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ABSTRACT: Nitrogen dioxide is a common air pollutant with growing evidence of
health impacts independent of other common pollutants such as ozone and particulate
matter. However, the worldwide distribution of NO2 exposure and associated impacts on
health is still largely uncertain. To advance global exposure estimates we created a global
nitrogen dioxide (NO2) land use regression model for 2011 using annual measurements
from 5,220 air monitors in 58 countries. The model captured 54% of global NO2
variation, with a mean absolute error of 3.7 ppb. Regional performance varied from R2 =
0.42 (Africa) to 0.67 (South America). Repeated 10% cross-validation using bootstrap
sampling (n = 10,000) demonstrated a robust performance with respect to air monitor
sampling in North America, Europe, and Asia (adjusted R2 within 2%) but not for Africa
and Oceania (adjusted R2 within 11%) where NO2 monitoring data are sparse. The final
model included 10 variables that captured both between and within-city spatial gradients
in NO2 concentrations. Variable contributions differed between continental regions, but
major roads within 100 m and satellite-derived NO2 were consistently the strongest predictors. The resulting model can be used
for global risk assessments and health studies, particularly in countries without existing NO2 monitoring data or models.

■ INTRODUCTION

Outdoor air pollution is a source of concern for global human
health. The most recent version of the Global Burden of
Disease estimated that ambient fine particulate matter less than
2.5 μm (PM2.5) contributes to 4.2 million annual deaths and
ozone an additional 254,000 deaths.1 More than 50% of the
disease burden from air pollution is in the rapidly developing
countries of China and India, where air pollution concen-
trations are high and populations are large.2 In 2015, the World
Health Assembly identified air pollution as the “...world’s largest
single environmental health risk” and called for additional
efforts to monitor and evaluate the impacts of air pollution on
health.3

To fully evaluate ambient air pollution impacts on human
health, population exposure estimates should extend beyond
PM2.5 and ozone to better represent additional common
exposures, such as traffic-related air pollution, for which
nitrogen dioxide (NO2) is a common marker.4 A growing
body of evidence links traffic-related pollution to myriad acute
and chronic adverse health outcomes, including incident
asthma in children,5 decreased lung function in children6 and
adults,7 and lung cancer in adults.8

The global distribution of NO2 exposure and concomitant
impacts on global health is still largely uncertain, in part
because of challenges in estimating global NO2 concentrations.
NO2 air monitor networks are sparse or nonexistent in many
low-income countries. Where they do exist, they generally do
not capture the important spatial gradients needed to
understand exposures, e.g., NO2 concentrations near major
roads and highways (100−400 m9). Capturing fine scale NO2

gradients are important for exposure assessments, as within city
variation is more strongly associated with multiple non-
accidental causes of mortality than between city variation in
annual NO2 concentrations.

10 Similarly, NO2 estimates derived
from moderate resolution remote sensing products (those at
∼10 km × 10 km resolution) do not capture fine-scale NO2

gradients. Land use regression (LUR) models can predict NO2

concentrations across large spatial extents and have been
created for large geographic areas, including the continental
United States,11−13 Canada,14 Europe,15 and Australia.16 These
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models are built from NO2 monitor data and combine satellite-
based NO2 estimates with land use characteristics and roadway
information to predict NO2 concentrations at fine spatial scales
(30−500 m). In 2011, Novotny and associates11 demonstrated
the utility of land classification data sets available globally in
place of high-resolution country level equivalents with no loss
of predictive power in their LUR model for the continental US.
The LUR approach is therefore an excellent candidate for
developing high-resolution NO2 estimates at a global extent.
Here, we present the development of the first global NO2

LUR model (for 2011) based on annual NO2 measurement
data (n = 5,220) compiled for 58 countries and available global
predictor data sets. A global model of NO2 informs global risk
assessments in terms of estimates of NO2 exposure and
associated health burden provides standardized NO2 estimates
for multicountry studies and NO2 estimates for health studies
in developing countries where detailed city-specific or country-
specific models do not exist.

