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ABSTRACT: Including satellite observations of nitrogen dioxide (NO2) in land-
use regression (LUR) models can improve their predictive ability, but requires
rigorous evaluation. We used 123 passive NO2 samplers sited to capture within-city
and near-road variability in two Australian cities (Sydney and Perth) to assess the
validity of annual mean NO2 estimates from existing national satellite-based LUR
models (developed with 68 regulatory monitors). The samplers spanned roadside,
urban near traffic (≤100 m to a major road), and urban background (>100 m to a
major road) locations. We evaluated model performance using R2 (predicted NO2
regressed on independent measurements of NO2), mean-square-error R

2 (MSE-
R2), RMSE, and bias. Our models captured up to 69% of spatial variability in NO2
at urban near-traffic and urban background locations, and up to 58% of variability
at all validation sites, including roadside locations. The absolute agreement of
measurements and predictions (measured by MSE-R2) was similar to their
correlation (measured by R2). Few previous studies have performed independent
evaluations of national satellite-based LUR models, and there is little information on the performance of models developed with a
small number of NO2 monitors. We have demonstrated that such models are a valid approach for estimating NO2 exposures in
Australian cities.

■ INTRODUCTION

Land-use regression (LUR) is frequently used for estimating
exposure to outdoor air pollution in epidemiological studies.
LUR models use features of the built and natural environment,
such as road length, impervious surfaces, and tree cover, to
capture spatial variability in pollutant concentrations measured
at fixed locations. This allows concentrations at unmeasured
locations to be estimated.1 Several recent studies have shown
that the predictive ability of LUR models for nitrogen dioxide
(NO2), quantified as R2, increases by 2−15 percentage points
when satellite-observed tropospheric NO2 is included as a
predictor variable.2−7 These models aim to leverage the best
attributes of satellite observations (e.g., large spatial coverage)

and LUR models (e.g., local-scale predictors) to improve
performance and coverage compared with either technique
alone.
The spatial coverage offered by satellite data makes it suitable

for national or multinational applications, and satellite-based
LUR models have been developed for the USA,2,7,8 Canada,6

Australia,5 Western Europe,3 and The Netherlands.4 A single
national satellite model can offer a simpler and consistent way
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to assign exposures to geographically dispersed study subjects
compared with separate nonsatellite LUR models for each city,
which are costly and time-intensive to develop.9 Some national
models can also offer comparable predictive ability and spatial
resolution to city-scale models.2,7

LUR models can overfit, particularly when the number of
measurement sites is small and the number of potential
predictors is large.10−12 Validation is therefore important for
assessing how well they perform when applied beyond the data
sets used to develop them (e.g., at the home addresses of
subjects in an epidemiological study).12,13 Numerous LUR
validation studies have focused on city-scale models
(e.g.,11,14,15). In contrast, there is little information on
validation of satellite-based national NO2 models,2,3,7,8

especially in countries with limited ground-based monitoring.6

Validation of these models is particularly important because
they are implemented at a nation-wide scale, which
encompasses a wide range of land-use conditions that may
differ from the sites used to develop the models.
In this study, we sought to perform an independent

validation of Australian national satellite-based LUR models
for NO2. Through this, we wanted to determine if our models
were suitable for estimating residential NO2 exposures in
epidemiological studies. We also aimed to add to the limited
literature on satellite-based LUR evaluation by exploring the
ability of national models developed with a relatively small
number of monitoring sites to predict NO2 concentrations at
sites selected to capture within-city and near-road variability.

■ EXPERIMENTAL MATERIALS AND METHODS

Models Being Evaluated. We previously described our
satellite-based LUR models for NO2,

5 which were developed
using data from 68 continuous regulatory chemiluminescence
monitors throughout Australia (population = 23.5 million; area
= 7.7 million km2; ∼0.3 NO2 monitors/100 000 persons). Two
models using different satellite predictors were developed. One
model included the tropospheric column abundance of NO2
molecules observed by the OMI spectrometer aboard the Aura
satellite as a predictor (molecules ×1015 per cm2; column
model). The other model included the estimated NO2
concentration at ground-level (ppb; surface model), based on
applying a surface-to-column ratio from the Weather Research
and Forecasting model coupled with Chemistry (WRF-Chem).
Using eight and nine land-use predictor variables, our column
and surface models respectively explained 81% (RMSE = 1.4
ppb) and 79% (RMSE = 1.4 ppb) and of spatial variability in
measured annual mean NO2 in Australia during 2006−11.

