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ABSTRACT: Environmental consequences of electricity
generation are often determined using average emission
factors. However, as different interventions are incrementally
pursued in electricity systems, the resulting marginal change in
emissions may differ from what one would predict based on
system-average conditions. Here, we estimate average emission
factors and marginal emission factors for CO2, SO2, and NOx
from fossil and nonfossil generators in the Midcontinent
Independent System Operator (MISO) region during years
2007−2016. We analyze multiple spatial scales (all MISO;
each of the 11 MISO states; each utility; each generator) and
use MISO data to characterize differences between the two
emission factors (average; marginal). We also explore temporal
trends in emissions factors by hour, day, month, and year, as well as the differences that arise from including only fossil generators
versus total generation. We find, for example, that marginal emission factors are generally higher during late-night and early
morning compared to afternoons. Overall, in MISO, average emission factors are generally higher than marginal estimates
(typical difference: ∼20%). This means that the true environmental benefit of an energy efficiency program may be ∼20% smaller
than anticipated if one were to use average emissions factors. Our analysis can usefully be extended to other regions to support
effective near-term technical, policy and investment decisions based on marginal rather than only average emission factors.

1. INTRODUCTION

In the United States, electricity generation is a major
contributor to air pollution, with important consequences for
health, the environment, and climate. The U.S. Environmental
Protection Agency (EPA) estimates that in 2014, electricity
generating units (EGUs) contributed 37% of CO2, 67% of SO2,
13% of NOx, and 3% of primary PM2.5 nation-wide emissions.

1,2

SOx and NOx emissions from EGUs contribute to secondary
PM2.5 formation, adding to the health and environmental
consequences of EGUs. In 2014, coal-fired EGUs alone
generated ∼39% of the electricity in the U.S., and contributed
to 77%, 97%, 86%, and 81%, respectively, of CO2, SO2, NOx,
and PM2.5 total electricity emissions.1,3 Those pollutants
contribute to acid rain, climate change, regional haze, crop
damage, and health impacts from ambient air pollution.4

There are multiple approaches to estimating power plant
emissions.5 Different methods and data sources can generate
substantially different estimatesan important consideration
for environmental policy. A simple and straightforward
approach is to calculate average emissions factors (EFs) for a
region and time frame as the ratio between total emissions and
total electricity generated. Another approach is to model

marginal EFs based on bid-dispatch simulations of electricity
generators;6−11 such models use costs and engineering
constraints to predict which EGU would increase/decrease
output if the total energy demand at that time were marginally
higher/lower. The degree of sophistication of these models
varies. Models such as Integrated Planning Model (IPM),
PROMOD, Electric Generation Expansion Analysis System
(EGEAS) and PLEXOS are proprietary, complex, often provide
little flexibility, and are time-consuming to run; they require
substantial input data, and like any model depend on
assumptions and simplifications necessary to simulate a
complex system.12−16 Other approaches include the Fuel
Type Assumed (FTA) method, Locational Marginal Price
(LMP) based approaches, and machine learning algo-
rithms.17−20 Here, we use an empirical approach for estimating
average EF (AEF) and average marginal EF (AMEF). Our
approach, which was described in Siler-Evans et al. (2012),21 is
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distinct in using data (historical observations) rather than
models to estimate marginal EFs. The approach of using
historical data has been applied in other studies as well.22−25

EFs calculated using historical data are most appropriate for
short to medium term analysis in electricity system, and are less
appropriate for long-term predictions for which fundamental
aspects of the electricity system (e.g., fuel mix; infrastructure)
may shift. Several applications of marginal emissions and
impact factors have been used to determine the emissions
saving and damage reductions associated with interventions in
the electricity sector, such as solar and wind,26,27 energy
efficient buildings,28,29 storage,30 and vehicle charging,31,32 and
wastewater treatment from coal power plants.33

