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Satellite-derived (SAT) and chemical transport model (CTM) estimates of PM2.5 and NO2 are increasingly
used in combination with Land Use Regression (LUR) models. We aimed to compare the contribution of
SAT and CTM data to the performance of LUR PM2.5 and NO2 models for Europe.

Four sets of models, all including local traffic and land use variables, were compared (LUR without
SAT or CTM, with SAT only, with CTM only, and with both SAT and CTM). LUR models were developed
using two monitoring data sets: PM2.5 and NO2 ground level measurements from the European Study of
Cohorts for Air Pollution Effects (ESCAPE) and from the European AIRBASE network.

LUR PM2.5 models including SAT and SATþCTM explained �60% of spatial variation in measured
PM2.5 concentrations, substantially more than the LUR model without SAT and CTM (adjR2: 0.33–0.38).
For NO2 CTM improved prediction modestly (adjR2: 0.58) compared to models without SAT and CTM
(adjR2: 0.47–0.51). Both monitoring networks are capable of producing models explaining the spatial
variance over a large study area.

SAT and CTM estimates of PM2.5 and NO2 significantly improved the performance of high spatial
resolution LUR models at the European scale for use in large epidemiological studies.

& 2016 Elsevier Inc. All rights reserved.
1. Introduction

Recent studies have indicated that long-term air pollution
concentrations can have adverse health effects even below current
air quality standards (Pedersen et al., 2013; Beelen et al., 2014). To
further quantify effects on health outcomes at these lower air
pollution levels, it is necessary to undertake large epidemiological
studies and/or pool data from multiple cohorts. Air pollution ex-
posure estimates over large geographic areas at sufficient fine
spatial resolution are thus needed.

Land use regression (LUR) models have been used extensively
in the past decade to assess air pollution exposure at a fine spatial
scale for epidemiological studies (Pedersen et al., 2013; Beelen
et al., 2014). Most of the applications of LUR models in epide-
miology involve relatively small study areas. For application to
large areas, such as continents, modelling the background con-
centration is a challenge for LUR models as LUR cannot explicitly
model secondary formation of components and losses due to de-
position and other processes.

To improve prediction of background ground level concentra-
tions, satellite-derived data is increasingly used over sub-con-
tinental to continental regions (Novotny et al., 2011; Vienneau
et al., 2013; van Donkelaar et al., 2010; Kloog et al., 2012; Ma et al.,
2014; Bechle et al., 2015; van Donkelaar et al., 2015a). Similarly,
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dispersion or chemical transport modelling has been used in
conjunction with LUR in so-called hybrid models (Wilton et al.,
2010; Arain et al., 2007; Akita et al., 2014). Because of the often
relatively coarse spatial resolution of the data (�10�10 km), both
satellite-derived (SAT) and chemical transport model (CTM) esti-
mates represent area-averaged concentrations. Both also take into
account the formation of secondary components with chemical
transformations. Integrating satellite derived and/or chemical
transport model estimates within LUR may help to achieve a better
prediction of air pollution exposure in large-area or even con-
tinent-wide studies. Few studies have assessed whether the
combination of satellite-based and chemical transport model es-
timates can help better explain the spatial variation of air pollution
concentrations (Reid et al., 2015).

This study presents a comparative assessment of models aimed
at characterising air pollution concentrations in Europe through
harmonised methods at the local scale for future use in population
health studies. In a LUR framework, we combine European-wide
satellite-derived ground-level concentration estimates, outputs
from a chemical transport model and land use predictors with two
ground-based monitoring datasets; the European AIRBASE net-
work (Reid et al., 2015) and the ESCAPE (European Study of Co-
horts for Air Pollution Effects) measurement sites (EEA AirBase,
2015; Cyrys et al., 2012). We focus on the pollutants NO2 and
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PM2.5.
2. Methods

2.1. Study area

The study area consists of 19 European countries with available
measurements in the AIRBASE dataset (see Fig. 1), the majority of
which were part of the ESCAPE project (EEA AirBase, 2015; Cyrys
et al., 2012). Measurement and geospatial predictor data were
processed in GIS after being (re)projected into the European Ter-
restrial Reference System (ETRS Lambert Azimuthal Equal Area 52
10), also used for the European Environment Agency (EEA) re-
ference grid.

2.2. Air pollution monitoring data

Air pollution monitoring data were used from the ESCAPE
study and the AIRBASE database held by the European Environ-
mental Agency (EEA AirBase, 2015).