■ METHODS
NO2 Air Pollution Monitoring Data. Annual NO2 air

monitor measurements were collected from a wide range of
environmental and regulatory agency Web sites (Supporting
Information Excel file). Air monitors from the US, Canada,
Europe, China, and Japan were restricted to air monitors with
greater than 75% hourly coverage. In other countries, percent
coverage was not provided, or the temporal unit to derive
percent coverage (daily, hourly, or monthly) was unknown. For
those countries, we therefore further restricted monitor
selection to monitors with an annual standard deviation less
than 25 ppb, at least two years of annual measurements, year-
round coverage (greater than 75% coverage or a positive
indicator complete coverage for each month), and latitude,
longitude coordinates with four or more decimal places of
precision (i.e., to within 12 m). The full database of collected
NO2 air monitor measurements is available at http://health.
oregonstate.edu/labs/spatial-health/resources/. To match air
monitor measurements with satellite-based surface NO2
estimates (described below), mean annual NO2 measurements
by the monitor were calculated for each monitor using up to
three annual measurements closest to the year 2011.
Predictor Variables. Predictor variables included satellite

NO2 estimates and land use related variables. All predictor
variables and corresponding input data sources are listed in
Table S1. Variables consisted of either estimates at the exact air
monitor location (point) or an average of a variable within a
radius around the air monitor location (buffer). First, satellite-
based estimates of surface NO2 concentrations from 2010 to
2012 were applied to each monitor. Briefly, tropospheric NO2
column retrievals from the SCIAMACHY and GOME-2
instruments were combined with output from the global
GEOS-Chem model to produce gridded NO2 surface estimates
at ∼10 km × 10 km resolution.17 The three-year averages were
based on daily overpass data after excluding pixels contami-
nated by clouds (cloud radiance fraction >0.5) and snow
(estimated using snow cover from the National Ice Center’s
Interactive Snow and Ice Mapping System). Potential sampling
biases in the annual means were accounted for by applying a
GEOS-Chem model correction for the missing days.
For each land use characteristic evaluated as a buffer, multiple

buffer variables were created, ranging from 100 m to 50 km in
radius (buffer distances are listed in Table S1). Land use
characteristics in the data set include normalized difference

vegetation index (NDVI), tree cover, impervious surface area,
population density, major and minor road length, length of
major roads upwind from air monitors, power plant CO2
emissions, active fires, and distance to coast. Major roads
upwind from air monitors consists of the average length of
major roads upwind from an air monitor station in each year
(Figure S1). Buffer variable and point estimates were calculated
using Python v. 2.718 scripts written for automated analysis in
ArcGIS v. 10.3.1.19 Annual distributions of wind direction from
the National Centers for Environmental Prediction Climate
Forecast System20 were calculated using a Python script written
for automated analysis in Google Earth Engine21 (Python
scripts are available at https://github.com/larkinandy/LUR-
NO2-Model).

Statistical Analysis. LUR models were developed using
Lasso variable selection (glment package,16,22 in RStudio, v.
3.2.223). Lasso regression was successfully utilized by Knibbs et
al. (2014) to create their Australian NO2 land use regression
model. Parameters for Lasso variable selection include
standardizing independent variables (standardization = True),
selecting variables to minimize mean-square error (type.-
measure = “mse”), and forcing the direction of variable
coefficients to conform to apriori hypotheses (e.g., increases in
major roads and tree cover are associated with increases and
decreases in NO2 concentrations, respectively) (lower.lim = 0).
The lasso model with a lambda cross-validation score of one
standard deviation from the minimum cross-validation score
was selected as the model of choice to favor model
simplification and inference over model prediction (s =
lambda.1se). To reduce multicollinearity, models with
incremental buffer sizes of the same land use characteristic
were reduced to only include the smallest buffer size, if the radii
of the larger buffers were within three times the radii of the
smaller buffers. For example, if major roads variables with 100,
200, and 400 m buffer sizes were all selected by lasso
regression, only the 100 and 400 m variables would be included
in the regression model. Finally, variables were included in the
final model if they were statistically significant, increased
adjusted R2 either globally or in one or more continental
regions, by 1% or more, exhibited variance inflation factors less
than 5 for at least one region and less than 10 for all regions.
Model performance was evaluated by calculating root mean

