOx (47.1 ppb)
was 1.20 (95% CI: 0.80, 1.80) for women and 0.91 (95% CI 0.59–
1.42) for men, adjusted for a range of individual-level risk factors,
neighborhood SES, and study site. In 10 years of follow-up of a
large Danish cohort (Andersen et al., 2012), the multivariable HR
per IQR increase in NO2 (4.9 mg/m3) was 1.04 (95% CI: 1.00, 1.08).
HRs were higher among women (HR¼1.07: 95% CI 1.01, 1.13),
never smokers (HR¼1.12, 95% CI: 1.05, 1.20), and physically active
people (HR¼1.10, 95% CI: 1.03, 1.16). In 22 years of follow-up in a
study in the Ruhr area of Germany, the HR for diabetes per IQR of
NO2 estimated with an LUR model (15 mg/m3) was 1.31 (95% CI:
1.01, 1.70), adjusted for BMI, education, and indoor sources of air
pollution (Kramer et al., 2010). Several other studies have assessed
the association of particulate matter with diabetes incidence, with
inconsistent results. In the German study cited above (Kramer
et al., 2010) and in a large Canadian study (Chen et al., 2013), levels
of particulate matter were associated with significant 16% and 11%
increases, respectively, in incidence per 10 mg/m3 increase in pol-
lutant levels. In a second German study, levels of overall particu-
late matter were not associated with diabetes incidence, but there
was a nonsignificant 36% increase in incidence per 1 mg/m3 in-
crease in traffic-specific particulate matter (Weinmayr et al., 2015).
In contrast, no significant associations between PM2.5 and diabetes
incidence were observed in the Nurse's Health Study (Puett et al.,
2011), the Health Professionals Follow-up Study (Puett et al., 2011),
the Multi-Ethnic Study of Atherosclerosis (Park et al., 2015), or in
the BWHS (Coogan et al., 2016).

The hypothesis that particulate matter and ozone could in-
crease the risk for diabetes is mechanistically plausible, as recently
reviewed elsewhere (Rao et al., 2015). In experimental studies,
traffic-related fine and ultrafine particles and ozone have proven
capable of triggering inflammation, oxidative stress, and the bio-
logical pathways that promote metabolic insulin resistance (Ra-
jagopalan and Brook, 2012; Brook et al., 2013; Vella et al. 2015).
NO2 can induce similar inflammatory responses to those of par-
ticulate matter and ozone (U.S. EPA, 2016; Hesterberg et al., 2009),
but we are aware of no toxicological studies that have directly
investigated whether NO2 promotes metabolic insulin resistance.
Therefore, in the prior epidemiological studies showing positive
associations of NO2 and diabetes incidence, NO2 may have served
as a proxy for traffic-related fine and ultrafine particles.

The prevalence of overweight and obesity is high in African
American women (Go et al., 2013) and is high in the BWHS.
Obesity is one of the strongest risk factors for diabetes (Krishnan
et al., 2007). Although there was no statistically significant inter-
action between NO2 and BMI, the HR was highest (1.22) among
women with BMIo25. Similarly, in a prior report from BWHS,
there was no association between PM2.5 and diabetes in the overall
cohort (HR¼0.99, 95% CI 0.90, 1.09), but the HR was non-
significantly increased in women with BMIo25 (HR¼1.36, 95% CI
0.91–2.04) (Coogan et al., 2016). Based on prior studies (Kramer
et al., 2010; Andersen et al., 2012; Chen et al., 2013), the magni-
tude of any association of air pollution with diabetes incidence is
expected to be modest, and modest associations can be difficult to
observe in high risk groups, such as obese women.

