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ABSTRACT: Modifying urban form may be a strategy to mitigate urban air pollution. For
example, evidence suggests that urban form can affect motor vehicle usage, a major
contributor to urban air pollution. We use satellite-based measurements of urban form and
nitrogen dioxide (NO2) to explore relationships between urban form and air pollution for a
global data set of 1274 cities. Three of the urban form metrics studied (contiguity,
circularity, and vegetation) have a statistically significant relationship with urban NO2; their
combined effect could be substantial. As illustration, if findings presented here are causal,
that would suggest that if Christchurch, New Zealand (a city at the 75th percentile for all
three urban-form metrics, and with a network of buses, trams, and bicycle facilities) was
transformed to match the urban form of Indio - Cathedral City, California, United States (a
city at the 25th percentile for those same metrics, and exhibiting sprawl-like suburban
development), our models suggest that Christchurch’s NO2 concentrations would be ∼60%
higher than its current level. We also find that the combined effect of urban form on NO2 is
larger for small cities (β × IQR = −0.46 for cities < ∼300 000 people, versus −0.22 for all cities), an important finding given that
cities less than 500 000 people contain a majority of the urban population and are where much of the future urban growth is
expected to occur. This work highlights the need for future study of how changes in urban form and related land use and
transportation policies impact urban air pollution, especially for small cities.

■ INTRODUCTION

More than half of the world population, 3.9 billion people
(54%) in 2014, live in urban areas, with an additional 2.5 billion
urban dwellers expected by 2050.1 Cities serve as economic and
social centers, concentrating people, activities, ideas, and
industries. Cities may also concentrate environmental hazards
such as air pollution, and potentially health inequities.2,3 As
such, cities are a focal point for understanding and addressing
environmental health issues. Urban air pollution is responsible
for millions of deaths each year globally, and is one of the top
ten causes of death in the United States.4 Mortality estimates
from the Global Burden of Disease are predominately
attributed to fine particles. On the other hand, the International
Agency for Research on Cancer classifies outdoor air pollution
(i.e., as a mixture, rather than a single pollutant) as the leading
environmental carcinogen.5 Urban air quality has generally
improved for most developed countries, but worsened in most
developing countries owing to rapid urban growth, increased
automobile usage and congestion, and often lax environmental
regulation.6−9

Transportation is one of the largest contributors to urban air
pollution for pollutants such as carbon monoxide, nitrogen
oxides, benzene, ozone, and fine particulate matter (PM2.5).

10,11

For example, recent estimates suggest that globally, approx-
imately 25% of ambient urban PM2.5 is attributable to motor
vehicles.12 Strategies to reduce motor vehicle use may play a

role in improving urban air quality. Evidence suggests that
changes in urban form can impact travel behavior such as travel
distance, trip frequency, and mode choice.13−19 For example,
increasing population density is associated with a decrease in
per capita daily vehicle-miles traveled (VMT) and an increase
in walking and biking trips.16−21 Dense neighborhoods with
mixed land uses may be more accommodating to shorter trips
and alternative modes of transportation (e.g., walking, biking,
mass-transit) while also presenting barriers or disincentives to
driving (e.g., limited parking, higher parking costs, conges-
tion).17,21 Similarly, the development of alternative trans-
portation infrastructure may increase demand for nearby
residential and retail property and consequently increase
density.22−24

The existing literature suggests that increased density and
other built environment characteristics (e.g., compactness,
contiguity, centrality) are associated with lower air pollutant
concentrations.25−31 Empirical investigations of the relationship
between urban form and air pollution are mostly limited to
cities in developed countries (primarily in the United States)
and tend to focus on large cities. Yet the majority of the world's
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urban population lives in small cities (fewer than 500 000
people) and most of the future urban growth is expected to
occur in small cities and developing countries.1 A study of 83
global cities found that all else equal, more-contiguous urban
form is associated with lower concentrations,27 a similar finding
to U.S.-only studies.30 More recently, Larkin et al. investigated
830 cities in East Asia during 2000−2010 and found that
changes in urban form (determined, e.g., via lights at night,
impervious surfaces, population density) were associated with
changes in air quality.31 They reported that the urban form−air
quality relationship varies with city population; increasing
population while limiting urban land growth may attenuate or
decrease per capita emissions.31 These studies are few in
number, yet illustrate the potential importance of urban form as
a tool for improving air quality. The existing literature
encourages further exploration of these relationships and how
they may vary globally. To date, most studies of urban form and
air pollution in developing countries have focused on East
Asia. It is still unknown whether urban form−air quality
relationships hold for low income countries globally, and to
what degree differences in national policy may impact these
relationships. Additionally, in their analysis of East Asian cities,
Larkin et al. found evidence that ideal urban form typologies
vary by city population size; this finding may be true in other
regions, but to our knowledge, it has not been previously
studied.
Here we employ satellite-based measurements of nitrogen