Measurements Used for Validation. In this study, we
sought a data set independent of that used in our LUR models’
development to rigorously assess their performance. Because
we had previously used most available regulatory air monitoring
data for development, we contacted all investigators who had
performed NO2 monitoring as part of epidemiological studies
between 2006 and 2014. Our initial inclusion criteria were that
(a) NO2 had been measured anywhere in Australia provided
that repeated, precise coordinates were collected (i.e, to 5
decimal places), (b) measurements ran for at least 2 weeks, and
(c) a validated measurement method with documented quality
assurance procedures was used. We received data from five

Figure 1. Two Australian cities (Sydney and Perth) where validation measurements were performed. The left panel shows Perth and the right shows
Sydney. The map shows the 123 sites used in the main analysis, denoted as red triangles. Major roads are also shown. See Figure S5 for maps of
predicted NO2 in the study areas. The outlines were created using census data published by the Australian Bureau of Statistics and roads were
generated from data supplied by the Australian Public Sector Mapping Agencies.22,37
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studies, which, to our knowledge, represented all NO2
monitoring that met the inclusion criteria. Together, these
studies included 174 measurement sites across three of
Australia’s six states.
After preliminary screening we imposed additional, more

stringent, inclusion criteria for the studies. Namely, we required
three repeated measurements of 14 days duration each that
spanned different seasons. We aimed to ensure that measure-
ments from different studies captured seasonal variation in
NO2, were of comparable duration, and able to be converted to
an estimated annual mean using standard methods. These
criteria were informed by the well-described European Study of
Cohorts for Air Pollution Health Effects (ESCAPE) protocol
for LUR development.16 On the basis of this, we excluded two
studies comprising 43 measurement sites.
The remaining 131 sites were located in Sydney (87 sites;

population = 4.9 million) and Perth (44 sites; population = 2
million), the most and fourth-most populous cities in Australia,
respectively (Figure 1). All of the sites were located within the
metropolitan area of those two cities, and were selected to
capture within-city and near-road variability in NO2. All NO2
measurements were performed using passive sampling
techniques (Ferm-type sampler and Ogawa sampler). Informa-
tion on sampling dates, measurement methods, and quality
assurance is in Table 1.
Conversion to Annual Mean NO2. Because each site was

measured over two week periods in different seasons but our
models’ predictions were for annual mean NO2, we adjusted
the measurements to an estimated annual mean. We did this
using the ratio of mean NO2 measured by regulatory monitors
during each measurement period compared with its annual
mean.17,18 We calculated the ratio based on three separate
regulatory monitors in each study area. We took that approach
to improve the precision of the adjusted annual mean estimate
(i.e., the overall mean of adjusted concentrations for each
measurement period), as measured by its standard error.17 The
selection criteria for the regulatory monitors and the adjust-
ment process are described in the Supporting Information
(pages S3−S12).
Site Classification. We classified each site as (1) roadside

(≤15 m to the center of a major road), (2) urban near traffic
(not roadside, but ≤100 m to the center of a major road), or

(3) urban background (not roadside or urban near traffic; >100
m to the center of a major road). The 15 m distance threshold
was selected to capture sites immediately influenced by vehicle
emissions, while the 100 m threshold was selected because it
represents the approximate half-life in the decay of NO2 away
from a road.19−21 Borderline sites on either side of a distance
threshold were manually investigated using Google Earth and
Street View before assigning them to a category. We assessed
the sensitivity of our analyses to a halving and a doubling of the
distance thresholds used for classifying roadside sites (7.5 m, 30
m) and urban near traffic sites (50 m, 200 m). Major roads
were defined using transport hierarchy codes supplied by the
Public Sector Mapping Agencies.5,22 We also assessed the effect
of changing the definition of a major road on our analyses
(Supporting Information, pages S22−S26).
There was only one industrial point source of NOX within

250 m of a site, based on the Australian National Pollutant
Inventory.23 The site was located 120 m from a hospital that
emitted a moderate amount of NOX per year (∼5000 kg), but
the main source of NO2 was more likely to be traffic emissions
because it was also a roadside site.