We used the ESCAPE annual mean concentrations reflecting the
period 2009–2010 from 1426 sites in 36 study areas for NO2 and
436 sites in 20 study areas for PM2.5 (Fig. 1). The ESCAPE mea-
surement campaign was designed specifically to investigate re-
lationships between long term exposure to air pollution and
health in existing cohort studies using a land use regression ap-
proach. As such, the measurements were undertaken in the re-
levant study areas of the cohorts. Detailed information about the
measurement campaign including site selection and measurement
methods can be found elsewhere. (Cyrys et al., 2012; Eeftens et al.,
2012a) In brief, over the period of one year (either 2009 or 2010),
three 2-weekly measurement campaigns were held in all the study
areas measuring PM2.5 (20 sites per area) and/or NO2 (40 sites per
area) using Harvard Impactors and Ogawa badges respectively. A
previous analysis showed that there was less than 1 mg/m3
Fig. 1. Location of AIRBASE and ESCAPE
difference in overall AIRBASE NO2, PM2.5 and PM10 annual average
concentrations between 2009 and 2010. (Cyrys et al., 2012; Eeftens
et al., 2012a) We therefore assumed all ESCAPE measurements to
be representative for 2010 in line with all the other data we ob-
tained (AIRBASE PM2.5 and NO2, SAT and CTM). The 3 monitoring
periods were held: one in the cool (winter), warm (summer) and
intermediate season (autumn or spring) to capture seasonality.
One reference monitor in each study period was run during the
whole year and these measurements were used to calculate an
adjusted annual mean of the measured pollutant concentrations at
every site location.

Annual mean concentrations for PM2.5 (549 sites) and NO2

(2400 sites) for 2010 were also derived from the AIRBASE v8 da-
taset (Fig. 1). (EEA AirBase, 2015) An annual average was only
calculated when a site captured Z75% of the total hours (NO2) and
days (PM2.5).

Table 1 describes summary statistics of the measured con-
centrations for the ESCAPE and AIRBASE datasets. Site types and
their distribution differed between the AIRBASE and ESCAPE da-
tasets. AIRBASE includes “background”, “industrial” and “traffic”
sites, all of which are included here. ESCAPE site locations, clas-
sified as “regional background”, “urban background” and “traffic”,
were selected to represent population exposures within the ES-
CAPE study areas, and thus traffic sites were overrepresented.

We randomly stratified both sets of monitoring data by region
(defined below) and site type and created a derivation (80%) and a
validation (20%) set. We performed the stratification six times and
selected the stratification where all the strata where significant (P-
value40.1). For NO2 the study areas were divided into five regions
(North, West, Central, South West, South East). For PM2.5 four re-
gions were chosen to have a sufficient number of sites in each
(North, West, Central, South). Table S1 summarises the measured
concentrations by region.
monitoring sites for PM2.5 and NO2.



Table 1
Descriptive statistics for monitoring data.

Site type N Meana Mediana SDa P05a P25a P75a P95a Kurtosis Skewness

PM2.5

ESCAPE Rural BGb 54 13.7 13.9 4.7 5.3 9.4 16.8 21.8 �0.51 �0.05
Street 207 17.2 17.1 5.9 8.9 12.3 20.5 29.8 0.41 0.68
Urban BGb 175 15.0 14.8 5.3 7.5 11.0 18.5 24.7 0.04 0.50
Total 436 15.9 15.8 5.7 7.9 11.7 19.2 25.9 0.46 0.61

AIRBASE BGb 345 15.8 15.8 5.2 7.3 12.7 18.9 23.7 0.60 0.22
Industrial 53 15.1 15.3 5.5 7.7 10.4 18.8 25.6 �0.79 0.41
Traffic 151 16.3 16.6 4.9 8.5 13.0 19.7 23.7 �0.61 0.01
Total 549 15.9 15.9 5.1 7.7 12.5 19.3 23.9 0.11 0.18

NO2

ESCAPE Rural BGb 119 14.4 14.8 6.3 2.3 9.5 18.0 26.2 �0.10 0.20
Street 739 38.1 33.4 18.0 16.2 25.3 48.6 72.8 1.15 1.08
Urban BGb 578 23.2 22.3 10.5 7.8 14.8 29.9 42.8 �0.01 0.54
Total 1436 30.1 26.8 16.9 9.5 18.0 37.7 64.7 2.15 1.28

AIRBASE BGb 1288 21.5 21.0 9.8 5.7 14.8 28.0 37.2 0.19 0.35
Industrial 372 19.4 18.2 10.1 4.5 11.5 26.7 38.1 0.14 0.61
Traffic 740 40.2 38.7 14.6 20.3 30.4 47.7 65.8 1.92 0.92
Total 2400 26.9 25.1 14.6 6.8 16.4 34.7 53.7 1.98 1.02

a in mg/m3.
b BG¼Background.
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2.3. Satellite derived air pollution estimates

Satellite derived (SAT) estimates of PM2.5 for Europe were ex-
tracted from the global datasets reported in van Donkelaar et al.
(van Donkelaar et al., 2015b).These PM2.5 estimates relate aerosol
optical depth (AOD) retrievals from the NASA MODIS (Moderate
Resolution Imaging Spectroradiometer), MISR (Multi-angle Ima-
ging Spectroradiometer) and SeaWiFS instruments to near-surface
concentrations using aerosol vertical profiles and scattering
properties simulated by the GEOS-Chem chemical transport
model. A dataset for the year 2010 (inferred from 2009 to 2011)
was obtained at a 0.1°�0.1° (�10 km) resolution.