squared error (RMSE), mean absolute error (MAE), R-squared
(R2), adjusted R-squared (Adj R2), mean percent bias (MB),
and mean absolute percent bias (MAB) for the entire global
data set as well as within each continental region. Leave 10%
out cross-validation was performed, in which 10% of the
monitors from each continental region were randomly sampled
into a testing data set, with the remaining 90% from each region
combined to create the model training data set. Cross-
validation was repeated in a bootstrap fashion 10,000 times
to generate cross-validation estimates of RMSE, MAE, and R2

both globally and within each continental region.
Several sensitivity analyses were performed to evaluate the

robustness of our global model. Continental LUR models were
created for each region and compared to the previously
published LUR models for the continental US, Canada, Europe,
and Australia. Continent specific models were also created from
the residuals of the global model to identify variables excluded
from the global model that may be important in capturing
regional variation. For a comparison of the global model,
regional model, and residual model methodologies, see Figure
S2. To test model sensitivity and overfitting of vegetation levels,
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we performed two t tests comparing residuals in the bottom
(NDVI < 0.28) and top (NDVI > 0.57) decile of average
vegetative cover within 10 km. The first t test used satellite-
based predictions, while the second t test used the developed
global model predictions.
The R scripts used to create the LUR models, perform model

performance, and perform sensitivity analyses are available at
https://github.com/larkinandy/LUR-NO2-Model.

■ RESULTS

Global NO2 Database. The distribution of NO2 air
measurements that passed selection criteria are shown in
Figure 1, and the corresponding summary statistics, stratified by
continental region, are shown in Table 1. Histograms of annual
air monitor concentrations for each region are shown in Figure
S3. Measurements were collected from 6,761 unique air
monitors, 5,220 of which (77%) met selection criteria. Air
monitor coverage is greatest in Europe, North America, and
Asia and sparse in Africa and Oceania. The global median year
of air monitor measurements in this database is 2013, with
median year of annual measurements by continent ranging
from 2011 to 2013.5. Annual NO2 concentrations range from 0
to 59 ppb, with mean annual air monitor concentration of 11.5
ppb. Mean concentrations are greatest in Asia (14.1 ppb) and
North America (13.1 ppb) and lowest in Africa (7.3 ppb) and
Oceania (6.7 ppb). Regional standard deviation in air monitor
averages range from 4.5 to (Oceania) to 8.2 (North America),
with a global average of 7.5 ppb.
NO2 LUR Model. The final LUR model performance is

shown below in Table 2. Global model predictions are shown
in Figure 2, and predicted vs observed air monitor measure-
ments are shown in Figures 3 (global) and S4 (by region). Final
model variables are summarized in Table 3. Globally, the NO2
model explains 54% of annual NO2 variation, with MAE of 3.7

ppb and MAB of 44%. Model predictions are positively biased
(25%) with positive and negative bias in general at air monitor
locations with annual concentrations below 10 ppb and above
40 ppb, respectively (Figure 3). Regionally, adjusted R2 ranges
from 0.31 (Africa) to 0.63 (South America), MAE ranges from
2.3 (Africa) to 4.4 ppb (North America), and MAB ranges from
34% (Asia) to 74% (North America). In general, model
performance in each region is positively associated with
regional NO2 standard deviation but not sample size (Table
1). Global distribution of model residuals is shown in Figure S5.
Residuals are greatest in North America and smallest in
Oceania.
Variables with negative coefficients include NDVI, tree cover,

and water body. Percent water body contributes the most to
predicting lower concentrations in the model, with 0.39 ppb
estimated decrease for each 10% increase in water body
coverage within 50 km. Variables with positive coefficients
include satellite-based NO2, impervious surface area, population
density, and length of major roads. The most significant

Figure 1. Global distribution of NO2 air monitor locations. Locations of NO2 measurements used to create the global NO2 LUR model.