Model Predictions. We used our satellite-based LUR
models to predict annual mean NO2 concentrations at each
site. Surface and column model predictions were determined
for the year in which the validation measurements were
performed. Where measurements were done across more than
one year, we averaged the predicted NO2 concentrations to
match the measurement period. Measurements from two
campaigns (2012 and 2013−14) were performed outside the
2006−11 period used to develop our models. We obtained
updated satellite column and surface estimates of NO2 for those
years using our previous methods,5 and applied them using our
existing models. We used all other LUR predictor variables
unmodified, based on the assumption that they were unlikely to
change substantially over 1−3 years.
We excluded validation sites that had values of one or more

LUR predictor variables that were outside the range observed at
the 68 regulatory monitoring sites used for model development.
We did this to prevent unrealistic predictions, based on the
approach of Wang et al.9,12 Eight sites were excluded, leaving a
total of 123 available for validation. We assessed the effect of

Table 1. Details of Each of the Three Sampling Campaigns Used for Validation

Perth 1 Sydney 1 Sydney 2

year 2012 2006−2008 2013−2014
n sites 44 40 47
site selection following ESCAPE protocol16 selected to represent the expected variability of NO2 in the

study area
following ESCAPE protocol16

sample height 1.5−2 m above ground 2.2 m above ground 2.3−2.4 m above ground
duration per
sample

14 days per sample 14 days per sample 14 days per sample

timing of
samples

1 sample in each of summer, autumn
and winter

1 sample in each of summer, winter and spring in each year
during 2006−8 (subset of 11−13 sites also sampled in
autumn)

1 sample in each of summer (2013)
autumn (2014), and winter (2014)

measurement
method

Ogawa sampler24 Ferm-type sampler25 Ogawa sampler24

analysis spectrophotometry based on Saltzman
method

spectrophotometry based on Saltzman method spectrophotometry based on Saltzman
method

quality
assurance

colocated with chemiluminescence
monitors, field blanks, duplicates for
each sample

colocated with chemiluminescence monitors, field blanks,
duplicates for one in five samples

colocated with chemiluminescence
monitors, field blanks, duplicates for one
in five samples

limit of
detection

2.0 ppb 0.5 ppb 2.0 ppb

reference Dirgawati et al.26 Rose et al.27 not yet published
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excluding those sites on our results by comparing them to
results with the sites included.
Validation. We used standard methods to validate our LUR

models,12,28 and summarized their performance using an
independent validation R2 (predicted NO2 regressed on
independent measurements of NO2), the regression slope
and 95% confidence intervals, RMSE (absolute and percentage
scale), and bias (absolute and fractional). The R2 we calculated
is analogous to a hold-out validation R2 (HV-R2),11−13 except
our validation data were a set of unrelated, independent
measurements, rather than a subset of model development sites
held out for validation. As such, we refer to our validation
metric as R2 rather than HV-R2. We performed standard
diagnostics on the normality of residuals and their variance. We
assessed the spatial correlation of residuals using Moran’s I.
Because R2 is based on the correlation between validation

measurements and model predictions, it does not reflect their

absolute agreement. Therefore, we also calculated a mean-
square-error R2 (MSE-R2) that took absolute values into
account.10,12,28 MSE-R2 indicates how well the relationship
between measurements and predictions follows a 1:1 line; its
derivation is described extensively elsewhere.10,12,28,29 Using
both R2 and MSE-R2 can identify LUR model predictions that
are well-correlated with measurements but have poor absolute
agreement.10 Unlike R2, MSE-R2 can have negative values if the
average of measurements leads to a lower MSE than the
predictions.10,12,28,29

We evaluated LUR model predictions for the entire
validation set, by site classification, and by each of the three
validation measurement campaigns. We used R, version 3.2.2,
for all analyses (R Project for Statistical Computing, Vienna,
Austria).

