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A B S T R A C T

Switchgrass is a promising bioenergy feedstock, but industrial-scale production may lead to negative environ-
mental effects. This study considers one such potential consequence: the life cycle monetized damages to human
health from air pollution. We estimate increases in mortality from long-term exposure to fine particulate matter
(PM2.5), which is emitted directly (“primary PM2.5”) and forms in the atmosphere (“secondary PM2.5”) from
precursors of nitrogen oxides (NOx), sulfur oxides (SOx), ammonia (NH3), and volatile organic compounds
(VOCs). Changes in atmospheric concentrations of PM2.5 (primary + secondary) from on-site production and
supporting supply chain activities are considered at 2694 locations (counties in the Central and Eastern US), for
two biomass yields (9 and 20 Mg ha−1), three nitrogen fertilizer rates (50, 100, and 150 kg ha−1), and two
nitrogen fertilizer types (urea and urea ammonium nitrate). Results indicate that on-site processes dominate life-
cycle emissions of NH3, NOx, primary PM2.5, and VOCs, whereas SOx is primarily emitted in upstream supply
chain processes. Total air quality impacts of switchgrass production, which are dominated by NH3 emissions
from fertilizer application, range widely depending on location, from 2 to 553 $ Mg−1 (mean: 45) of dry
switchgrass at a biomass yield of 20 Mg ha−1 and fertilizer application of 100 kg ha−1 N applied as urea.
Switching to urea ammonium nitrate solution lowers damages to 2 to 329 $ Mg−1 (mean: 28). This work points
to human health damage from air pollution as a potentially large social cost from switchgrass production and
suggests means of mitigating that impact via strategic geographical deployment and management. Furthermore,
by distinguishing the origin of atmospheric emissions, this paper advances the current emerging literature on
ecosystem services and disservices from agricultural and bioenergy systems.

1. Introduction

Bioenergy is increasingly being considered as a means of enhancing
access to clean energy and ensuring energy security, which are funda-
mental constituents of human wellbeing [1]. Bioenergy feedstock pro-
duction can also drive ecosystem change, affecting human wellbeing by
altering the delivery of ecosystem services from the converted land-
scapes [2]. At the same time, bioenergy production and use can affect
human health [3], another key constituent of human wellbeing [1]. A
major concern for human health is mortality arising from long-term
exposure to fine particulate matter (“PM2.5”, particles with a dia-
meter ≤ 2.5 μm) [4]. PM2.5 can be emitted directly as “primary” PM2.5

or can form in the atmosphere as “secondary” PM2.5 through chemical
reactions of other pollutants (“precursors”), chiefly ammonia (NH3),

sulfur oxides (SOx), nitrogen oxides (NOx), and volatile organic com-
pounds (VOCs). Overall, the air quality effects of agriculture in the US
negatively impact human health. For example, in the US, the agri-
cultural sector contributes around half of the surface-level mass of an-
thropogenic PM2.5 in the atmosphere [5], with agricultural sources of
outdoor air pollution in the US estimated to have been responsible for
around 16,000 premature deaths in 2010 [6].

In the US, the dominant prospective lignocellulosic feedstock for
bioenergy is the perennial herbaceous crop, switchgrass (Panicum vir-
gatum). It has many attractive attributes concerning feasibility; e.g.,
high yield [7] [8], long stand life (∼10 years [9]), and harvestable
using conventional techniques [10]. Furthermore, owing to low agri-
cultural inputs and perenniality, switchgrass has the potential to pro-
vide other valuable ecosystems services such as soil erosion control
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[11], carbon sequestration [12] [13], habitat provision for biodiversity
[14] [15] [16] [17], and reduction of water pollution [11]. Still,
switchgrass production, and potentially the production of any bioe-
nergy feedstock, can affect air quality, from both biogenic [18] [19]
[20] and anthropogenic emissions [21] [22] [23].

The aim of this study is to evaluate the potential air quality effects of
switchgrass production in the US through an ecosystem services fra-
mework. Some previous research has investigated the effects of
switchgrass production on air quality, but much of that work either has
not been carried to the end point of estimating impacts on human
health and wellbeing [21] [24], has not been at a sufficiently high re-
solution to demonstrate potential impacts of geographic variability in
production [22], or has not included biogenic emissions alongside an-
thropogenic emissions [21]. Within an ecosystem services framework,
the emissions considered in this study entail a trade-off. While these
emissions are the outcome of acquiring a provisioning ecosystem ser-
vice (i.e., switchgrass feedstock) that enhances human wellbeing
through energy security and access [1], they can negatively affect an-
other constituent of human wellbeing, namely health. Some authors
refer to such processes as “ecosystem disservices” [25] [26] [27].