Table 1. NO2 Air Monitor Summary Statistics, Stratified by Region

region
median
year

monitors
(n)

min. NO2
(ppb)

max. NO2
(ppb)

mean NO2
(ppb)

SD NO2
(ppb)

25th
perca

50th
perca

75th
perca

90th
perca

N America 2011 731 0 44 13.1 8.2 6.7 11.3 17.3 24.3
S America 2011 105 1 35 12.7 7.6 7.0 10.5 18.6 23.2
Europe 2012 2351 0 47 11.8 6.8 7.0 11.0 15.5 21.5
Africa 2013.5 63 2 19 7.3 3.8 4.5 7.0 8.8 13.0
Asia 2012 1886 1 59 14.1 7.7 8.5 13.0 18.3 58.7
Oceania 2011 84 1 23 6.7 4.5 3.4 6.0 9.3 12.7
global 2013 5220 0 59 11.5 7.5 7.3 11.4 16.7 23.0
aPercentile.

Table 2. NO2 Model Training Performance

region
RMSEa

(ppb)
MAEa

(ppb) R2 Adj R2
MBa

(%)
MABa

(%)

N
America

5.7 4.4 0.52 0.52 52 74

S America 4.4 3.1 0.67 0.63 29 44
Europe 4.8 3.5 0.52 0.52 24 43
Africa 2.9 2.3 0.42 0.31 20 41
Asia 5.3 3.7 0.52 0.51 16 34
Oceania 3.2 2.4 0.51 0.44 30 63
global 5.0 3.7 0.54 0.54 25 44
aAbbreviations: RMSE − root-mean-square error. MAE − mean
absolute error. MB - mean percent bias. MAB − mean absolute
percent bias.
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positive coefficient predictors are satellite-based NO2 and major
road length within 100 m. For every 0.1-km increase in major
road length within 0.1 km, predicted NO2 concentrations
increase by 0.92 ppb. Some variables only explained greater
than 1% of NO2 variation in continental data sets. For example,
NDVI within 200 m contributes only 0.81% of the variation in
the global data set; however, removing NDVI 200 m from the
model significantly reduces percent variance explained in
specific regions (e.g., in Oceania by 11.9%). The percent R2

reduction for all model variables by continental regions are
shown in Figure S5.
The applied model predictions for New York City, USA, and

for Delhi, India, are shown in Figure 4. Individual variable

contributions toward model predictions across a transect of
both cities are shown in Figure S7. Major roads 100 m, NDVI
200 m, and population density 3500 m were strong predictors
for NO2 in both New York and Delhi. In New York, the
strongest predictor was satellite NO2, while in Delhi the
strongest predictor was population density.

Sensitivity Analyses. Results of the bootstrap 10% cross-
validation are shown in Table S3. Globally, MAE is 0.1 ppb
greater and R2 is 1% smaller compared to models trained with
the entire data set (Table 3). Regionally, MAEs and R2 are 0.3
greater and 4% lower, respectively, for Africa and 0.2 ppb
greater and 18% lower, respectively, for Oceania. For all other
regions, MAE and R2 are within 0.2 ppb and 5% of model

Figure 2. Global NO2 model predictions for the year 2011. Inserts of select cities for each continental region demonstrate within city variation of
model predictions.