Table 2. Percentiles of Annual NO2 Concentrations (ppb) Measured at Validation Sites.a

location min. 5th 25th 50th 75th 95th max. mean S.D.

overall (n = 123) 0.4 2.9 5.9 8.5 11.2 14.6 19.3 8.6 3.7
roadside (n = 25) 5.1 5.6 8.0 11.0 13.1 17.6 19.3 11.0 3.9
urban near traffic (n = 18) 4.8 4.9 5.8 9.5 11.5 14.8 16.5 9.3 3.6
urban background (n = 80) 0.4 2.8 5.2 8.2 10.0 12.4 15.3 7.8 3.3

Sydney (n = 80) 3.9 5.8 8.2 9.9 11.9 16.5 19.3 10.2 3.1
Perth (n = 43)a 0.4 1.3 4.3 5.1 7.1 11.0 11.5 5.7 2.8
aAny negative concentrations following subtraction of field blank values were randomly assigned a value between zero and the limit of detection (2.0
ppb) in the Perth study (see Dirgawati et al.26).

Table 3. Validation Statistics for the Surface and Column Modelsa

R2 β (95% CI) MSE-R2 RMSE (ppb) RMSE (%) bias (ppb) FB (−)

surface model
overall (n = 123) 0.58 0.69 (0.61, 0.78) 0.51 2.6 29.6 −0.8 −0.10
roadside (n = 25) 0.36 0.55 (0.29, 0.81) −0.18 4.1 37.5 −2.5 −0.26
urban near traffic (n = 18) 0.71 0.97 (0.70, 1.24) 0.60 2.2 23.9 −0.2 −0.03
urban background (n = 80) 0.68 0.74 (0.65, 0.84) 0.66 1.9 24.6 −0.5 −0.06
urban near traffic + urban background (n = 98) 0.69 0.80 (0.71, 0.89) 0.66 2.0 24.5 −0.4 −0.06

column model
overall (n = 123) 0.55 0.64 (0.55, 0.72) 0.52 2.5 29.5 −0.6 −0.07
roadside (n = 25) 0.29 0.47 (0.21, 0.74) −0.13 4.0 36.7 −2.1 −0.21
urban near traffic (n = 18) 0.70 0.91 (0.65, 1.17) 0.64 2.1 22.8 0.1 0.01
urban background (n = 80) 0.64 0.67 (0.57, 0.76) 0.64 2.0 25.3 −0.2 −0.03
urban near traffic + urban background (n = 98) 0.66 0.73 (0.65, 0.82) 0.65 2.0 24.8 −0.2 −0.02

aRMSE = root-mean-square error. FB = fractional bias. Other abbreviations are defined in the main text.

Figure 2.Measured versus predicted annual mean NO2 at 123 validation sites (roadside, urban near traffic, and urban background combined) for the
surface (a) and column (b) models. The dashed line is the line of best fit (see Table 3 for fit statistics). The solid line is the line of agreement.
Symbols denote different measurement campaigns: solid circles = Perth 1; hollow squares = Sydney 1; hollow diamonds = Sydney 2.
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■ RESULTS

NO2 Concentrations. There were 8,177 days of NO2

measurements performed in total across the 123 validation
sites during 2006−2014. Measured NO2 concentrations
adjusted to annual means are summarized in Table 2. Higher
concentrations were observed at roadside sites, followed by
urban near traffic sites, then urban background sites, and
concentrations were higher at sites in Sydney than those in
Perth (Table 2). The concentrations we used for validation
were slightly higher than those used to develop the LUR
models (Table S4). The effects of changing the definitions used
to classify sites on concentration percentiles were minor (Table
S5).
Site Classification. There were 25 roadside sites, 18 urban

near traffic sites, and 80 urban background sites using the
standard classification criteria. There was a greater proportion
of roadside sites and a smaller proportion of urban background
sites used for validation compared with LUR model develop-
ment, particularly in Perth (Tables S6 and S7). However, the
percentiles of LUR predictors at validation sites were
comparable to the model development sites overall (Table
S8). Changing the definitions used to classify sites led to
moderate changes in the number of sites in each category
(Table S9).
Model Validation. Table 3 presents key validation

statistics. The surface and column models captured 58%
(MSE-R2 = 51%) and 55% (MSE-R2 = 52%), respectively, of
spatial variability in annual mean NO2 at the 123 validation
sites overall (Figures 2 and 2b). The figures show some
evidence of increasing variance of errors with increasing NO2

concentrations, but plots of predicted NO2 against residuals did
not indicate overt violation of homoscedasticity (Figures S1−
S2).
The surface model captured 71% (MSE-R2 = 60%) and 68%