For NO2, satellite derived estimates were obtained from the
tropospheric NO2 columns measured with the OMI (Ozone Mon-
itoring Instrument) on board the Aura satellite. Similar to PM2.5,
the satellite column-integrated retrievals were related to ground-
level concentrations using global GEOS-Chem model, producing an
annual gridded NO2 surface for the year 2010 at a 10 km resolu-
tion. (Novotny et al., 2011; Bechle et al., 2015; Bechle et al., 2013).

2.4. Chemical transport model estimates

Long range chemical transport model (CTM) estimates for
PM2.5 and NO2 were derived from the MACC-II ENSEMBLE model,
for the year 2010 at 0.1°�0.1° (�10 km) resolution, with esti-
mates available across the whole study area (Inness et al., 2013). At
each pixel, the ENSEMBLE model value was defined as the median
value of the following seven individual regional CTMs at that
particular point: CHIMERE, EMEP, EURAD, LOTOS-EUROS, MATCH,
MOCAGE and SILAM. The obtained NETCDF files were imported in
ArcGIS for further processing.

2.5. Other predictor variables (roads, land cover, altitude, north-
south/east-west trend)

A spatial moving window summation function (focalsum in
ArcGIS10) was used to calculate the local predictor variables (e.g.
length of road and areas of different land covers) for selected
distances around the sites (Table S2). More details about these
data can be found in Vienneau et al. (Vienneau et al., 2013). Briefly,
road data originated from the 1:10,000 EuroStreets digital road
network (version 3.1, based on TeleAtlas MultiNet TM for year-
2008). The road data was classified into ‘all’ and ‘major’ roads
using the classification available in EuroStreets. These were then
intersected with a 100 m base polygon and the sum of road length
within each 100�100 m cell calculated and converted into a
100 m grid. For land cover, the 100 m European Corine Land Cover
2006 data set was obtained (ETC-LC Land Cover (CLC2006), 2014).
This dataset covered the whole study area except Greece. For
Greece, the dataset for year 2000 was used (ETC-LC Land Cover
(CLC2000), 2013). From the available 44 land classes, six main
groups were derived: residential (proxy for population density and
domestic sources of air pollution), industry, ports, urban green
space, total built up and natural land. For elevation we use the
SRTM Digital Elevation Database version 4.1 with a resolution of
one arc second (approximately 90 m) and a vertical error o16 m
(SRTM CGIAR-CSI 90m Digital Elevation Data, 2013). SRTM is
available for most of the study area, up to 60°N latitude. For
northern Scandinavia we used the 1 km resolution Topo30 data.
The predictor variable grid reflecting north-south trend was con-
structed by taking the Y-coordinate (centroids) of the 100�100 m
basegrid.

2.6. Statistical analysis

Geospatial analysis was performed in ESRI ArcGIS 10 and sta-
tistical analysis in SPSS version 23.

Models were developed for PM2.5 and NO2 based on the ES-
CAPE and AIRBASE measurement datasets separately. Because of
the differences between the ESCAPE and AIRBASE monitoring data
(see Section 4), we refrained from developing models combining
the two datasets. Following the ESCAPE protocol (Eeftens et al.,
2012b), supervised stepwise linear regression was used to predict
concentrations at measurements sites on the basis of the available
predictor variables. For each pollutant the following four LUR
models at ESCAPE and AIRBASE sites were developed:

1. no SAT or CTM estimates (M1);
2. forcing in SAT estimates (M2);
3. forcing in CTM estimates (M3);
4. forcing in both SAT and CTM estimates (M4).

Models were developed using 80% of the sites and validated on
the remaining 20%, the hold-out-validation (HOV) set. Predictor
variables were only maintained in the model if they followed the
expected direction of effect (e.g. positive for SAT, CTM, road length
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and negative for green space and natural areas). We did not follow
the rule previously used in the ESCAPE protocol, i.e. that variables
had to add more than 1% to the adjusted R2. Instead the addition of
variables was repeated until no variable added to the adjusted R2

of the previous model. This allowed significant predictors to enter
the model which would have otherwise been ruled out. Compared
to earlier ESCAPE analyses within study areas, we now analysed
more sites and exploited much larger variation in measured con-
centrations. The latitude and longitude variables were only offered
to the models if other variables were exhausted. Models were
checked for co-linearity (VIF) and influential observations (Cook's
D). Every model was also validated using the monitoring data not
used in model building; i.e. ESCAPE models were validated at the
complete set of AIRBASE monitoring sites and vice versa (cross-
over-validation, COV). We additionally performed cross-over vali-
dation at just the HOV dataset of the other dataset (cross-over-
hold-out-validation, COHOV) to compare the performance of the
ESCAPE and AIRBASE models.

For the validations (HOV, COV and COHOV) we calculated the
following performance statistics: R2, RMSE, the constant and slope
of the regression line, and additionally for HOV: mean error (ME),
absolute error (AE), mean bias (MB), absolute bias (AB) and frac-
tional bias (FB). For insight into suitability of models to estimate
exposures for cohorts in smaller regions, we also evaluated model
performance at the regional level using R2, RMSE, constant and
slope. The performance of models was also evaluated by site type
(R2, RMSE) to investigate possible bias by monitoring location
characteristics.