dioxide (NO2, a proxy for traffic-related air pollution and a
major constituent of urban air pollution)6 and a global data set
of 1274 urban areas32 to explore the relationship between urban
form and air quality. Our work builds on prior research by
employing a much larger sample of global cities, allowing for
the exploration of factors (i.e., city population, country-level
income, environmental performance and policy) that may
influence the relationship between urban form and air quality.
In this work we are able to explore how urban form - air quality
relationships vary for a consistent set of cities in low- and high-
income countries, giving insight into the impacts of urban form
in developing countries where existing literature is limited.
Additionally, more than half of the cities in our data set (n =
675 cities; 53% of all cities) are small cities (100 000−500 000
people), allowing us to explore the relationship of urban form
and air pollution for a large global sample of small cities.

■ MATERIALS AND METHODS
We study NO2, a major constituent of urban air pollution. NO2
also serves as a marker for a suite of pollutants linked to traffic
and other combustion related emissions,33 and as a useful proxy
for urban air pollution owing to its relatively short lifetime
(∼hours) that makes it indicative of localized emissions. NO2 is
associated with several adverse health outcomes, including
aggravation of respiratory diseases,34,35 increased hospital-
ization and emergency room visits,36 incidence of asthma,37

mortality,33,38−40 and lung cancer.41 NO2 is a criteria air
pollutant regulated by the U.S. Environmental Protection
Agency , as well as a precursor to secondary particle formation,
photochemical ozone production, and acid rain. Therefore,
NO2 is well suited for the exploration of urban form and urban
air pollution undertaken here.
We employ publicly available global estimates of gridded

(0.1° × 0.1° [ ∼ 11 × 11 km2 at the equator]) annual surface
NO2 concentrations. A detailed description of these data are
provided elsewhere.6 Briefly, tropospheric column NO2

measurements from three satellite-based instruments
(GOME, SCHIAMACHY, and GOME-2) are combined with
a global chemical transport model to estimate annual surface
NO2 concentration over a 17 year period (1996−2012).6 This
method of estimating surface NO2 from satellite measurements
has been shown to capture within-urban variability and has
been previously used to explore global aspects of urban NO2
concentrations.27,42,43 To reduce effects of interannual
variability we average three years of surface NO2 estimates
(2000−2002; corresponding to the three years nearest to the
built-up area measurements). Satellite measurements of air
pollution offer global coverage, and consistent data quality with
uniform methodology across cities and regions, and have
proven to be a useful tool for exploring urban air pollution
globally.7,9,27,31,43 Estimates of NO2 surface concentrations
derived via satellite measurements are typically lower than 24 h
average in situ measurements for several reasons, including
satellite measurements occur during daytime hours when NO2
concentrations can be comparatively low; satellite measure-
ments represent spatially averaged concentrations whereas
point-based measurements may capture nearby sources;
chemical interferences from most in situ monitors that may
positively bias those estimates; and, potential underestimation
of NO2 surface-to-column ratios in urban areas due to model
spatial resolution.42 Nevertheless, satellite-based estimates of
NO2 have been shown to capture the spatial variability of
surface concentrations,42 and are well suited for exploring the
relative differences in concentration among urban areas.27,31,43

We previously explored the relationship between urban form
and air pollution for a globally stratified sample of 83 cities.27