We first describe potential yield, fertilization, and location scenarios
for growing switchgrass (Section 2.1), ultimately describing impacts for
2694 locations (counties in the Central and Eastern US), 2 yields, 3
fertilization rates, and 2 fertilizer types. We examine such a range of
production locations and practices because there is considerable un-
certainty as to where and how switchgrass might be grown in the US
[28]. Only ∼11 Gg of switchgrass were produced in 2012 (for com-
parison, corn grain: ∼260 Tg y−1) [29]. Next, we construct a life cycle
inventory of emissions of PM2.5 and its precursors for switchgrass
production, normalized to 1 Mg (dry basis) of switchgrass (Section 2.2).
We then model the resulting annual average changes in concentrations
of total PM2.5, both primary and secondary, and estimate the sub-
sequent monetized mortality impacts for each of these scenarios (Sec-
tion 2.3). Section 3 outlines the main results of the life cycle assessment
(LCA) study for the US. Section 4 puts these findings into perspective,
comparing them with other studies and discussing them within the
context of ecosystem services.

2. Methodology

2.1. Growing scenarios

The air quality impacts of switchgrass on human health depend on
many parameters, including the following:

• Yields can vary widely in a given location owing to genotype or
environmental conditions. Genetic engineering, cross-breeding, and
improved management practices might increase future yields [30],
which, all else being equal, might reduce the negative air quality
impacts of biomass production.

• Higher N fertilization results in higher emissions, both from ferti-
lizer production and use. Emissions also depend upon fertilizer type
and timing of application, among other factors. Precision agriculture
or high N use efficiency cultivars could reduce emissions [31].

• All else being equal, health impacts are generally greater if emis-
sions occur near a densely populated area [32].

Because of the importance and uncertainty of these variables, we
consider multiple scenarios for each. A “baseline scenario” was chosen,
at a yield of 20 Mg ha−1 switchgrass, and 100 kg ha−1 N applied as
urea (see 2.1.3). “Low” and “high” scenarios for fertilization rate were
chosen at 50 kg ha−1 and 150 kg ha−1 N respectively. Application of N
in the form of urea ammonium nitrate (UAN) was also considered. A
“low yield” scenario was chosen at 9 Mg ha−1 switchgrass.

This paper considers scenarios for all combinations of the chosen
biomass yield, N fertilizer rate, and N fertilizer type. These variables are

strongly coupled [33] [34] [35], and work has been done to model how
they relate to each other [33] [36] [37]. We examine them across a
wide range of locations in the Central and Eastern US.

2.1.1. Biomass yield
“Low” and “high” yield scenarios are taken as 9 Mg ha−1 and

20 Mg ha−1 dry switchgrass, respectively. This choice of yields was
informed by the following studies. Wullschleger et al. [33] compiled
1190 yield observations from 39 US field trials, concluding that the
mean (± standard deviation) yield was 8.7 ± 4.2 Mg ha−1 for the
upland ecotype and 12.9 ± 5.9 Mg ha−1 for the lowland ecotype.
EPA's yield range for perennial grasses [28] is higher, from 7.6 to
22.2 Mg ha−1 (national average: 20.4 Mg ha−1), whereas DOE reports a
range of 9.2–18.0 Mg ha−1 (national average: 13.5 Mg ha−1).

2.1.2. Nitrogen fertilizer rate
Although switchgrass can be grown without N fertilization, its

profitable production in monocultures likely requires N application
[38]. The N fertilization rate in the baseline scenario is 100 kg ha−1

y−1 of N. “Low” and “high” fertilization scenarios are chosen at
50 kg ha−1 y−1 and 150 kg ha−1 y−1, respectively.

N fertilization guidelines are commonly derived from expected
yields and reported per unit mass of switchgrass produced. Argonne's
GREET (Greenhouse gases, Regulated Emissions, and Energy use in
Transportation) Model has a default fertilization rate of 8 kg Mg−1 of N
per unit mass of dry switchgrass. Iowa State Extension describes
5 kg Mg−1 N for the Liberty cultivar [39], which is also recommended
by Penn State Extension for switchgrass cultivars in general [40]. For
the Great Plains and Midwest, Mitchell et al. recommend 10 kg Mg−1 of
N when harvested in the growing season, or 6–7 kg Mg−1 if harvesting
after a killing frost [41].