To compare the separate contribution of predictor variables in
the models, the regression slope (ß) of each variable was multi-
plied by the difference between the 95th and 5th percentile of
each predictor value (predicted P95-P5 in mg/m3).

For the purpose of this assessment we defined squared corre-
lations (R2) as weak (0�0.2), moderate (40.2–0.4), moderately
strong (40.4–0.6) and strong (40.6).
3. Results

3.1. Correlation measured concentration, SAT and CTM

PM2.5 SAT estimates have a moderately strong association with
measured PM2.5 concentrations at ESCAPE and AIRBASE sites (Fig.
S1, R2¼0.44 and 0.49 respectively). PM2.5 CTM estimates show a
similar correlation at AIRBASE sites (R2¼0.40) but less so at ES-
CAPE sites (0.22). PM2.5 SAT and PM2.5 CTM are weakly correlated
at ESCAPE sites and moderately strong at AIRBASE sites. The weak
association seems partially caused by a number of sites in Paris
were CTM estimates are nearly 2–3 times higher than SAT esti-
mates and higher than the ground measurements.

NO2 CTM estimates and especially NO2 SAT estimates are less
successful in explaining the variation in measured NO2 con-
centrations. SAT and CTM estimates are moderately strongly cor-
related, although CTM estimates are more than 3 times higher
than SAT at both AIRBASE and ESCAPE sites.

3.2. PM2.5 models

The M1 models without satellite and chemical transport model
estimates performed moderately, explaining 38% (33%) of the
variation in measured PM2.5 concentrations during the model
derivation at the ESCAPE (AIRBASE) sites (Table 2). The models are
dominated by non-traffic variables (e.g. urban green, natural,
y-coordinate). The M2 models, including the SAT estimate, per-
formed better, explaining 58% (ESCAPE) and 61% (AIRBASE) of the
observed variation. In both ESCAPE and AIRBASE M2 models, the
SAT variable has the largest contribution (partial R2: 0.45 and 0.48,
P95-P5: 10.99 and 10.18 mg/m3) (Table S3). Despite improving the
partial R2 only slightly, local traffic indicators with small buffer
sizes enter the models, explaining some of the residual local var-
iation in PM2.5 concentrations. Including the CTM estimate (M3)
also produced better models, especially at AIRBASE sites where we
observe a higher derivation R2 (adj R2¼0.52) than model M1. The
ESCAPE M3 model performs less well (derivation adj R2¼0.40).
The CTM variable had the largest influence in the AIRBASE M3
model (P95-P5¼10.49 mg/m3). This was not the case in the ESCAPE
model, where the y-coordinate took the largest share (P95-
P5¼�7.38 mg/m3). The best predictive models for PM2.5 at ESCAPE
and AIRBASE sites included both SAT and CTM estimates (M4). The
M4 ESCAPE and AIRBASE models explained about 2% more varia-
tion than the models with SAT only. Local predictor variables re-
tained in the ESCAPE model included two local road variables
(major roads, all roads 100 m), residential area, altitude and
y-coordinate. The AIRBASE model was very similar also including a
local road variable (major roads 100 m).

Overall, model HOV R2 was 5–8% lower than the derivation R2

suggesting robust models. All validation statistics (HOV, COV and
COHOV) showed the same pattern as the model R2: ESCAPE and
AIRBASE M2 and M4 models were consistently better than the
respective M1 and M3 models (Table 2 and S4). Importantly, the
M4 models explained 52–59% of the variation in the other dataset
(COV validation), which is almost equal to the respective HOV R2,
further supporting the robustness of the models.

The AIRBASE M4 PM2.5 model was applied to the whole study
area at a 100 m resolution (Fig. 2). The map shows generally lower
estimated PM2.5 concentrations in the north than in the south.
Large conurbations like Paris (France) and London (UK) can be
detected, as can large industrial regions like the Po valley (Italy)
and the Ruhr area (Germany). On closer inspection (see inset) the
influence of the larger scale predictor variables from the satellite
model becomes apparent. Also apparent are the cells with ‘no data’
as a result of the grid cells without a satellite estimate. The
transect graph illustrates that the PM2.5-SAT and PM2.5-CTM vari-
ables contribute most to the predicted PM2.5 concentration, with
variables like major roads and residential area adding to the local
variation (Fig. 2). The scatterplots show the moderately strong
correlation for both HOV and COV validations. Regression lines are
close to the 1:1 line (Table S4).

3.3. NO2 models

The M1 models without satellite and chemical transport model
estimates performed moderately strong, explaining 47% and 52%
of the variation in measured NO2 concentrations at the ESCAPE
and AIRBASE sites respectively (Table 2). The ESCAPE and AIRBASE
models with CTM explained 7–10% more variation than the models
without SAT or CTM, more than the models with SAT (2–4% ad-
ditional explained variance). All 3 ESCAPE models (M1, M2 and
M3) included similar predictor variables like length of major road
and all roads and residential area within different buffers and
y-coordinate, with M1 and M2 also including ports and industrial/
commercial area. CTM was by far the strongest variable in ESCAPE
M3 (P95-P15¼24.83 mg/m3) (Table S3). In the AIRBASE M3 model
CTM and length of all roads within 2 km were strongly influential
(P95-P5¼17.25 and 11.95 mg/m3 respectively). Forcing SAT and
CTM together in M4 caused the coefficient of the satellite predictor
to become negative, invalidating both the ESCAPE and AIRBASE
models.