While several studies have investigated average and marginal
EF,7−9,19,21,34,35 only one prior study has implemented the
empirical approach employed here: Siler-Evans et al. (2012)21

calculated AEF and AMEFs for the U.S. electricity system and
for the eight North American Electric Reliability Corporation
(NERC) regions. Those authors recommend that the method
be applied to Regional Transmission Organizations (RTOs)
rather than NERC regions, since RTOs provide a better
representation of electricity dispatch; our approach follows that
suggestion. We build on the Siler-Evans et al. (2012)21

research, extending it in several ways: (1) We focus on an
RTO rather than NERC regions. RTOs use bid-based markets
to determine economic dispatch, and so are an appropriate
scale for our analyses. (2) Siler-Evans et al. (2012)21 consider
fossil generation as proxy for total generation. That aspect is a
limitation of their approach; with increasing amounts of
renewables in the grid, renewables may be at the margin for
some hours or levels of demand. We instead use total MISO
generation (rather than fossil-only generation) when calculating
EFs. (3) By focusing on a single RTO, we are able to assess
with greater detail EFs’s variability in time and space, thereby
lending new insights into the environmental impacts of
electricity generation. (4) We explore how EFs may vary by
state, corporation, fuel-type, and EGU.
Average versus marginal EFs may differ for many reasons. In

general, at a given time, the mix of fuels for the EGUs at the
marginthat is, the last few units that will meet demandmay
differ from the average electricity mix in that hour.
Furthermore, for a single EGU, AEF, and AMEF may differ
because the boiler is ramping up or down, or because the
efficiency of emission control technologies may depend on the
EGU’s power output.
Our results for MISO, years 2007−2013, reveal that AMEFs

are often lower than the respective AEFs. The consequences of
this finding for policy includes, for example, that the true
emission reduction attributable to an energy efficiency program
may be lower than the one a decision maker would assume
using AEFs. Similarly, this result would indicate that an
efficiency program may be less cost-effective than anticipated
(since cost-effectiveness metrics are often computed as the ratio
between the cost of the program and the emissions saved).

2. MATERIALS AND METHODS
Here, we employ an empirical approach for estimating AEF and
AMEF for the Midcontinent Independent System Operator
(MISO). MISO is one of the seven U.S. RTOs. MISO includes
15 U.S. states, and serves ∼42 million people (13% of the U.S.
population). In 2015, MISO included 176 600 MW of electric
capacity, generating ∼667 800 GWh (∼16% of the U.S. total
electricity generation). In the Supporting Information (SI), we

provide the generation statistics for MISO for years 2007
through 2016 (SI Figure S1).
The geography of MISO changed in 2014: prior to 2014,

MISO constituted 11 upper Midwest states and was called
“Midwest ISO”. In 2014, a south region (four additional states;
see maps in SI Figure S2) was integrated to form
“Midcontinent ISO”. For geographic consistency, most results
presented here are only for years 2007−2013; that approach
provides an assessment that includes well-defined and
consistent regional boundaries. Results for years 2014−2016,
which include EGUs in the new regional boundaries, are in
section 1 of the SI (Figure S3 and Table S1).
We use emission data from the Continuous Emissions

Monitoring System (CEMS) database from the U.S. EPA.36

CEMS provides hourly emissions of CO2, SO2, and NOx, and
energy generation for generators with nameplate capacity of 25
MW or larger. We complement this information with MISO
databases that provide hourly imports, exports, total actual load,
and wind generation.37 Net imports account for ∼6% of the
total demand in MISO. The share for “other” generation
sources (nuclear, hydroelectricity, and other renewable
generation) is calculated by subtracting fossil and wind
generation from total generation.
We calculate two EFs for a given time period or geography:

AEFs and AMEFs. AEFs are the summation of hourly
emissions (ET) divided by the summation of hourly generation
(GT) for that time period and geography.
Marginal EFs vary by time and geography; AMEF represents

the average of the marginal EF for a certain time period and
over some spatial extent. AMEF are computed by calculating
the hourly change in emissions (ΔE) and change in generation
(ΔG), for each time step. Then, a linear regression is fitted to
identify the relationship between those two variables (the
change in emissions and in generation). The slope of the linear
regression (βo) between those two values is the AMEF.
In addition to estimating AEF and AMEF for MISO during