To our knowledge, that was the first global exploration of this
relationship. Our prior study employed built-up area estimates
(derived from 30 m Landsat imagery) provided by the World
Bank Dynamics of Global Urban Expansion Study.44 The
number of cities provided by the World Bank Study was
limited, owing to the time and cost of processing additional
cities. The small sample size in the earlier study prevented us
from exploring several underlying factors that may influence the
urban form−air pollution relationship.
Here, we investigate the urban form - air pollution

relationship in greater depth using published estimates of
built-up urban area for 1274 global cities.45 Built-up area was
determined by supervised classification of 500 m Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite data
for years 2001−2002.46 Potere et al. recently compared ten
global maps of urban land cover circa year-2000 and found the
MODIS 500 m (MOD500) data employed here to be the most
accurate.47 We therefore trade spatial fidelity of built-up area
estimates (30 m previously versus 500 m here) for a much
larger sample of cities (83 previously, 1274 cites here). Angel et
al. clustered built-up areas if the distance between centroids of
nearest-neighbor pixels was less than a maximum distance
threshold, and resulting urban clusters were paired with a
database of named large cities (at least 100 000 people) to
create a data set of 3646 global cities;32 as described below, we
analyzed 1274 of the 3646 cities. The data set also includes
year-2000 population for each urban cluster, total built-up
urban area, and a measure of the circularity of each city’s built-
up area.
The four urban form metrics considered here, and described

next, are circularity, contiguity, percent vegetation, and percent
impervious surfaces. Angel et al. calculated circularity via the
proximity index (hereinafter referred to as “circularity”), a
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measure of urban compactness (value range: 0−1; value for a
perfect circle: 1) quantifying the relative closeness of the entire
built-up area within a city to its geographic center.32 The
proximity index is the ratio of the average distance from all
points in an equal-area circle to its center (two-thirds of the
radius of the equal-area circle) and the average distance to the
centroid of each urban cluster from all built-up pixels in the
cluster.48 Assuming a monocentric city, a circular footprint
offers the shortest average distance to the city center and closer
proximity of people in the periphery and activities in the urban
core. A city exhibiting this type of compactness may indicate a
more efficient use of urban area, and may induce fewer and
shorter vehicle trips. In addition to the provided circularity
index, we derive a contiguity index (value range: 0−1),
calculated as the ratio of the largest contiguous polygon of
built-up area pixels to the total built-up area for a given city.
Large amounts of leapfrog or exurban development, and
polycentricism (particularly with satellite cities) would result in
a low contiguity index. This type of development could increase
the average distance between origins and destinations, as well as
create multiple destination centers that may not be centrally
located. Therefore, less contiguous cities may be less easily
served by public transit, and could induce more automobile
traffic and longer travel distances.
Figure 1 shows built-up urban area estimates for three of the

3646 cities, contrasting the MOD500 built-up estimates
employed in this analysis (shown left) with built-up estimates

from finer resolution (30 m) Landsat imagery (shown right)
employed in our prior work. This figure illustrates that the
MOD500 built-up area generally captures the geometric form
of the primary built-up area, yet the Landsat imagery clearly
captures roadways, small patches of urban discontinuity, and
small pockets of suburban and exurban developments that the
MOD500 data set cannot. The coarse features of the MOD500
data set are the result of its large pixel size (∼500 m), as
evidenced by better representation for the larger cities in Figure
1. The MOD500 also suffers from apparent generalization (i.e.,
the reduction in detail of mapping features) from converting
the built-up features to a Google Earth platform. Nevertheless,
the MOD500 is, to our knowledge, the largest collection of
built-up area estimates for a global database of cities, providing
information for ∼40× more cities than the Landsat data set
employed in our previous study (3636 cites [MOD500] versus
83 cities [Landsat]).45 One aspect of this trade-off is that the
interpretation of the urban form metrics may change when the
resolution of the underlying built-up area estimates change. For
example, the maximum distance threshold Angel et al. used to
cluster urban pixels in the MOD500 data set is a function of
total built-up area (eq 1):

= −D A649.21ln( ) 5234.6 (1)

where D is the distance threshold (units: meters) and A is the
cluster size (hectares). From this equation we determine that
cities with less than ∼50 km2 of total built-up area are only
comprised of a single cluster.32