2.1.3. Nitrogen fertilizer type
Because switchgrass is a perennial crop, there is aboveground bio-

mass throughout most of its stand life, which contraindicates fertiliza-
tion methods involving injection, subsurface banding, or incorporation
[42]. The choice of N fertilizer type is therefore limited. Urea, ammo-
nium nitrate, and a solution mix of both are possible options. Enterprise
budgets from Oklahoma State University [43] and several field plot
studies [44] [45] [46], suggest the use of urea, whereas GREET [47]
[48] and Mississippi State University [49] suggest ammonium nitrate.
However, the use of pure ammonium nitrate has strongly declined in
recent years [50].

There are two reasons to justify the consideration of UAN solution
as a fertilizer in this study. First, a recent study compiling the emissions
inventory of switchgrass [21] states that this is likely to be the primary
fertilizer used. Second, urea can have 15% N loss by volatilization,
compared to 8% for an UAN solution [51]. Large-scale switchgrass
farmers might act to be more efficient in N-use, so as to be more cost-
efficient [52]. We consider both urea and UAN for scenarios in our
analysis. This is because of the uncertainty in whether switchgrass
farmers will prefer urea or UAN as discussed above, and the fact that
the large difference in volatilization rate for these fertilizer types leads
to a large difference in NH3 emissions.

2.1.4. Location
We constrain growing locations to US states on and east of the 100th

meridian west, which is the historic range of switchgrass [53], com-
prising 2694 counties in the Central and Eastern US. Research efforts
have been made to determine the land available for switchgrass pro-
duction at subcounty resolution. However, many of these depend on
some specification of “marginal” land, whether this be idle, fallow, or
abandoned land [54], polluted land [55], unproductive cropland [31],
or conservation land [56]. As many of these studies differ in crucial
assumptions regarding where switchgrass will be profitable or high-
yielding [35] [57], for the sake of generality, the centroid of each
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county is taken as the growing location. Counties with little agricultural
land are unlikely to grow switchgrass, including urban areas where air
quality impacts are likely to be high as there is a large population. We
therefore calculate a cropland area-adjusted average impact across all
counties in the domain using USDA Farm Service Agency estimates of
total area planted for all crops [58].

Finding spatially-resolved changes in concentrations of PM2.5 from
growing switchgrass also requires spatially allocating off-site emissions
from processes upstream in the supply chain [59]. In this study, loca-
tions and capacities of facilities were found for the following off-site
processes: nitric acid production, sulfuric acid production, ammonia
production, ammonium nitrate production, and urea production.
Monetized damages were found for producing 1 Mg of the respective
chemical at each of these plants (Section 2.3), and the production-
weighted average was found by weighting the damages at each plant by
the plant's capacity.

2.2. Life cycle emissions inventory

Emissions associated with growing switchgrass come from many
supply chain processes. Prior research has found that important sources
of emissions include primary PM2.5 and secondary PM2.5 precursors
from the production and use of fertilizer, using farm equipment fuel,
VOC emissions from herbicide application, and fugitive dust emissions
of PM2.5 from agricultural operations [21] [22]. The scope of the
emissions inventory for the current study includes emissions from “on-
site processes”, which occur on the farm, as well as “off-site processes”,
which occur elsewhere in supply chain activities. The system bound-
aries of this life cycle inventory include all processes in the GREET life
cycle for switchgrass farming (Section 2.2.1) [47] [48] as well as the
processes outlined in Section 2.2.2–2.2.5. The functional unit (i.e., the
output of the product system that provides the service whose impacts
are being assessed) is 1 Mg of dry switchgrass (15% mass fraction of
water) at the farm gate, before taking into account dry matter loss
(Section 2.2.1).

2.2.1. GREET model
This study makes substantial use of the switchgrass farming

pathway in the GREET 2015 Model [47] [48]. GREET default para-
meters are used, with the exceptions discussed below.

First, the emissions rates of SOx for the production of sulfuric acid
(H2SO4) were modified. H2SO4 is used in phosphate fertilizer produc-
tion. The default emissions factor in GREET, for SOx emitted per unit
mass of H2SO4 produced, is 20 kg Mg−1. However, regulatory docu-
ments [60] and other publicly available data [61] suggest that an
emissions factor of 2 kg Mg−1 better reflects the current industry.