Figure 3. Predicted vs observed mean annual NO2 concentrations. Values are moderately correlated with a positive mean bias.
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training, respectively. Model performance is robust with respect
to monitor sampling selection for South America, North
America, Europe, and Asia but not for Africa and Oceania,
likely due to small sample size and sparse spatial coverage.
Results of our regional model sensitivity analysis are shown

below in Table 4. The R2 for all regional models was slightly

higher than for the global model, except for Africa. Performance
of the residual models is also provided in Table S2. With the
exception of North America, Africa, and Oceania, residual
models improve R2 by less than 2% compared to the global
model. In addition, most of the variables selected by the
residual models were 50 km in buffer size, except for North

Table 3. Global NO2 LUR Model Structurea

variable units IQR
buffer radius

(km) B SE
global %R2

reduction
regional %R2

reduction
global p-
value

regional p-
value

intercept ppb NA NA 8.370 0.701 NA NA <0.01 NA
N America intercept ppb NA NA 2.985 0.611 NA NA <0.01 NA
S America intercept ppb NA NA 1.977 0.754 NA NA 0.01 NA
Europe intercept ppb NA NA 1.274 0.584 NA NA 0.03 NA
Asia intercept ppb NA NA 2.345 0.592 NA NA <0.01 NA
major roads km 0.18 0.1 9.241 0.410 9.1 13.5 <0.01 <0.01
satellite-based NO2 ppb 2.97 NA 0.832 0.038 8.8 19.5 <0.01 <0.01
population density persons/km 2.09 3.5 0.231 0.032 3.3 3.3 <0.01 <0.01
water body % 33 50 −3.883 0.394 1.9 12.3 <0.01 <0.01
major roads km 27.08 2.5 0.040 0.015 1.4 8.2 <0.01 <0.01
NDVI normalized 0.17 0.2 −8.290 1.287 0.8 11.9 <0.01 <0.01
tree cover % 10.05 1.5 −0.023 0.006 0.3 7.6 <0.01 <0.01
ISA % 33.96 1.5 0.028 0.008 0.2 2.4 <0.01 <0.01
ISA % 25.05 7 0.029 0.010 0.1 2.9 0.01 <0.01
NDVI normalized 0.15 1.2 −1.600 1.524 0.02 11.5 0.29 <0.01
aGlobal reduction in explained variance after removing variable from the model. Maximum reduction in explained variance in a given region after
removing variable from the model. The Africa intercept was not significant and therefore not included in the final model. Oceania served as the
reference group for regional intercepts. Variables are listed in order of global %R2 reduction. Abbreviations: NDVI − Normalized Difference
Vegetation Index. ISA − Impervious Surface Area. The global model includes two variables for NDVI and ISA, with different buffer distances for
each variable. See Figures S1 and S6 and Table S1 for more information about model variables. Regional R2 and p-values are based on regional
subsets of the global training data set.

Figure 4. Predicted annual NO2 concentrations in New York City, USA (top left) and Delhi, India (bottom left). Green lines correspond to model
transects, with model predictions along the transect (moving from southwest to northeast) shown on the top right for New York City and bottom
right for Delhi. Contributions of each variable toward transect predictions are shown in Figure S6. Model predictions are also available to view online
at http://people.oregonstate.edu/~larkinan/globalNO2.html.
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America where the model included minor roads within a 50 km
buffer. In comparison to global satellite estimates alone, MSE is
lower (6.6 vs 5.0 ppb) and Adj R2 is greater (0.22 vs 0.54) in
the global LUR model.
In our comparison of satellite and LUR model performance

in areas with low and high vegetation, residuals from satellite
estimates are significantly greater for areas with low vegetative
cover compared to regions with high vegetative cover (p <
0.001, 95% CI 7.4:9.2 ppb). Residuals from the developed
global land use regression model, however, do not significantly
differ between regions with high and low vegetation (p-value =
0.52, 95% CI −0.9:0.5 ppb). These results demonstrate the
utility of and provide justification for the use of land use
characteristics for improving satellite-based NO2 predictions.