(MSE-R2 = 66%) of spatial variability at urban near traffic and
urban background sites, respectively. The column model
captured 70% (MSE-R2 = 64%) and 64% (MSE-R2 = 64%),
respectively. When we combined urban near traffic and urban
background sites but excluded the 25 roadside sites, the surface
and column models captured 69% (MSE-R2 = 66%) and 66%
(MSE-R2 = 65%) of spatial variability at the remaining 98 sites,
respectively (Figures 3a and b). The RMSE and bias of both
models was reduced compared with the analysis that included
roadside sites. The surface and column models captured 36%

(MSE-R2 = −18%) and 29% (MSE-R2 = −13%), respectively,
of spatial variability at roadside sites.

Prediction Bias and RMSE. Both models modestly but
consistently under-predicted annual mean NO2, and the
column model predicted NO2 with slightly less bias than the
surface model (Table 3). The absolute bias of both models was
less than −0.5 ppb for most analyses. Fractional bias was mostly
less than −0.10. The absolute RMSE was very similar across
both models; approximately 2 ppb (∼25% in relative terms).
Residuals had an approximately normal distribution and
constant variance across all analyses (Figures S1−S4). There
was no evidence of spatial correlation among residuals (Table
S10).

Sensitivity of Results. Moving the distance thresholds
used to classify roadside and urban near traffic sites led to
similar results to the main analysis (Table S9). Likewise,
changing the classification of major roads did not substantially
alter the results (Table S9). The results of validation stratified
by each of the three measurement campaigns are presented in
the Supporting Information (Table S11). The predictive ability
of both models was lower than that observed when the data
were pooled across all sampling campaigns. Including the eight
sites that had predictors outside the range used to develop the
models resulted in comparable R2 values, but lower MSE-R2

values (Table S12). That finding supported the decision to
exclude the sites.

■ DISCUSSION

Key Results and Comparison to Other Studies.
Validation of LUR models with data not used in their
development is the optimum method for quantifying how
well they perform.12 In this study, we used a large independent
set of NO2 measurements in two Australian cities (n = 123
sites) that was not available at the time of model development
to assess the ability of our national satellite-based LUR models
(n = 68 sites) to capture within and near-road variability. We
previously used 5-fold cross-validation with five replications to
validate our models due to the scarcity of long-term regulatory
NO2 data in Australia.5 The model R2 was 79% (RMSE = 19%)
and 81% (RMSE = 19%), respectively, for the surface and
column models. Here, we found that our surface and column
models explained 69% (RMSE = 25%) and 66% (RMSE =
25%), respectively, of spatial variation in measured annual mean
NO2 at urban near traffic and urban background validation sites
combined (n = 98).

Figure 3. Measured vs. predicted annual mean NO2 at 98 urban near traffic and urban background validation sites combined for the surface (a) and
column (b) models. The dashed line is the line of best fit (see Table 3 for fit statistics). The solid line is the line of agreement. Symbols denote
different measurement campaigns: solid circles = Perth 1; hollow squares = Sydney 1; hollow diamonds = Sydney 2.
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Excluding roadside sites, which are discussed in a separate
section below, we observed a decrease in R2 from model
development to independent validation of between 10 and 15
percentage points. Bechle et al.7 assessed their satellite-based
LUR for NO2 in the USA by varying the proportion of sites
held out from 10 to 95%. With approximately 70 sites for
development and 300 sites for validation, both the model build
R2 (median ∼80%) and decrease in R2 when validated
(approximately 10 percentage points) were consistent with
what we observed here and in our previous study.5 Our results
also agree with those reported by Wang et al.12 for a Dutch
national, nonsatellite LUR for NO2 developed with 70 sites.
The R2 decrease we found was less than that described by