Second, dry matter loss is set to zero. GREET estimates biomass
losses from handling, harvesting and storing biomass, such that be-
tween 1.09 and 1.24 Mg of dry switchgrass must be grown for every dry
megagram of switchgrass output at the farm gate, depending on the
storage method. These losses were not included in the current analysis
for simplicity, but results per dry megagram can be readily scaled to
account for dry matter loss, as health impacts are modeled as linear
(Section 2.3).

Third, GREET parameters were changed to reflect the scenarios
chosen in this study (Section 2.1). The N application rate was varied
accordingly, and the N pathway mix was changed to 100% urea, or
100% UAN solution, depending on the scenario.

GREET default stand life and yield assumptions are used, with an
assumed stand life of 10 years, including 2 years for the establishment
phase. No fertilizer is applied during the establishment period, but
electricity and diesel fuel are used in cultivation and planting. All
parameters are averaged over the entire stand life to arrive at yearly
inputs and outputs [47] [48].

Sections 2.2.2–2.2.5 describe additions made to this GREET
pathway to construct a comprehensive life cycle emissions inventory.

Section 2.2.6 provides, as a point of comparison, an emissions inventory
for unmanaged land that might be displaced due to switchgrass pro-
duction.

2.2.2. Ammonia emissions
Ammonia (NH3) emissions occur during the life cycle of switchgrass

production, in both on-site and off-site processes [21] [22]. The GREET
Model does not model NH3 emissions, so these are added in our ana-
lysis.

On-site NH3 emissions occur when N fertilizer is applied to soils,
and some fraction of this N volatilizes into the atmosphere. The mag-
nitude of these emissions depends on N application rate, fertilizer type,
and soil, water and climate conditions [50]. The fraction of volatilized
N can vary substantially depending on these conditions [62] [63],
which are difficult to model precisely [51]. We use the CMU (Carnegie
Mellon University) Ammonia model [64] emissions factors of volati-
lized N as a percentage of applied N. For UAN solutions, 8% of the N
applied to the soil is released as ammonia. For urea, this value is 15%
throughout most of the domain used in this study, except in South
Dakota and Texas where it is 20%.

Off-site NH3 emission factors were estimated by using the National
Emissions Inventory (NEI), which classifies emissions by sector, in-
dustry, and process [65]. The processes within the life cycle of
switchgrass production, and for which the NEI reported NH3 emissions,
are the following: ammonia production, urea production, and ammo-
nium nitrate production. The emissions were divided by total US pro-
duction for ammonia, urea, and ammonium nitrate respectively, giving
emissions factors in mass of pollutant per unit mass of product.

2.2.3. Fugitive dust emissions
Fugitive dust from agricultural sources contributes to particulate

matter emissions [66], but it is not included in the GREET Model. Ac-
tivities that disrupt the soil emit coarse particulate matter (“PM10”)
[67], 20% of which is taken to be PM2.5 [68]. Following Zhang et al.
[21], we use a 45 g Mg−1 emissions factor of PM2.5 from fugitive dust
emissions for growing switchgrass.

Emission inventories commonly overestimate dust emissions, be-
cause they often do not account for atmospheric removal by land cover
within ∼100 m of the source [69], caused by dry deposition and re-
duction in wind speed [70]. Dust emitted in dense vegetation is almost
completely captured, thus having almost no health impact, but dust
emitted in a barren landscape is not well captured [70]. Because of the
local scale of this capturing effect, it can be corrected by modifying the
emission inventory. Pace [70] derived a “transport fraction” (the frac-
tion of dust which is not locally captured) for each county; the average
transport fraction across all counties in the Central and Eastern US is
46%. Values from Pace [70] are applied to this analysis.

2.2.4. On-site VOC emissions
Plants emit VOCs from their leaves and other organs, which can

affect air quality [19] [20] [71]. These emissions increase greatly as a
result of injury such as during harvesting, especially when harvested in
the growing season. Eller et al. [18] use laboratory chamber measure-
ments to estimate the yearly emissions from switchgrass plantations.
These biogenic VOC emissions are included in the emissions inventory.