In cross-over validation, the ESCAPE model M3 explained 55%
(COV) of the measured variation at the AIRBASE sites, whereas the
AIRBASE M3 model explained 50% at the ESCAPE sites (Table 2). As
observed for PM2.5, the COV R2 was similar to the HOV R2



Table 2
Comparison of basic performance statistics (R2, SEE) for all models including derivation, HOV, COV and COHOV.

DERIVATIONc HOVd COVe COHOVf

Modela Predictor variablesb R2 Adj R2 SEEg R2 SEEg R2 SEEg R2 SEEg

PM2.5

ESCAPE M1 All roads (0.7 km), Urban green (1.8 km), Natural (10 km), Residential, Major roads (0.1 km), Y coordinate 0.394 0.383 4.43 0.318 4.77 0.205 4.57 0.220 4.78
M2 PM2.5 SAT, All roads (5 km), Residential, Altitude, Major roads, Y coordinate 0.591 0.584 3.65 0.510 4.03 0.575 3.35 0.553 3.61
M3 PM2.5 CTM, All roads (0.1 km), Natural (0.8 km), Residential, Major roads, Y coordinate 0.410 0.400 4.37 0.369 4.59 0.282 4.34 0.293 4.55
M4 PM2.5 SAT, PM2.5 CTM, All roads (0.7 km), Residential, Major roads, Altitude, Y coordinate 0.606 0.598 3.59 0.544 3.89 0.592 3.30 0.485 4.01

AIRBASE M1 Natural (10 km), Natural (0.4 km), Urban green (10 km), Altitude, Major roads (0.1 km), Residential, Urban green (0.6 km), Ind/comm
(10 km), Y coordinate

0.339 0.325 4.15 0.268 4.63 0.388 4.43 0.412 4.43

M2 PM2.5 SAT, Altitude, Natural (0.2 km), All roads (0.1 km), Residential (0.2 km), Major roads, Y coordinate 0.613 0.606 3.18 0.562 3.58 0.558 3.77 0.510 4.03
M3 PM2.5 CTM, Altitude, Residential (0.2 km), Major roads (0.1 km), Natural (0.1 km), Urban green (1.8 km) 0.527 0.520 3.50 0.445 4.03 0.230 4.97 0.295 4.85
M4 PM2.5 SAT, PM2.5 CTM, Altitude, Residential (0.2 km), Major roads (0.1 km), Natural (0.1 km), Y coordinate 0.636 0.630 3.08 0.583 3.49 0.523 3.91 0.534 3.93

NO2

ESCAPE M1 All roads (5 km), All roads (0.2 km), Residential (1.8 km), Major roads, Ind/comm(10 km), Ports (0.4 km), Y coordinate 0.474 0.471 12.10 0.377 14.22 0.463 10.69 0.490 10.63
M2 NO2 SAT, All roads (5 km), All roads (0.2 km), Urban green (1.8 km), Residential (1.5 km), Major roads, Ind/comm(10 km), Ports (0.4 km), Y

coordinate
0.514 0.510 11.64 0.400 13.95 0.505 10.26 0.516 10.36

M3 NO2 CTM, Major roads, Residential (1.5 km), All roads (0.2 km), All roads (2 km), Urban green, Y coordinate 0.573 0.571 10.90 0.442 13.45 0.553 9.75 0.563 9.84
M4 n.a.

AIRBASE M1 All roads (2 km), Major roads (0.1 km), Total build up (10 km), Natural (1.5 km), Residential (0.5 km), Ports (0.2 km), Altitude, All roads, Y
coordinate

0.516 0.513 10.13 0.536 10.14 0.366 13.46 0.295 15.13

M2 NO2 SAT, Major roads (0.1 km), All roads (10 km), Residential (1.8 km), Ports (0.2 km), Residential (0.3 km), All roads (10 km), Y
coordinate

0.537 0.535 9.90 0.549 10.00 0.416 12.92 0.350 14.53

M3 NO2 CTM, Major roads (0.1 km), All roads (2 km), All roads, Ports (0.2 km), Residential (0.3 km), Natural (0.5 km) 0.582 0.581 9.40 0.599 9.43 0.502 11.93 0.425 13.66
M4 n.a.

a M1¼no SAT or CTM; M2¼ including SAT; M3¼ including CTM; M4¼ including both SAT and CTM.
b Predictor variables without a distance attached are the origin cell without a focalsum (e.g. for CORINE variables this is the value within the 100�100 m cell).
c Derivation: model development on 80% of monitoring sites.
d HOV: hold-out-validation on 20% of monitoring sites.
e COV: cross-over-validation on full dataset (COV for ESCAPE model on AIRBASE full monitoring sites and vice versa).
f COHOV: cross-over-hold-out-validation on 20% of the dataset (COHOV for ESCAPE model on the HOV dataset from AIRBASE monitoring sites and vice versa).
g Standard Error Estimate (mg/m3).