■ DISCUSSION
Using 5,220 monitors from 58 countries, we developed a global
LUR model that captured a large proportion of the NO2
variation. Importantly, this model captured both between and
within-city spatial variability in NO2, representing fine-scale
variation that is difficult to achieve using satellite-based
estimates alone. The performance of this global model also
aligns with existing country and regional LUR models. The
global model developed here can be used to estimate the
magnitude and spatial distribution of global NO2 concen-
trations and resulting health burden as well as to be applied to
health studies in countries where NO2 data and models are not
available.
Globally, the NO2 model explains 54% of annual NO2

variation with a RMSE of 5 ppb. The global model performed
similarly in all regions with a range of R2 from 0.42 (Africa) to
0.67 (South America). We built a parsimonious model using
Lasso regression with parameters that restricted variable
selection to correspond to hypothesized effect directions and
by limiting inclusion of the same variables but slightly different
buffer sizes. This resulted in a model with 10 predictor
variables. Some of these variables had limited global but
significant regional associations. For example, while population
density explained only 1% of global NO2 variation, it explains
3% of variation in Asia. An advantage of a parsimonious model
is that it can identify specific associations between variables and
NO2. For example, in our final model, NO2 increased by 0.92
ppb for every 100 m of additional road length within 31,400 m2

of area (circular area with a 100 m radius), after adjusting for
multiple factors, including satellite-based and regional intercept
adjustments for background NO2 levels. A fully unconstrained

predictive global model results in model overfitting and
contradictory interactions among variables (e.g., models with
positive and negative predictors of the same variable);
accordingly we focus instead on the constrained model results.
Sensitivity analyses using regional models built using

residuals from the global models demonstrated that there is
limited additional predictive power to be gained by regionally
optimizing the variables included in our global model. Except
for North America, variables selected by the regional residual
models were 50 km in buffer size, suggesting that in general
residual models are capturing regional adjustments rather than
fine-scale adjustments to NO2 concentrations. This was
surprising as we had hypothesized that regional adjustments
would capture different traffic levels and vehicle emissions
differences (e.g., coefficients for major road variables would be
larger in Asia, Africa, and South America compared to North
America and Europe where there are newer vehicles and more
stringent fuel and emission standards). Nevertheless, future
gains in global LUR modeling may involve adding additional
variables, such as traffic counts, vehicle fleet composition,
emission standards, and point source emission estimates, which
can capture different dynamics of NO2 concentrations beyond
the land use variables included in our model.
While there are no published global NO2 LUR models to

compare our results against, there are several continental
models. In comparison, the MAE and Adj R2 of the continental
United States model developed by Novotny et al. were 2.4 ppb
and 0.78, respectively, compared with our North American
model values of 4.4 ppb and 0.52 and our global model of 3.7
ppb and 0.54. Similarly, MAE and Adj R2 of the Australian
regional model developed by Knibbs et al. (2014) were 1.4 ppb
and 0.81, respectively, compared with our Oceania model
values of 2.4 ppb and 0.52. In Western Europe, the MAE and
Adj R2 were 8.8 μg/m3 and 0.56, respectively, compared with
our Europe model values of 3.3 ppb and 0.57. Except for
Western Europe, Adj R2 were greater and MAE were lower in
the existing referenced models than our regional models. Adj R2

for our European regional model is within 1% of the existing
Western European reference models.15,24 MAE is likewise
similar between our regional European model and reference
model (3.3 ppb and 8.8 μg/m3, respectively).15 It is noteworthy
that the European model is the only reference model to include
more than one country within its spatial extent. For the other
existing models, there are several potential reasons for our
lower model performance, including the greater spatial extent
across multiple countries, air monitor data spanning multiple
years, mismatch between NO2 satellite surface year and air
monitor year, fewer air monitor measurements (for Australia),
gradual reduction in NO2 levels in North America (∼5%
annually15), and additional variables such as sun intensity and
year indicator in the Australian model. To test the impact of
these potential factors we performed additional sensitivity
analysis to match our modeling approach as closely as possible
to the existing NO2 LUR models summarized above (see
Supplemental Text). These sensitivity analyses suggest that
discrepancies in regional performances and reference models
are largely attributable to the factors described above and that
our modeling approach is valid for capturing NO2 variation
globally and regionally.
Our global NO2 LUR has several limitations. One major

limitation is the global representation of available NO2
monitoring data. Most data came from North America, Europe,
Japan, and China. While we were able to obtain some data from