VOCs are also emitted during herbicide application [21]. In general,
these emissions depend on the herbicide formulation, including active
ingredients and inert ingredients (e.g., buffers and surfactants) [72].
There is considerable variation in the amount, type of active ingredient
and formulation of herbicide used for establishing and maintaining
switchgrass [73]. In GREET, 465 g ha−1 of glyphosate are applied per
dry short ton of switchgrass [47] [48] in field preparation, although the
formulation and application method are not given. For some glyphosate
formulations (e.g., Roundup Weathermax) the VOC emissions factor is
negligible [74], while for other formulations it can be higher. Following
Zhang et al. [21] and EPA [75], we assume the VOC emissions factor to
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be the mass of active ingredient applied (465 g ha−1 from GREET)
multiplied by the evaporation rate (0.9) and the VOC content (0.835),
to give 349 g ha−1 (17.5 g Mg−1 high yield; 38.8 g Mg−1 low yield).

2.2.5. Off-site production of farm equipment
The GREET 2015 Fuel-Cycle Model reports inputs, outputs, emis-

sions, and lifetimes of the production of farm equipment. Here we use a
list of farm equipment required for switchgrass production as suggested
by Zhang et al. [21]. All types of farm equipment are assumed to be
necessary for growing switchgrass and are only used for switchgrass
production. To estimate the amount of machinery used per hectare of
switchgrass grown, we require the size of a switchgrass farm, which we
assume to be 220.9 ha (i.e., the same as the GREET default for corn).
The mass of machinery used per dry ton of switchgrass produced then
depends on the yield scenario.

2.2.6. Emissions inventory for unmanaged grassland
We also estimate emissions from unmanaged land displaced by the

production of 1 Mg of switchgrass. Biogenic VOC emissions (Section
2.2.4) from unmanaged grassland are obtained from Lamb et al. [76],
and NOx emissions from Williams et al. [77]. Emissions factors are
derived as the mass of pollutant emitted per hectare. From these, to-
gether with our yield scenario (Section 2.1.1), we determine the
emissions that would be displaced from producing 1 Mg of switchgrass
in place of unmanaged grassland.

This addition is relevant for three reasons. First, it is likely that
switchgrass will be grown on unmanaged grassland, because it may not
be profitable enough to outcompete other crops [14]. Second, growing
switchgrass on unmanaged grassland ensures that competition with
food crops is minimized [13]. Third, there is considerable policy scope
for bringing grassland, such as CRP (Conservation Reserve Program)
land, into production for bioenergy [57].

2.2.7. Spatial description of life cycle inventories
The emissions inventories shown in Fig. 1 include all on-site and off-

site processes in the GREET model switchgrass production pathways
with the additions noted above (e.g., fugitive dust). Due to spatial data
limitations for some off-site processes (e.g., farm equipment and high
sulfur diesel production) the health impacts were calculated from
emissions from all on-site processes and those off-site processes for
which spatial data were readily available. Emissions from these pro-
cesses account for 100% of NH3 emissions, 99% of VOC emissions, 84%
of NOx emissions, 77% of primary PM2.5 emissions, and 3% of SOx

emissions. This suggests the life cycle health impact estimates presented
in this paper are underestimates. In particular, the small fraction the life
cycle SOx emissions included in the impact analysis is a result of the
exclusion in the air quality modeling of several of the upstream pro-
cesses related to the production of high sulfur diesel.

2.3. Health impacts

After compiling the spatially-allocated emissions inventory, the air
quality model InMAP (Intervention Model for Air Pollution) [78] was
used to model the steady-state annual average changes in PM2.5 con-
centrations resulting from these emissions, as well as the resulting
changes in mortality. InMAP is a reduced-form air quality model, which
uses the annual average outputs of a single run of a full Eulerian che-
mical transport model (WRF-Chem) to calculate changes in the con-
centrations of pollutants arising from changes in emissions. The grid
size used in InMAP is set to vary so that there is higher resolution in
areas with higher population and lower resolution in the upper atmo-
sphere and areas with low population. EASIUR [79], another reduced
form air quality model, was also used here for comparison (Fig. S2),
although air quality impacts from VOC emissions are not calculated in
EASIUR. We note that NOx and VOCs also lead to tropospheric ozone
(O3) formation, which can also lead to premature mortality. However,

we do not account for the impacts of tropospheric ozone in this study,
as its mortality effects are generally minor compared to those of PM2.5

[6] [4]. The Value of Statistical Life [87] was used to calculate the
monetary value of health impacts. EPA's value of 7.4 M$ (2006) was
used, and adjusted for inflation to arrive at 8.78 M$ (2016) [88].