K
.de

H
oogh

et
al./

Environm
ental

R
esearch

151
(2016)

1
–10

6



Fig. 2. Map and profile plot of PM2.5 concentration predicted by Model 4 (with SAT and CTM) using AIRBASE sites in 2010; scatterplots of modelled vs. measured PM2.5 at
evaluation sites.
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determined within each respective dataset.
Fig. S2 shows the NO2 M3 AIRBASE model (highest derivation

R2 and HOV R2) applied to the study area at 100 m resolution.
Individual cities show up with higher estimated NO2 concentra-
tions. Additionally, the influence of the road predictor variables
clearly shows up in the inset. The transect shows how the NO2

CTM variable builds the regional variation and the roads and re-
sidential predictors add the local (i.e. spikey) variation. Scatter-
plots of the HOV and COV validation show moderately strong
correlations and regression lines almost 1:1.

3.4. Model performance at subcontinental level and by site type

PM2.5 M4 and NO2 M3 (ESCAPE and AIRBASE), performed
moderately to strong in all regions for the COV validation (Table
S5, R2 0.30–0.75). Equally, the performance of these models were
similar for the different site types for both the HOV and COV va-
lidation (Table S6, R2 0.32–0.72), except for a lower explained
variance of both NO2 models for traffic sites. Here the lack of traffic
intensity data and street configuration data may have played a
role.

3.5. Sensitivity analysis

As a sensitivity analysis we developed models based on com-
bined AIRBASE and ESCAPE derivation sites (80%), adding an in-
dicator for network as the last predictor. Similar to the main
models, this was validated with a 20% HOV. We performed this
test for PM2.5 M4 (including both SAT and CTM) and NO2 M3
(including CTM), finding very similar results to the main models
(see Table S7). The indicator variable for network was significant in
both models, providing empirical evidence against combining the
monitoring datasets.
4. Discussion

We assessed the contribution of satellite or chemical transport
modelling data to Europe-wide long-term PM2.5 and NO2 land use
regression models using two monitoring databases. Satellite and
chemical transport model estimates added to LUR models in-
creased the explained spatial variation of measured air pollution
concentrations separately (PM2.5 and NO2) and together (PM2.5).

PM2.5 models including both satellite and chemical transport
model estimates performed best at both monitoring datasets: 20–
30% additional variance explained compared to models with only
land use and traffic variables. The satellite component had the
largest contribution to the overall predicted PM2.5 concentrations.
For NO2 the best models included the chemical transport model
estimates (6–10% additional explained variance). Validation of
models within the same monitoring dataset and across monitoring
datasets suggested robust models.

4.1. ESCAPE versus AIRBASE

There was little difference between the overall performance of
the ESCAPE and AIRBASE models for both pollutants. Also the HOV,
COV and COHOV validations showed similar results. This is
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remarkable, given the differences between the ESCAPE and AIR-
BASE monitoring datasets. Fig. 1 shows the striking difference in
spatial coverage of the monitoring networks. The ESCAPE mon-
itoring sites are located in 20 study areas for PM2.5 and 36 areas for
NO2, with only the Netherlands having a near national coverage.
The AIRBASE monitoring sites, on the contrary, are more evenly
spread across the countries. Another difference between the two
datasets is the number of sites, which for both pollutants is larger
for AIRBASE than ESCAPE (2400 versus 1436 [NO2]; 549 versus 436
[PM2.5]). A crucial difference is the location of the monitoring sites
in relation to residential exposure. The choice of the location of
monitoring sites in the ESCAPE study was purposely designed such
that it would best reflect the spatial variation of air pollution ex-
posures among the cohort study populations within each ESCAPE
study area, without the explicit aim to cover Europe as a whole.
The monitoring locations in the regulatory AIRBASE network are
chosen on a different principle, namely to check for breaches of
the air quality guidelines at background sites, near busy roads or in
industrial zones. Another important difference is the sampling
method used in the two networks. In the ESCAPE study, a har-
monised study protocol was implemented based on the Harvard
impactor (gravimetry) to monitor PM2.5 and the Ogawa badge
(diffusion) for NO2. Because the AIRBASE network is a collection of
sites from national networks, the measurement techniques and
equipment can differ although reference methods do exist. The
most common AIRBASE measurement technique for NO2 was
chemiluminescence, with a minority of AIRBASE sites using Griess-
Saltzman reaction, chromatography or diffusion from a variety of
monitoring equipment. PM2.5 measurements in AIRBASE were
carried out mainly by beta ray attenuation or gravimetry, with
some sites using TEOM and light scattering devices. Because of the
above mentioned differences we refrained from developing mod-
els combining the two datasets.