2007−2016, we also investigate spatial and temporal variability
in EFs at multiple temporal and spatial scales. We do so for the
following scenarios: the 11 Midwest states in MISO; all
corporations owning one or more generators in a case-study
state (Minnesota) and, as a separate analysis, in the entire
MISO (in SI); and, at the level of individual EGUs. We also
estimate AEFs and AMEFs by fuel type, for coal and for natural
gas, to understand the average marginal response of fuel-
specific generators to changes in system demand. In general, we
employ total generation when estimating AEFs and AMEFs.
One exception, caused by limited data availability, is that state
and utility-level EFs include fossil-only generation as a proxy for
total generation. Net imports are subtracted from MISO total
load to obtain net generation. Electricity exchanges and trading
at the state and utility scales are not considered here because
they are tracked and available only at the RTO level. Fuel
specific AMEFs are calculated by aggregating emissions by fuel
type at each time step and performing regression between
change in fuel-specific emissions and change in total generation.
For each EGU bidding in the MISO grid, we calculate AMEFs
via regression between unit-specific hourly emissions and gross
generation output. Coal and natural gas EGUs constitute most
of the units that bid in MISO and hence are a focus of our
analysis.
We also explore trends in AEFs and AMEFs in the MISO

region as a function of total system demand. To do so, we bin
the data from years 2007 through 2013 into 20 demand level
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bins. Each bin contains 5% of the data occurring at lowest to
highest system demand hours. Separate regressions of ΔFuel
Generation vs ΔTotal Generation are then performed for each
bin. We also analyze trends in AEFs and AMEFs temporally by
time-of-day, day-of-week, month and year (for years 2007 to
2016). To assess the differences between AEF and AMEF, we
calculate their relative difference as

= − ×⎜ ⎟
⎛
⎝

⎞
⎠%difference

AMEF AEF
AEF

100

3. RESULTS

3.1. Comparison of AEF and AMEFs. Emissions
Estimates for MISO. Figure 1 presents data for years 2007−
2013. Each data-point is an hourly change in MISO total
pollutant emissions and power generation. The slope of the
best-fit line is the AMEF. Figure 1 also displays the median
data-point (red icon), the IQR ellipse (centered at the median
data-point, displaying 25th and 75th percentiles parallel and
perpendicular to the best-fit line; yellow ellipse), and the P10−
P90 ellipse (centered at the median data-point, displaying 10th
and 90th percentiles parallel and perpendicular to the best-fit
line; dashed line). As expected, for data in Figure 1, ∼25% of
the data-points are inside the IQR ellipse, ∼60% are inside the
P10−P90 ellipse.
Table 1 summarizes the results displayed in Figure 1. SI

Figure S3 and Table S1 provides the results for years 2014−
2016 (i.e., after the change in geography). Overall, and among
pollutants, we find that AMEFs are 17%−22% lower than the

respective AEF. This general pattern holds across pollutants
and years (see SI Table S2).
For comparison, we also computed these estimates when

including only fossil generation (which was the approach taken
in Siler-Evans et al. (2012)21). When doing so, we find that the
differences between EFs remain consistent (AMEFs 15%−19%
lower than the respective AEF), but the AEFs are ∼22% greater
and AMEFs are ∼27% greater than their values calculated using
change in total generation.
We also estimate AEFs and AMEFs by fuel type, which we

report in the SI, Tables S3, S4, and S5. We find that relative to
other fuels, the AMEFs from coal-fired generators are generally
closer to emission factors for entire MISO region. This result is
likely because the average share of marginal generation from
the coal fleet is greater than the natural gas fleet (∼57% coal vs
∼21% natural gas). For emissions from coal generators only,
the AMEF is 28% [CO2], 18% [SO2], and 27% [NOx] lower
than AEF. For natural gas generators only, the AMEF is 274%
[CO2], 78% [SO2], and 182% [NOx] higher than AEF.