Hystad et al.6 for their Canadian national satellite-based LUR
for NO2. They found an average decrease from model
development to independent validation at 618 sites of 34
percentage points (73% vs 39%). Because of the diverse siting
of validation sites in their study, its results are more comparable
with our overall validation results at 123 sites (i.e., including
roadside sites). In that analysis, we observed a decrease in R2 of
21 and 26 percentage points for the surface and column
models, respectively. The smaller reduction in R2 in this study
might reflect the reduced number of sites we used for
validation, or the standard criteria we used for repeat
measurements and annual adjustment at validation sites to
capture seasonal variation in NO2, which Hystad et al.6 did for
some, but not all, of their sites. It might also reflect that their
model had fewer variables (4 predictors vs 8 and 9 predictors in
our models) and was not geared toward detecting emissions
attributable to heavy industry and biomass combustion, which
the authors noted may have affected their results.
Relevance of LUR Validation to Epidemiological

Studies. LUR models that have higher out-of-sample R2 (i.e.,
between 3 and 16 percentage points lower than model R2)
introduce substantially less attenuation in health effect
estimates (from 1% to 14%).30 The attenuation due to models
with lower out-of-sample R2 (i.e., between 16 and 74
percentage points lower than model R2) ranges from 9% to
57%, depending on the number of predictors and sites used to
develop the model.30 In the present study, we observed a
relatively modest decrease in R2 from model build through to
validation at urban near traffic and urban background sites (10
to 15 percentage points), which was consistent with that in
other comparable studies, as outlined above.
Recent work has shown that LUR models with higher

independent validation R2 values produce larger effect estimates
than those with lower R2 values when applied to the association
between NO2 and forced viral capacity (FVC) in children.13

Model performance evaluated using leave-one-out-cross-
validation (LOOCV) had a much weaker correlation with
effect estimates, which underscores the importance of
independent validation to determine the utility of LUR models
in health studies.13 Our results demonstrate that the national
satellite-based LUR models can be used to estimate with
reasonable accuracy the annual mean NO2 exposures of people
living in the metropolitan parts of Australia.
The absolute agreement between pollutant measurements

and LUR model predictions is important when models are used
to assign exposures in epidemiological studies.10 Because we
aimed to determine if our models were fit for this purpose, we
assessed absolute agreement using MSE-R2. We observed
between one and three percentage points difference in R2 and
MSE-R2 values for urban near traffic and urban background

sites combined, and between three and seven percentage points
for all sites combined. The differences we found was mostly
comparable to those reported by Wang et al.12 and Basagaña et
al.10 in their European studies. The consistency we observed
between R2 and MSE-R2 demonstrates that in addition to being
correlated, predicted and measured NO2 also showed similar
absolute agreement.
Improving the accuracy of LUR model predictions does not

always improve health effect estimates.29,31 This has been
demonstrated when the variability in an LUR predictor is
smaller at the measurement sites used to develop the model
than the locations to which it will be applied. In turn, this leads
to an increase in classical-like measurement error associated
with estimating the predictor, which increases bias in the effect
estimate compared with a model that has a lower R2 but less
classical error.29 Such findings illustrate that careful attention
needs to be paid to the characteristics of the sites used to
develop LUR models versus those they are applied to. In this
study, we demonstrated that the percentiles of predictors at
validation sites were well-matched to the model development
sites (Table S8), and both sets of sites were generally consistent
with the ∼350 000 census block centroids across Australia
(Table S8,5). This suggests that our models can be applied to a
range of geographic settings within Australia.

Surface versus Column Model Performance. Our
surface and column models had similar R2, MSE-R2, and
RMSE values (Table 3), which agrees with our original model
development results.5 The column model had slightly lower
absolute and fractional bias compared with the surface model.
We previously reported that column models are a more
straightforward and less time-consuming approach, which do
not require the simulation of surface-to-column ratios that the
surface model does.5 Since then, Bechle et al.7 also found that
models using tropospheric NO2 columns performed slightly
better than those using surface estimates in a national LUR for
the USA. The validation we have described here confirms that
column-based NO2 LUR models for Australia offer a simpler
alternative to surface-based models.