Consequently, analyses here only include cities larger than 50
km2, where we are less concerned about the contiguity metric
being impacted by pixel size. This approach leaves 1303 cities
of the 3624 cities. An additional 29 cities were removed owing
to missing air pollution data, resulting in 1274 cities for this
analysis: ∼35% of cities comprising ∼72% of the total
population in the MOD500 database, yet still an order of
magnitude more cities than the higher resolution Landsat
database.
The circularity metric was calculated differently for the

Landsat versus the MOD500 cities. (The Landsat database
calculated the ratio of built-up area to total buildable area in a
circle circumscribing the main built-up area of the city.) There
is low correlation between metrics derived from the MOD500
and 30 m Landsat built-up area estimates (r = 0.35 and 0.31 for
circularity and contiguity, respectively) for the 63 common
cities in each data set, illustrating that the MOD500 and
Landsat based metrics capture different urban spatial character-
istics. Therefore, for questions considered here, direct
comparisons between analyses employing MOD500 versus
Landsat27 cannot be made. Figure 2 shows built-up urban area
and the urban form metrics for four similarly sized (∼200 km2)
cities from the database of the 1274 cities analyzed.
We also employ satellite-based estimates of impervious

surfaces49 and vegetative cover50 in order to quantify the
average percentage of built-up area occupied by impervious
surfaces and vegetative cover within each city. These data
provide continuous estimates of the percentage of impervious
surfaces and vegetative cover at 1 km and 500 m resolution,
respectively. For each city, we calculate the average percent
coverage for grid cells overlapping the built-up area. The
impervious surfaces data employs population and satellite-based
lights at night to estimate impervious surfaces.49 The
impervious surfaces data and underlying lights at night data
are associated with density (e.g., population, residential,

Figure 1. Urban extents for three cities (small, medium, and large),
illustrating built-up urban area estimates from the 500 m MODIS data
(left) employed here and the 30 m Landsat data (right) employed in
Bechle et al. 2011.27

Environmental Science & Technology Article

DOI: 10.1021/acs.est.7b01194
Environ. Sci. Technol. 2017, 51, 12707−12716

12709

http://dx.doi.org/10.1021/acs.est.7b01194


business) and economic activity.51 Increased impervious
surfaces estimates are also associated with increased land
surface temperature, a phenomenon known as the urban heat
island effect.52 Vegetative cover may capture several different
urban aspects including (1) fewer land uses with sources, (2)
vegetative attenuation of the heat island, and (3) suburban land
uses. For the cities in this study, impervious surface and
vegetative cover exhibit modest correlation (r = −0.20),
suggesting that these two metrics capture different aspects of
urban form.
We employ country-level gross domestic product (GDP) per

capita (hereinafter referred to as “income”) using a three-year
mean for the years corresponding to the air quality data (2000−
2002; reported in 2005 USD),53 to account for differences in
economic development. Finally, we include several meteoro-
logical metrics: (1) harmonic mean of dilution rate (product of
wind-speed and mixing height)54 to account for differences in
atmospheric dilution, (2) annual solar insolation55 to account
for differences in the chemical lifetime of NO2 (primarily
chemical loss of NO2 is to nitric acid, which is sensitive to

sunlight and temperature),56,57 and (3) the percent of days with
significant rainfall (≥0.1 mm)58 to account for potential
differences in wet deposition. Summary statistics for all
variables are in Supporting Information (SI) Table S1 of the
online supplement.
We create linear regression models for the logarithm of