State Level Estimates. State Implementation Plans (SIPs)
often require an accurate metric to assess emission benefits
from different energy efficiency strategies. We have calculated
AEF and AMEF for the state boundaries within MISO, as
shown in Figure 2. For this portion of the analysis, we rely on
total fossil generation when computing the emissions factors
because there is no total generation data by state at the hourly
level. For each state, this analysis considers only emissions and
generation occurring within that state. We find that in most
cases, AMEFs are lower than AEFs (which is consistent with
results given above). Differences between AEF and AMEF are
larger for states that have a large portion of their generation
provided by natural gas (see SI Figure S4); not surprisingly,
natural gas tends to be more on the margin in those states.
Correlations among CO2 AMEF, SO2 AMEF, and NOx AMEF
are shown in SI Figure S5.

Utility Level Estimates. We compute separate EFs for
utilities that operate in MISO. At the utility scale, AEFs and
AMEFs are important as they may be used to inform utilities’
strategies to reduce their emissions (for example, on decisions

Figure 1. Linear regression for hourly changes in power generation and pollutant emissions, for Midcontinent ISO, years 2007 to 2013. Each dot
represents a 1 h difference. We also show the median value (red icon), the interquartile ellipse (yellow) and P10−P90 ellipse (dashed line), the best-
fit line (black line), and 95% confidence intervals on the best-fit line (dashed blue lines, nearly indistinguishable from the best-fit line).

Table 1. Comparison between AEF and AMEF Estimates for
the MISO Region Using Data from 2007 to 2013

pollutant AEF (kg/MWh) AMEF (kg/MWh) EFs % Difference

CO2 739 597 −19%
SO2 1.97 1.63 −17%
NOx 0.727 0.567 −22%
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of how to allocate emission allowances under cap and trade
programs, or for monitoring and evaluation of climate
mitigation or other emission reduction programs). Here, as a
case-study, we calculate AEF and AMEF for utilities operating
generators in Minnesota in year 2012. Differences between
AEF and AMEFs for all utilities bidding in MISO in the year
2012 are presented in SI Figure S6. Minnesota’s emission
reduction goals include a 40% reduction in CO2 emission rate;
we use year 2012 as an illustrative example given that it was the
baseline year for U.S. EPA’s former Clean Power Plan rule.
Here too, owing to limitations in data availability, we employ
the approach from Siler-Evans et al. (2012), and use total fossil
generation instead of total generation. In Figure 3 we provide
the resulting estimates for each utility operating generators in
Minnesota. In this figure, the Minnesota Municipal Power
Agency is atypical in that it has slightly negative AMEF for
NOx. It has the only must-run combined cycle natural gas unit
with a large nameplate capacity (334.5 MW) and with installed
NOx control equipment. Nonlinear emission changes attribut-
able to shifting usage of NOx control equipment could explain
the negative AMEF for NOx.
Generator Level Analysis. We calculate AEF and AMEF for

each generator bidding in MISO during years 2007 to 2013,
which are shown in Figure 4. Over this time period, on average,
273 natural gas generators and 219 coal generators bid into
MISO each year. In most cases, we find (consistent with results
given above,) that AMEFs are smaller than AEFs: median
differences between AEFs and AMEFs for coal are −4.9% for
CO2, −0.1% for SO2, and −3.3% for NOx; for natural gas,
median differences are −6.3% for CO2, −5.5% for SO2 and
−10.0% for NOx. The AMEF-AEF percent difference is less

than −20% (i.e., is more-negative than −20%) for CO2 for 5%
of coal generators and 6% of natural gas generators, for SO2 for
7% (coal) and 10% (natural gas) generators, and for NOx for
27% (coal) and 29% (natural gas) generators. Those results
emphasize that there can be noteworthy differences between
AEF and AMEF estimates when applied at the generator level.
On average, we find that AMEF-AEF differences are larger

for SO2 and NOx than for CO2 and are larger for coal than for
natural gas. This result may reflect the nature of SO2 and NOx
emission control equipment. Further analysis (see SI section 4)
reveals that for coal generators, the AEF and AMEF difference
for CO2 is larger for smaller generators than for larger
generators (SI Figures S11 and S13). However, the reverse
holds for natural gas (SI Figures S12 and S14). This
observation likely reflects generator characteristics such as
heat rate, capacity factor and age (SI Figure S15). An
explanation for the coal units could be that old smaller (i.e.,
low capacity factor) units run at higher heat rates compared to
their design heat rates, whereas new larger units (high capacity
factor) typically run at heat rates at or below their design heat
rates. As generators age, their heat rates degrade and the smaller
units tend to cycle and follow load more. Hence, coal units with
low capacity factors have higher AEF, and the larger difference
between metrics. Additionally, EFs seem to be inversely
correlated with share of electricity (see SI Figures S16 and
S17), suggesting that share of electricity is greater for lower EF
units than for higher EF units.