Despite these differences, the two different monitoring data-
sets performed very similarly in terms of explained variation in
monitored concentrations predictor variables and regression
coefficients. Also the performance of the best models tested on the
opposite monitoring sites were adequate (COV¼50–59%,
HOCOV¼43–53%), giving weight to the robustness of the models
developed here. This finding is of high relevance for future air
pollution and health research in Europe. AIRBASE data are avail-
able in the long term, and our results indicate that future epide-
miological studies may rely on these routine data for regulated air
pollutants to model exposure distributions within and across
European cities.

In the majority of models (12 out of 14), y coordinate was in-
cluded as an influential predictor variable, reflecting the North
(lower) to South (higher) trend in the measured concentrations at
both ESCAPE and AIRBASE monitoring sites. This is likely caused by
a combination of higher source/population density, emission fac-
tors and a generally warmer and drier climate in the South and the
influence of Sahara dust in the Mediterranean area.

Application of the ESCAPE model to epidemiological studies in
study areas not covered by the original study areas, may be as-
sociated with additional misclassification of exposure. The good
performance of the ESCAPE model to predict concentrations at
AIRBASE sites, covering a large number of regions not covered by
ESCAPE monitoring, suggest this may not be a major issue.

4.2. SAT versus CTM

PM2.5 SAT estimates fitted much better to measured data, both
at the ESCAPE and AIRBASE monitoring sites, than the CTM model
and consistently improved LUR models more than CTM. Similar
comparison results, using satellite-derived PM2.5 estimates, were
found by van Donkelaar et al. (van Donkelaar et al., 2015b)
indicating a R2 of 0.53 between the PM2.5 SAT surfaces and Eur-
opean Monitoring and Evaluation Programme (EMEP) measure-
ments from 2001 to 2010. Our correlation is lower because EMEP
sites are predominantly located at regional background.

In contrast, for NO2, CTM correlated better with the measure-
ments and contributed more to the LUR model performance. The
difference between PM2.5 and NO2 might be explained by better
performance of CTM for the gaseous component NO2 than for fine
particles. PM2.5 is a complex pollutant, consisting of primary and
secondary particles, and therefore with probably less well-char-
acterized emission input data. This is supported by the over-
estimation of PM2.5 by CTM in the Paris region, contributing to a
weak correlation between CTM and PM2.5 measurements in the
ESCAPE data. The spatial scale of SAT and CTM was similar at about
10*10 km, so neither method predicted well the small-scale spatial
variation related to local sources.

While for PM2.5, the inclusion of CTM (M4) improved the LUR
model with SAT (M1) slightly, for NO2, SAT (M2) did not provide
any additional prediction to models with CTM (M3). The correla-
tion between SAT and CTM estimates is stronger for NO2 than for
PM2.5, especially at the ESCAPE sites.

The NO2 model estimates underestimated the measured con-
centrations at the ESCAPE and AIRBASE modelling sites with be-
tween 10 (CTM) and 20 (SAT) mg/m3 (Fig. S1). Underestimation of
the 2010 NO2 MACC data is also reported by Giordano et al.
(Giordano et al., 2015), showing a consistent underestimation of
the MACC model compared to surface NO2 concentrations at 285
rural stations across Europe. They speculated that this could be
due to underestimated emissions in the inventories used by the
MACC re-analysis, as well as an underestimation of the chemical
lifetime of NOx, too high modelled dry deposition and an under-
estimation of the natural emissions from soils and/or lightning.
Another explanation they offer is the possible systematic positive
bias of the NO2 measurements, i.e. for some instruments only 70–
83% of the actual measured NO2 is attributable to real NO2 (Gior-
dano et al., 2015). By offering both the spatially coarse CTM esti-
mates and variables which simulate emission sources at a more
detailed resolution, the ESCAPE and AIRBASE LUR models can add
to the overall R2 of the CTM model, as shown here, by 20–30%
respectively. This is also illustrated in the transect (Fig. S2) where
the CTM provides an area-averaged surface that is dominated by
the regional background, on top of which the local variables add
the necessary more local variation.

The underestimation of NO2 SAT (�20 mg/m3) was also re-
ported by Vienneau et al. (Vienneau et al., 2013) for the years
2005–2007, when comparing with NO2 measurements at over
2000 AIRBASE sites in Europe. A similar finding was reported by
Bechle et al. (Bechle et al., 2013) for the South Coast Air Basin of
California (USA) where the difference between NO2 SAT and
measured NO2 in 2005 was around 10 ppb (�19 mg/m3) and by
Kharol et al. (Kharol et al., 2015) who report absolute concentra-
tions from in situ measurements in North America where twice
those from satellite-derived estimates. This is not surprising as the
coarse scale satellite-derived NO2 estimates are area-averaged
concentrations, while NO2 monitors represent the concentration at
a specific point, often at roadside or close to city centres. Similarly
as with the NO2 CTM data, the difference was made up by pre-
dictor variables representing local sources.

SAT and CTM improved PM2.5 models based on land use/traffic
variables more than the NO2 models. This is consistent with the
larger impact of variation of the (regional) background on con-
centrations of PM2.5 compared NO2. For the ESCAPE monitoring
data, we previously reported that 81% of total variance of PM2.5

was between study area variance, whereas for NO2 40% was be-
tween and 60% within study area variance (Cyrys et al., 2012;
Eeftens et al., 2012a). The differences are a result of the magnitude
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of local sources, atmospheric formation and loss processes and the
resulting atmospheric lifetime of components.