arithmetic mean NO2 concentration in each city to determine
the dependence of urban NO2 concentration on the urban
characteristics described above. The population and income
metrics were found to be logarithmically distributed; we
therefore employ logarithm of population and logarithm of
income in our model as the population and income metrics in
our model. In addition to our core model, we create several
submodels, using the same variables as our full model, with
subsets of cities based on tertiles of income, city population,
and environmental performance (see below) in order to
explore how these factors may impact the effect of urban form
on urban NO2. We employ the GDP per capita metric from
above for income tertiles (cut points: $1,980; $22,000), and
urban population for city size tertiles (cut points: 289 000
people; 788 000 people). We employ the Yale 2008 Environ-
mental Performance Index (EPI)59 as a quantitative indicator of
environmental policies and outcomes60 (tertile cut points: 72.5;
81.0). The EPI is a country-level index based on 25
performance indicators whose value ranges from 39.5 (Angola)
to 95.5 (Switzerland), with increasing values associated with
better environmental performance. The 2008 EPI is the earliest
edition of the EPI, and based on data covering several years
(∼2000−2010).59 As a sensitivity analysis of our submodels, we
also explore models with interaction terms between the three
factors (log[income], log[population], EPI) and the urban
form metrics.
We employ Monte Carlo coefficient/p-value/sample-size

(CPS) charts as both a sensitivity analysis to explore the
strength of the predictors included in the core model, and to
aid in interpretation of subsample modeling results. Monte
Carlo CPS charts summarize coefficients and p-values for
submodels created from Monte Carlo random sampling at a
range of sample sizes.61 Here, we employ Monte Carlo random
sampling (500 iterations) for n = 100 to 1200 cities at intervals
of 100 cities, and report the CPS charts for all of the predictors
included in the core model.

■ RESULTS

Our core model, including all 1274 cities, captures 59% of the
variation in the dependent variable (logarithm of satellite-
derived NO2 concentration). This simple yet powerful model

Figure 2. Characteristic cities illustrating contiguity (urban patchiness)
and circularity based on 500 m MODIS built-up area (shown in black).
Bar charts illustrate contiguity and circularity indices (range: 0−1) for
each city.

Table 1. Linear Regression Model for Logarithm of Mean Urban NO2

parametera units β SE P > t β × IQR partial-R2

annual insolation W/m2 −1.9 × 10−02 7.4 × 10−04 <0.001 −1.09 0.34
log[income] log[Y2005 US$] 0.31 0.02 <0.001 1.02 0.45
% days of rain % −2.4 × 10−02 1.7 × 10−03 <0.001 −0.50 0.52
log[pop] Log[person] 0.67 0.06 <0.001 0.45 0.58
dilution rate m2/s −1.7 × 10−04 5.0 × 10−05 <0.001 −0.03 0.58
contiguity unitless (0−1) −0.48 0.15 0.001 −0.07 0.59
circularity unitless (0−1) −0.67 0.22 0.003 −0.09 0.59
% vegetation % −7.1 × 10−03 2.6 × 10−03 0.007 −0.06 0.59
% impervious % −2.4 × 10−03 1.8 × 10−03 0.19 −0.05 0.59
_constant log[ppb] −0.71 0.49 0.15

aVariables listed by order selected into a forward stepwise (p > 0.05) model.
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offers useful insights into the relationship between urban form
and air pollution, and offers a basis of comparison for submodel
explorations. Table 1 summarizes model parameters for this
core model. SI Table S2 shows pairwise correlations between
model parameters. We employ variance inflation factor as a test
of multicollinearity (VIF < 1.9 for all parameters). The
coefficient plots (shown as β × IQR) and p-value plots
shown in Figure 3 illustrate the strength of the predictors
included in the core model. As sample size increases, the
coefficients converge on the final model coefficient. Moreover,
for all significant predictors (all but impervious surfaces) the p-
value decreases with increasing sample size, indicating a clear
signal from these variables. The large number of cities needed
in the model for the urban form metrics to be statistically
significant (n > ∼1000) illustrates the utility of this large
database of cities, as well as the utility of high resolution built-
up area data sets that have indicated significant urban form
effects with smaller sample sizes.27,31

Of the urban characteristics (i.e., log[population] and urban
form metrics), log[population] had the largest effect (β × IQR
= 0.45) with higher population associated with worsened air
quality. Increased urban contiguity, circularity and vegetation
metrics are significantly (p < 0.008) associated with lower
urban NO2 concentrations. The impervious surfaces metric has
a nonsignificant effect (p = 0.19) on urban NO2. The
magnitude of the effect size of the three significant urban
form metrics are small relative to log[population] (β × IQR:
−0.06 to −0.09), however, their combined effect could be large.
For example, if results presented here are causal, a city with
circularity, contiguity and vegetation metrics at the 75th
percentile could, on average, accommodate approximately
twice the population of a city with these metrics at the 25th
percentile while maintaining similar air quality.
SI Tables S3−5 provide details for the income, city-size, and