Strengths of the study include the prospective study design, the
large sample size and long follow-up. While diabetes was self-
reported, a validation study in BWHS demonstrated a high degree
of accuracy of self-report (Krishnan et al., 2010). The analytic co-
hort was limited to women age 30 and over which increased the
likelihood that the cases diagnosed during follow-up were type
2 diabetes. We also were able to control for a wide range of po-
tential confounders. Undiagnosed diabetes may have biased HRs to
the null. It is not feasible in a large national cohort like BWHS to
assess undiagnosed diabetes. However, virtually all BWHS parti-
cipants had health insurance and access to regular care; in 2011,
78% reported that their blood sugar had been checked in the past
2 years. According to NHANES data 1999–2002, the prevalence of
undiagnosed diabetes among non-Hispanic black women aged 20
and older was 3.8% (95% CI 2.4–6.1%) (Cowie et al., 2006). To assess
undiagnosed diabetes in the BWHS, we assayed HbA1C levels in a
sample of 1873 participants who had given a blood sample and
had never reported diabetes; 6.4% had HbA1c levels of 6.5%
(47.5 mmol/mol) or higher, suggesting that they may have indeed
had diabetes. It is unlikely that this level of misclassification would
result in substantial bias.

NO2 and neighborhood SES were inversely correlated, and the
addition of neighborhood SES reduced HRs to below 1.0. Among
metro areas where the correlation between NO2 and SES was
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lowest, the fully adjusted HR was 1.02, whereas in the areas where
the correlation was highest, the HR was 0.85. HRs were also o1.0
in the two highest quintiles of neighborhood SES. These results
suggest that there is a complex confounding relation between NO2

and neighborhood SES and that it is difficult to completely control
for it.

We had two sets of NO2 estimates. The LUR estimates were at a
scale �10 km grids and assigned to the block group of participant
residences. Among the �32,000 block groups in the 56 cities
where BWHS participants lived, the average NO2 concentration
coefficient of variability for blocks in a block group was 6%, sug-
gesting that spatial averaging to the level of the block group, ra-
ther than the block, introduced only minor loss of information. As
regards stability of LUR estimates over time, estimates from LUR
models for a particular year or years are relatively stable, and can
validly be applied several years backwards and forwards (Eeftens
et al., 2011). The fact that HRs were very similar using the LUR and
dispersion model estimates argues for validity of the findings.

Both models had the potential for over-smoothing due to de-
pendence on a sparse network of 369 government monitoring
sites, most of which are located away from traffic sources due to
siting criteria. It is therefore likely that both estimates were unable
to capture completely the fine-scale variation that occurs around
major roadways and highways, and there was likely to be under-
estimation in areas that had high levels of NO2, which would bias
results toward the null. The dispersion model also relied on a
nationally available dataset of traffic coverage that did not have
estimates of traffic flows for all roadways. The imputation needed
to fill in these missing data points might also have led to less
variation than we would observe with extensive field measure-
ments, again potentially leading to underestimates in areas of high
exposure and a bias toward the null.

The annual average NO2 concentration across the U.S. has de-
creased by 48% from 1990 to 2012 (EPA, 2013). One of our ex-
posure metrics, the overall mean, did not account for temporal
trends. However, the relative spatial distribution of NO2 has been
stable over time. In addition, HRs estimated with a second ex-
posure measure that incorporated temporal trends (temporal
mean) were similar to HRs based on the overall mean.

A limitation is that pollutant levels were estimated only at each
woman's residential location. We did not have exposure measures
based on personal monitoring devices, nor did we have informa-
tion on indoor air quality. However, time-activity studies show
that Americans spend on average 67% of their time at home,
(Leech et al., 2002) and most studies of long-term exposure to air
pollution have relied on ambient outdoor measurements modeled
at the home location, including those that have documented as-
sociations of air pollution with increased mortality and cardio-
vascular outcomes (Krewski et al., 2005).
5. Conclusions

The present results do not support the hypothesis that ex-
posure to ambient NO2 contributes to an increased incidence of
diabetes in African American women. In fact, when the model was
adjusted for neighborhood SES, there was a suggestion of a de-
crease in incidence per IQR increase in NO2. We suspect that these
weak inverse associations may be due to confounding by neigh-
borhood SES which may not be fully controlled simply by adjust-
ing for or stratifying on quintile of neighborhood SES.
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