4.3. Comparison with other continental models

It has been previously shown that the inclusion of satellite data
improved model performance of European-wide LUR models for
NO2 and PM10 respectively by 0.05 and 0.11, explaining 46–56% of
the variation in annual means for NO2 and 36–48% of PM10

(Vienneau et al., 2013). At the time of this previous study, it was
not possible to develop PM2.5 models due to the sparseness of
PM2.5 monitoring data (195 sites operating in Western Europe
during 2007). Recently, however, there has been a sharp increase
in the number of PM2.5 monitoring sites; 549 sites with 475%
annual data capture operating in 2010 (AIRBASE). At the same
time, the ESCAPE study undertook a monitoring campaign mea-
suring PM2.5 at 436 sites across Europe. Compared to the NO2

models described in Vienneau et al. (Vienneau et al., 2013), using
AIRBASE and similar GIS predictor variables as used here, the
performance of our models developed here are similar; no direct
comparison between the PM models was possible, however our
best PM2.5 models outperform the previous PM10 models by more
than 10% (36–48% v 60–63%). No other high resolution air pollution
models are available for Europe as a whole. Authors have devel-
oped models in North America with similar performance results.
Hystad et al. (Hystad et al., 2012) developed PM2.5 and NO2 models
using satellite-based estimates explaining respectively 52% and
38% of measured spatial variation in Canada for the time period
1975–1994. They compensated for the lack of historical PM2.5

measurements, which only started in 1984, by developing pre-
dictive models based on co-located PM2.5 and Total Suspended
Particles (started in 1970) measurements from 1984 to 2000 to
predict PM2.5 concentrations back to 1974. Van Donkelaar et al.
(van Donkelaar et al., 2015a) developed a model that combined
geographic weighted regression with satellite-based estimates to
explain 82% of the measured spatial variation in PM2.5 for North
America for 2004–2008. A similar study in the USA by Novotny
et al. (Novotny et al., 2011) also incorporating satellite-based es-
timates developed a national NO2 model explaining 78% of the
concentrations measured in 2006. Models for North America may
perform better than ours because measured concentrations are
generally lower and show less variability and are therefore less
sensitive to missing predictor variables representing local sources.

Wang et al. (Wang et al., 2014) also used the ESCAPE mon-
itoring dataset to build PM2.5 and NO2 models at European scale. It
is important to note the difference in modelling approaches be-
tween Wang et al. (Wang et al., 2014) and this study. Wang et al.
(Wang et al., 2014) used all available ESCAPE predictor variables
including local sourced variables like traffic intensity. Despite
traffic intensity being available also in areas outside the ESCAPE
study areas, within the scope of this study it was not possible to
source these separately, and for this reason we could not use these
local predictor variables. Despite this, the NO2 models in both
studies are comparable in terms of explained variation (56% in
Wang, 58% here). For PM2.5, Wang et al. (Wang et al., 2014) ob-
tained a higher explained variance, R2¼0.80, compared to
R2¼0.59–0.63 here. The better PM2.5 model performance by Wang
et al. (Wang et al., 2014) was driven by the inclusion of measured
regional background concentration, something which was not
possible at the scale of this study.

4.4. Limitations

No traffic data is available in the whole European study area, so
we have used road length for major and all roads as a proxy for
traffic sources. The resolution of the SAT and CTM estimates
available to us at the time of the study is coarse (�10�10 km).
Efforts are taking place to refine the resolution to 3 or 1 km grids,
which, in future, will help increase the performance of the pre-
dictive models. The PM2.5 SAT data has cells with missing values,
especially in high altitude areas (Alps, Pyrenees, Norway) and over
water bodies (Sweden), which is apparent in Figs. 2 and S2. Al-
though these areas typically have a low population density, this is
something to keep in mind when using the data in subsequent
health analysis.

In summary we found that satellite-derived estimates con-
tribute considerably to the explained variance in PM2.5 measured
at both ESCAPE and AIRBASE sites. For NO2, the estimates pro-
duced by a chemical transport model improve model predictions
compared to a models based only on local and satellite-derived
data. Either of the large scale predictors (SAT, CTM) can help
produce better continental scale LUR models.

The comparison between measurement data from the routine
and purpose-designed monitoring network show that both net-
works are useful for producing models explaining the spatial
variance over a large study area. Especially encouraging is that
models based on routine monitoring data are sufficient to predict
air pollution exposures at the ESCAPE monitoring sites, with the
prospect of future model development for regulated and routinely
measured air pollutants. Dedicated measurement campaigns will
be required to assess very small-scale differences in exposure and
health effects of unregulated air quality indicators.

The resulting PM2.5 and NO2 surfaces at 100�100 m resolution
will be made available for the large scale epidemiological studies.
To our knowledge, this is the first detailed surface of annual mean
PM2.5 produced for large parts of Europe. Together with the NO2

surface the data will be made freely available to the research
community to facilitate further epidemiological research.
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