EPI tertile submodels. Figure 4 summarizes standardized
coefficients for the urban form metrics for all of the submodels.
We use the Monte Carlo subsample simulations from the CPS
plot analyses to determine statistically significant changes in
standardized coefficients for the submodels (n = 391−434): the
blue shaded region in Figure 4 shows the fifth and 95th
percentile range in β × IQR from the coefficient CPS plots in
Figure 3 for a sample size of 400 (i.e., approximately one-third
of the overall sample size, because these analyses divide the data
set into tertiles). Figure 4 illustrates that contiguity may have a
larger effect size for small cities and cities in countries with high
environmental performance, and an attenuation of the
contiguity - urban NO2 relationship for large cities. Attenuation
of the circularity - urban NO2 relationship is exhibited for cities
in countries with high income or high environmental
performance. The impervious surfaces metric is sensitive to
country-level income: cities in low-income countries exhibit a
positive relationship between impervious surfaces and log-NO2
(p = 0.11), whereas cities in high-income countries exhibit a
significant negative relationship (p < 0.001). Aside from an
increase in the effect for small cities, vegetation appears mostly
unaffected by the factors considered here. Sensitivity models
with interaction terms are presented in SI Tables S6−9. The
effect modification from the interaction models strongly agree
with most of our significant submodel findings (p < 0.001 for
interaction terms), however, agreement is modest for the
attenuation of circularity with increasing income and increasing
EPI (p = 0.11 and 0.07 for income and EPI interaction terms,
respectively) and the effect modification for population on

Figure 3. Summary of β × IQR (left) and p-value (right) for each
variable based on Monte Carlo random sampling (500 iterations) for
indicated subsample size. Boxes indicate 25th and 75th percentile
values, lines indicate fifth and 95th percentile values, and bars indicates
median values. For p-value plots, horizontal red-line indicates p = 0.05
value. For all panels except the bottom panel (impervious surfaces),
the p-value decreases for larger sample sizes. Number in p-value plot
(e.g., “n = 100” in top row) is an estimate of the minimum sample size
for which the 95th percentile p-value is 0.05 or smaller.
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vegetation is the opposite direction of our submodel results (p
= 0.15). Additionally, the interaction models illustrate a small,
yet statistically significant, attenuation of vegetation with
increasing income (p = 0.001) and increasing EPI (p < 0.0001).
Meteorology and country-level income play an important

role in describing differences in urban NO2 concentrations
among cities; income, solar insolation, and precipitation
together describe 52% of the variation in urban NO2
concentration. Considering standardized coefficients, solar
insolation and income have comparable effect sizes (β × IQR
= −1.09 and 1.02 for insolation and log[income], respectively),
and more than twice the effect size as the next largest predictors
(β × IQR = −0.50 and 0.45 for precipitation and

log[population], respectively). Of the three meteorological
metrics, dilution rate has the smallest effect on concentrations
(β × IQR = −0.03).

■ DISCUSSION

We find that three of the four urban form metrics considered in
this study (contiguity, circularity and vegetation) have a
statistically significant (p < 0.008) negative association with
urban NO2 concentrations, illustrating the potential for urban
form to impact urban air pollution. The magnitude of the effect
size of the three significant urban form metrics (β × IQR:
−0.06 to −0.09) is similar to that of dilution, a consistent