3.2. AEFs and AMEFs by System Demand. In Figure 5
(A and B), we show the share of average and average marginal
fuel source with respect to total generation in MISO. Coal is
the dominant marginal fuel at low demand hours; natural gas is

Figure 2. AEF and AMEF by state for CO2, SO2 and NOx for years 2007−2013. The percentages reported show the relative difference between AEF
and AMEF (positive values mean AMEF > AEF). States are displayed from highest to lowest electricity generation share of MISO’s total generation.
The electricity generation share for each state is shown along the x-axis for the CO2 plot. In combination, fossil generation from these states
accounted for 82% of MISO total generation.
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the dominant marginal fuel at high demand hours. The share of
other fossil fuels to marginal generation is minor. Nuclear is
generally not on the margin (which is consistent with output
being ∼ constant and/or with changes in output being
relatively uncorrelated with changes in demand). The share
of generation from wind is greater during low demand hours
(since average wind speeds in the Midwest are higher at night
than during the day) than high demand hours, and the marginal
generation from wind is negative (i.e., on average, wind
generation decreases in hours when system total generation
increases) during low demand hours. Two possible reasons for

negative marginal generation couldbe (1) load curtailment or
(2) a decrease in generation because of less wind. We do not
have hourly curtailment data needed to rigorously investigate
the reason behind negative marginal generation. However,
curtailment appears not to be a large issue for MISO: a U.S.
Department of Energy report38 estimates wind curtailment in
MISO at <6% of potential wind energy generation. Curtailment
was a larger issue for some other grids, notably the ERCOT
grid, which experienced >15% curtailment in 2009 (but steps
taken to address the issue reduced wind curtailment, to only 1%
in 2015). Recent MISO programs have strived to make wind
dispatchable like other fuels via, e.g., the Dispatchable
Intermittent Resources program.39,40

Parts C and D of Figure 5 shows how AEF and AMEFs for
CO2, SO2 and NOx vary with MISO total generation. NOx

AMEF is relatively constant across demand. SI Figure S18
shows similar plot for year 2008 (wind data for year 2007 is not
available) and 2013 for comparison; there is not much change
in marginal generation from coal over the course of 6 years, and
average share of wind has increased but its contribution to
marginal load decreased substantially in the year 2013.

3.3. Temporal Analysis. We explore variation of AMEFs
(and AEF; SI Figure S19) by time of day, days of week, month
and year (Figure 6). AMEF are higher-than-average during late-
night and early morning hours when electricity demand is lower
and coal is more often on the margin: AMEF is about 73%
[CO2], 125% [SO2], and 55% [NOx] higher at midnight
compared to noon. The AMEFs are higher on the weekends
compared to weekdays. AMEFs are highest in spring and fall,

Figure 3. AEFs and AMEFs for utilities operating EGUs in Minnesota in 2012 that have a generation share >1%. The percentages inside the figure
represent the relative difference between AEF and AMEF (positive values indicate AMEF > AEF). X-axis percentages (e.g., 58% for Xcel Energy)
indicate percentage generation share of Minnesota’s total fossil generation; utilities are listed in order of that percentage.