Table 4. Models Created from Regional Partitions of the
Global Data Setb

region
RMSEa

(ppb)
MAEa

(ppb) R2
Adj
R2

MBa

(%)
MABa

(%)

N
America

5.0 3.8 0.64 0.63 31 52

S America 3.5 2.6 0.79 0.77 20 36
Europe 4.5 3.3 0.57 0.57 20 38
Africa 2.9 2.4 0.41 0.38 21 43
Asia 4.9 3.5 0.59 0.58 16 33
Oceania 3.2 2.3 0.49 0.46 38 62
aRMSE − root-mean-square error. MAE − mean absolute error. MB
− mean percent bias. MAB - mean absolute percent bias. bRegional
model performance of all models within their respective extents is
greater compared to the global, although the difference in performance
varies.
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South American and South Asian countries, limited monitoring
data were available for Africa. Given the lack of monitoring data
in many countries, we chose to include monitors that did not
have enough documentation regarding temporal coverage (i.e.,
75% hourly coverage throughout the year). Despite this
relaxation of air monitor quality control requirements, some
air monitor data from several countries, including Ecuador,
Russia, India, and China, were removed due to uncertainty in
measurement quality. We anticipate that in upcoming years, as
monitoring efforts continue and expand globally, it will be
easier to enforce a selection criterion without sacrificing
representation from specific countries. Cross-validation shows
that our model is robust to air monitor selection for North
America, Europe, Asia, and, to a lesser extent, South America
but not for Africa and Oceania. Additional monitoring data are
needed in these regions, particularly in Africa where rapid
urbanization is occurring.24−27

A second limitation is that our approach did not include data
on vehicle fleet composition, emission standards, or traffic
counts. Surprisingly, continental models of residuals did not
change the variable selection or coefficients significantly. Future
modeling could apply country-specific adjustments, for the
small number of countries with sufficient monitoring coverage.
Third, we chose not to include an adjustment factor for
multiple years due to simultaneous decreasing and increasing
trends in NO2 in different regions of the world. We also chose
to include monitor measurements from more recent years (up
through 2015) as limiting the monitor data set to monitors
matching the temporal coverage of satellite-based NO2 surface
estimates (up through 2011) would exclude most air monitor
measurements we collected from developing countries. We
anticipate that this limitation can be addressed by adding a time
series component, along with concomitant updates to satellite-
based surface estimates and multiple years of measurements in
developing countries, which could significantly improve global
estimates. Updated satellite estimates in conjunction with
several more years of collected global air monitor measure-
ments would allow for spatiotemporal modeling, in a similar
fashion to the continental United States LUR NO2 model
developed for North America by Bechle et al.13

The regional MABs in our bootstrap analysis range from
31.8−74.3%. By documenting regional differences in error and
bias, regional differences in model performance can be
considered when performing inter-regional comparisons in air
quality, exposure, and related burdens. Regional models with
better performance are better suited than the global model
presented here for studies in which the study area is within the
regional model extent.
In conclusion, we have created and demonstrated the

robustness of the first global NO2 LUR model, which captures
the important fine-scale spatial variability of NO2 air pollution.
Globally, the model predicts 54% of annual NO2 variation (Adj
R2 = 0.54), with continental R2 ranging from 0.42 to 0.67.
Additional air monitor coverage in Africa, Oceania, and, to a
lesser extent, South America will increase confidence in model
predictions for these sparsely covered regions. The NO2 LUR
model developed here can be used to estimate the magnitude
and spatial distribution of global NO2 exposures and resulting
health burden as well as to be applied to health studies in
countries without extensive monitoring networks. We are
currently running this model globally (at a 100 m resolution) to
assign to population locations to estimate global exposure to
NO2 and resulting health burden. The current status of global

NO2 estimates is available at https://github.com/larkinandy/
LUR-NO2-Model.
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