Figure 4. Summary of urban form coefficients for subsample models by tertile of income (top), city population (middle), and environmental
performance index (bottom). Black symbols show β × IQR and lines indicate SE × IQR for the corresponding submodels, gray squares and lines
show β × IQR and SE × IQR for the full model. Blue dashed lines show the 5th and 95th percentile values for β × IQR based on Monte Carlo
random sampling at sample sizes approximating the tertiles (n = 400). Values outside of the blue shaded box are considered statistically significant
(i.e., outside the 90% confidence interval of the value for the base model, based on the sample size of the tertile).
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finding with previous work on this topic.42 Despite the small
effect size of these metrics, their combined effect could be large.
In other words, if we hypothetically consider the results in
Table 1 to be causal, a city that enhances their urban form may
see improvement in urban air quality, or the offset of worsening
air quality associated with population growth. For example, a
city with circularity, contiguity and vegetation metrics at the
75th percentile could, on average, accommodate approximately
twice the population of a city with these metrics at the 25th
percentile while maintaining similar air quality. These findings
illustrate the potential utility of urban form as part of a
comprehensive strategy for addressing urban air pollution.
Subsample Models. Our subsample models, exploring

changes in urban form metrics by income, city population size,
and environmental performance tertiles, provide insight into
factors that may alter the core urban form−urban NO2
relationships. For low-income countries, increasing impervious
surfaces is associated with worsened NO2 air pollution, possibly
indicating increased emissions from a higher level of developed
land (or more specifically, car-centric developed land) within
the built-up pixels defining a city. Impervious surfaces may also
be capturing within-country differences in economic activity,
and the resulting increase in emissions from those activities. On
the other hand, for high-income countries the findings are
seemingly counterintuitive: increasing impervious surfaces is
associated with reduced NO2 air pollution. One possible
explanation is that in high income countries, the impervious
surfaces metric is capturing differences in density (e.g.,
population, business), resulting in lower per capita VMT. As
a sensitivity analyses we include logarithm of net population
density (the total population divided by the total built-up area)
as an explanatory variable, however, the population density
coefficient is highly insignificant (p = 0.96) and does not
change the other explanatory variable coefficients. It is possible
that density characteristics not captured by net population
density could be at play here, however, it is unclear.
Interpretation of the impervious surfaces coefficient is
complicated by the fact that it is associated with urban heat
island effect, which could alter NO2 concentrations in myriad
ways (e.g., increased emissions from air conditioning usage,
more NOx as NO rather than NO2, higher levels of daytime
dilution owing to larger mixing area). Income also appears to
impact the effect size of the circularity and vegetation metrics
(cities in high-income countries exhibit an attenuation of the
circularity and vegetation coefficients). These findings support
further research on the differences in urban form - urban NO2
relationships for cities in high- and low-income countries.
The magnitude of the contiguity coefficient appears to

decrease with increasing city size: small cities exhibit a larger
negative relationship with urban NO2 compared to the full
model, whereas in large cities contiguity appears to have no
effect. A possible explanation for this finding is that, all else
equal, a more contiguous city may have higher per-area NOx
emissions even if per capita emissions decrease because the
emissions occur on a smaller footprint. In a larger city, this
could result in higher concentrations for some parts of the city
owing to (1) insufficient dilution relative to the increased local
emissions, or (2) longer NOx lifetime as a result of OH
suppression from more spatially focused NOx emissions. City
size also impacts the magnitude of the vegetation parameter,
with small cities exhibiting a larger vegetation coefficient. It is
unclear why this would be the case, but the effect may arise
from some convolution of vegetation’s role as a depositional

surface, and its role as a source of biogenic hydrocarbons that
change the chemical regime for NO2 oxidation. The fact that
contiguity and vegetation both have larger impacts on urban
NO2 for small cities is an important finding, given that more
than half of the global urban population live in smaller cities
(<500 000 people).1 The collective effect of the four urban
form metrics is greater for smaller cities (combined β × IQR =
−0.46, versus −0.22 for all cities), consistent with findings from
Larkin et al. for East Asia31 and further highlighting the
importance of well-planned development and urban growth for
smaller cities. This finding also highlights the need for further
understanding of urban form and air pollution relationships in
small urban areas; much of the current research has focused on
large urban areas and megacities.
The magnitude of the circularity coefficient decreases with

improved environmental performance, suggesting that circular-
ity effects on urban NO2 may be less important in countries
with stronger environmental policy and performance. On the
other hand, the magnitude of the contiguity coefficient is higher
in countries with high environmental performance. These
findings illustrate that environmental policy alters the relation-
ship between urban form and air pollution, and suggests that
the efficacy of urban form strategies may be dependent on
existing environmental policies.60