Performance at Roadside Sites. The predictive ability of
our models at roadside sites (n = 25) was markedly reduced
and prediction error increased compared with urban near traffic
and urban background sites. The R2 at roadside sites was 36%
(RMSE = 4.1 ppb [38%]) and 29% (RMSE = 4.0 ppb [37%])
for the surface and column models, respectively, indicating
some correlation between roadside measurements and
predictions. The MSE-R2 values were negative in both cases,
indicating poor absolute agreement and that the mean of
measurements performed better than model predictions in
terms of MSE. Both models under-predicted at roadside
locations, with bias of −2.5 ppb and −2.1 ppb for the surface
and column models, respectively.
Our satellite-based LUR models were developed using

ambient regulatory monitors, which are deliberately sited
away from hotspots like roads. Although the roadside sites
used for validation had predictors within the range observed at
ambient sites, there was a higher proportion of roadside sites in
the validation compared with development data; 20% versus
3%, respectively (Table S6). This is a likely explanation for the
lower predictive performance at roadside sites. Also, our models
were developed for all of Australia and did not include traffic
density data because they are not available nationally. We
instead used road length data, and the lower predictive ability at
roadside sites is probably partially due to the difficulty
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associated with capturing the variability in NO2 associated with
complex, highly trafficked locations.32

We previously geocoded the residential addresses of 15 000
Australian women randomly selected from Australia’s universal
healthcare database. We found that the median distance to a
major road was 296 m in that cohort, where 84% of women
lived in the major cities and inner regional areas of Australia.33

Moreover, 5.7% of women lived within our definition of a
roadside location (≤15 m from a major road), while 8.5% of
women lived ≤30 m from a major road. Here, we were mainly
interested in the ability of our models to predict at a typical
residential address in an epidemiological study, most of which
are unlikely to be located immediately proximate to a major
road. Our models’ performance at roadside locations is
therefore less influential on decisions about implementing
them in health studies.12,32

Limitations. Our study has some important limitations. The
validation data we used came from two Australian cities, Sydney
and Perth, while the models we sought to validate had national
coverage. Sydney and Perth combined (6.9 million people)
account for 29% of the Australian population, but it is possible
that our validation sites may be less representative of other
areas. However, the values of LUR model predictors at our
validation sites were largely consistent with those at ∼350 000
Australian census block centroids across the country (Table
S8), suggesting that the sites are appropriate for validating a
national model. Our sites were all located in the metropolitan
part of the two cities, which means that validation was not
possible in rural and remote parts of Australia. Over 70% of
Australians live in major cities, and more than 85% of the
population live in urban areas, making Australia one of the
world’s most urbanized countries.34 We therefore focused our
models’ validation on the locations where they will be applied
most frequently.
Although our LUR models were developed using continuous

regulatory chemiluminescence monitors we validated them
using data from Ferm-type and Ogawa passive samplers.
However, these methods have consistently been shown to
correlate and agree well for the two week measurement periods
we used.25,35,36

Our main analysis only included validation sites that had
predictors within the range used to develop our satellite-based
LUR models. We did this to prevent unreasonably high or low
predictions.9,12 This means that the predictive performance we
observed holds for situations where the predictors are within
the models’ development range.10,12 Options for assigning
exposures to out-of-range sites in epidemiological studies have
been discussed by Wang et al.12

In summary, we capitalized on the availability of a large
number of NO2 measurements performed in Australia using
standard passive sampling methods, which were not available at
the time we built our LUR models. We used almost double the
number of sites to validate our models (n = 123) as we used to
develop them (n = 68). Our results add to the scant literature
on independent validation of national satellite-based LUR
models for NO2, particularly those developed using a relatively
small ground-based monitoring network. Our models captured
up to 69% of spatial variability in annual mean NO2 at
independent urban near traffic and urban background validation
sites, and up to 58% at all validation sites (including roadside
sites). Our findings indicate that satellite-based LUR models
provide a valid, consistent, and cost-effective method for
assigning NO2 exposures, even when the number of sites

available to develop them is limited. On the basis of the results,
we will use the models to estimate residential NO2
concentrations in a national study of children’s respiratory
health.
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