Figure 4. Boxplot showing distribution of EF differences among coal
units (n = 219, average per year, 2007−2013) and natural gas units (n
= 273 on average). Mean value is shown as green icon.
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when demand is low and coal is more often on the margin.
Time-of-day trends are more pronounced in summer (SI Figure
S20). Fuel-specific AEF and AMEFs by time-of-day are in SI
Figure S21 and SI Table S6. From 2007 through 2013, AMEF
for SO2 decreased by 41%; changes were smaller for NOx (26%
decrease) and CO2 (9% increase). From 2014 to 2016, AMEF
for SO2 decreased by 40%, NOx decreased by 6% and CO2

increased by 3%. Reduction in SO2 and NOx can be attributed
in part to U.S. EPA regulations to reduce air pollution from the

electricity sector. AEFs do not show pronounced variations by
time of day, day of week and months (SI Figure S19). As seen
in Figure 6, average MISO AMEFs were, for SO2, lower after
2013 than before 2013; for CO2, AMEFs were slightly higher
after 2013 than before; for NOx, they were mostly unchanged.

4. DISCUSSION
We investigated differences between AEF and AMEFs at
different spatial and temporal scales for MISO. In general, AEFs

Figure 5. (A) Average generation by fuel. (B) Average marginal generation by fuel. (C) AEFs as a function of total generation. (D) AMEFs as a
function of total generation. (E) Kernel density distribution for total generation. All results are for MISO, for all data-points during years 2007−2013.

Figure 6. Time of day, days of week, and monthly trends in AMEFs for years 2007 through 2013. Yearly trends shown here for 2007 through 2016.
The discontinuity in the yearly plot is to highlight the change of MISO geography after 2013.
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tend to be larger than AMEFs, and thus may overestimate
emission impacts from interventions in the power sector,
relative to using AMEFs.
The deployment of renewable energy sources such as wind

and solar will help reduce emissions by displacing energy from
fossil-fired generators. However, if a decision-maker uses AEF
to understand the current contribution of renewables or other
interventions in the electricity system, she will likely over-
estimate the emission benefits that are derived from such
interventions. As noted above, for MISO, if emission-reduction
benefits (e.g., from wind or solar generation, or from energy
efficiency programs) are calculated using AEFs, results here
suggest that the benefits are on average overestimated by 19%
for CO2, 17% for SO2 and 22% for NOx. Those values vary by
time-of-day, fuel, company, and state. Results presented here
could help energy efficiency programs become more cost-
effective, for example, by consideration of how AMEF varies in
time and space.
We show that AMEFs are higher during early morning and

late evening hours, times of day when electricity demand is
usually low and, historically for the Midwest, when wind energy
is abundant. Further harnessing of the wind potential during
these hours could provide substantial emission reductions and
is of great importance for strategies such as Active Power
Controls (APC)41 for efficiently harnessing wind energy during
those times. Further, following Siler-Evans et al. (2012),21 we
calculated the daytime (8 am to 5 pm) and nighttime (7 pm to
7 am) AMEFs and compared them to system AMEF and AEF;
we find that AEFs overestimate AMEFs by ∼35% during
daytime and by ∼20% during nighttime (SI Table S7). For
AMEF, differences between nighttime-average and daytime-
average are ∼14%.
This paper advances current understanding in a few key

ways. We show that estimating recent AMEFs can be done
using data rather than models. Siler-Evans et al. (2012)21 and
Graff Zivin et al. (2014)24 looked at the temporal and spatial
differences between AEFs and AMEFs for NERC regions. We
adopted Siler-Evans et al. (2012)’s recommendation of focusing
on RTOs, and in doing so uncovered important differences
between AEF and AMEFs by time and geography (by state,
corporation, and individual EGUs). In most cases, our analyses
were based on total generation rather than using fossil
generation as a proxy for total generation (exceptions include
state and utility analyses, for which data limitations forced us to
use fossil generation as a proxy for total generation). Electricity
trading at the state and utility level could impact state and
utility emission factor estimates,42−44 but is not explicitly
incorporated here.
Multiple methods exist for estimating AMEFs. Our approach

has the advantage of being based on empirical data rather than
models. On the other hand, that means it may be inappropriate
to use findings here unmodified if considering major shifts in
the electricity infrastructure. Since results presented here are
based on historical data, they likely would not be directly
applicable for predicting long-term changes in the electricity
grid.
Coal is frequently the marginal fuel source, especially during

low-demand hours; it is not merely a base-load fuel that sits
apart from marginal generation. In MISO, coal generators
operate on margin and follow the load profile. In the future, if
MISO continues to shift away from coal, that aspect could
change.
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