Meteorology. Meteorological variables explain a large
portion of the variability in urban NO2 concentrations between
cities. The effect size for precipitation is on par with that of
population (β × IQR = −0.50 versus 0.45 for precipitation and
log[population], respectively). Wet deposition is not a major
sink for NO2, so the large effect for precipitation seen here is
somewhat surprising, however, it is consistent with published
findings for urban NO2 in East Asia.31 Relative to solar
insolation and precipitation, the effect size for dilution rate was
small, possibly owing to the relatively short chemical lifetime of
NO2 in the atmosphere (daytime NOx e-folding lifetimes
estimated from airplane and satellite measurements for urban
locations are ∼4−6 h62,63). It is also possible that the solar
insolation and precipitation variables are in fact capturing other,
correlating, aspects of meteorologically driven urban NO2
variation; excluding them from the model results in a more
than doubling of the dilution rate effect size (β × IQR =
−0.08).

Limitations of the Study. A major limitation of our study
is that it is cross-sectional, owing to the lack of built-up area
estimates over time. That aspect hinders our ability to draw
conclusions regarding causality. Our analysis is also limited by
the characteristics of the data sets employed and their data
quality. For example, the built-up area estimates include only
cities with at least 100 000 people, yet many people live in (and
much of the future growth of cities will be in) urban areas with
fewer than 100 000 people. Similarly, our analysis excludes
cities smaller than 50 km2 because of the coarseness of the
built-up area estimates and our need to avoid issues with
calculating the contiguity index (see the Materials and Methods
section). We cannot confidently extend claims from this
analysis to cities below those thresholds (<100 000 people or
50 km2). Another potential limitation of our analysis is our
measure of urban air pollution: satellite-based NO2 concen-
tration. Measurements occur in the mid- to late morning,
during satellite overpass, when NO2 concentrations may be
lower than 24-h average concentrations. We therefore may be
underestimating concentrations for cities with large diurnal
patterns that cannot be captured via this type of measurement.
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Another limitation of this study is that our air pollution metric
employs ambient concentration rather than exposure. Urban
form changes such as increased density may reduce net
emissions and average concentrations, but exposures may be
higher in dense neighborhoods and cities because sources and
people are closer together.64 For example, Schweitzer & Zhou
employed a composite measure of regional compactness for
U.S. Metropolitan Statistical Areas (i.e., Smart Growth
America’s sprawl index) and found that compact regions had
lower concentrations of ozone, yet higher levels of exposure to
ozone and fine particles (two important air pollutants).26 In
contrast, Clark et al. employed several regional urban form
indicators for U.S. Urbanized Areas and found that while
density was associated with higher ozone and fine particle
exposure, another urban form metric (population-centrality)
was associated with lower exposures.28 Given the resolution of
our air pollution data, we chose not to consider population
exposure. It is potentially possible that increasing contiguity
and compactness could worsen exposure, on average, despite
our findings indicating improved ambient concentrations.
Implications of Findings. Overall, our findings demon-

strate that urban form has a statistically significant relationship
with urban NO2 concentrations. Our cross-sectional inves-
tigation highlights the need for further study of urban design
and planning as a potential strategy to address air quality. While
meteorology (aside from dilution rate), country-level income,
and city population size all had a larger effect on urban NO2
than the urban form metrics, the combined impact of the three
statistically significant metrics (contiguity, circularity, and
vegetation) could have large consequences for concentrations.
While these findings are generally consistent with our prior
work, in this study we find that certain factors may alter the
relationship between urban form and air pollution. For
example, we find that urban form may have a greater impact
on urban NO2 for small cities than for large cities. This is an
important finding given that more than half of the world’s
urban population lives in small urban areas, and because
changes to urban form may be easier for small urban areas
(owing to less existing infrastructure and the potential for
greater relative impact from future growth). We also find that
direction of effect for impervious surfaces differs between cities
in high- and low-income countries, suggesting that urban form
strategies may differ at various stages of growth and
development.
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