The link between long-term exposure to PM2.5 and mortality has
been established in multiple studies, including two major long-term
cohort studies in the US: the American Cancer Society (ACS) study and
the Harvard 6-City (H6C) study. The results of these studies have been
confirmed over several reanalyses, most recently in Krewski et al. [80]
for the ACS study and Lepeule et al. [81] for the H6C study. Results
from these studies are used to evaluate the benefits of EPA regulations
for reducing particulate matter concentrations [82]. Here, we employ
the dose-response relationship between human mortality and long-term
exposure from PM2.5 concentrations given by Krewski [80]. It is worth
mentioning that these cohort studies find that PM2.5 affects mortality
rates even at levels below those required by regulations; furthermore,
the studies do not find evidence of a threshold. Pope [83] discusses
relevant research on threshold effects with particulate matter, showing
that the effect is nearly linear. Since then, there has been evidence
suggesting that the effect is “supralinear”, meaning that there are larger
marginal effects at lower concentrations levels compared with higher
concentrations [80] [84] [85]. However, the convention in air pollution
analysis assumes a nearly linear concentration-response relationship
with no threshold [86].

3. Results

3.1. Emissions inventory

Fig. 1a shows the emissions inventory for growing one dry mega-
gram of switchgrass in scenarios with a yield of 20 Mg ha−1 and a N
fertilization rate of 100 kg ha−1, applied as urea or UAN. Changing the
fertilizer type from urea to UAN dramatically reduces on-site NH3

emissions. All other on-site emissions remain the same, while all off-site
emissions increase slightly. Reducing the N input by 50%, from
100 kg ha−1 to 50 kg ha−1, halves the ammonia emissions (Fig. 1b). In
this sense, it is similar to the effect of changing fertilizer type to UAN,
although NOx emissions, which also depend on the amount of N ap-
plied, are also reduced. Off-site emissions are also reduced because less
N fertilizer is manufactured. Biogenic VOC emissions are constant per
megagram of switchgrass.

3.2. Monetized health impacts

County-level monetized damages from health impacts for the
baseline scenario are shown in Fig. 2. The cropland area-weighted air
quality impact for growing switchgrass across all counties is 45 $ Mg−1

of switchgrass. Maine is the state with the lowest average cropland-
area-weighted air quality impact across its counties at 3.71 $ Mg−1,
followed by North Dakota at 9.34 $ Mg−1. Pennsylvania has the highest
average cropland-area-weighted air quality impact across its counties at
82.60 $ Mg−1. Fig. 2 does not show where impacts are occurring; ra-
ther, it shows how the total monetized health impacts, which occur
across North America, vary depending on where switchgrass is grown.
PM2.5 can travel a great distance from its source and is both a near-
source and a long-distance concern for health. Overall, Fig. 2 shows a
general trend that growing switchgrass in, or upwind from, areas with
higher population density gives rise to higher health impacts.

3.3. Monetized health impacts by pollutant

Fig. 3 shows for the baseline scenario the monetized health impacts
per megagram of switchgrass for different species of primary pollutants
(VOCs, Primary PM2.5, and NOx). For all pollutants, the mortality im-
pact is calculated from the resulting change in atmospheric
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Fig. 1. Life cycle emissions inventory for switchgrass production for two scenarios (a) high input (yield 20 Mg ha−1, N fertilization rate 100 kg ha−1 N) and (b) low input (yield
20 Mg ha−1, fertilization rate 50 kg ha−1 N).
Note: “Off-site: Fertilizer” refers to the production of sulfuric acid, potassium oxide, phosphoric acid, ammonia, urea, ammonium nitrate, and nitric acid. Emissions from GREET for all
other upstream processes are aggregated as “Off-site: Other”. The dashed bar for NH3 urea is for South Dakota and Texas, which are modeled with a higher emissions factor for ammonia
volatilization from urea application. The dashed bar for PM2.5 is for dust emissions, which vary by county (mean: 20.7 g Mg−1 biomass).

Fig. 2. Total monetized air quality impacts of switchgrass production (yield 20 Mg ha−1, fertilization rate 100 kg ha−1 N as urea).
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concentrations of PM2.5 that is caused by emissions of primary PM2.5

and of secondary PM2.5 precursors of VOCs, NOx, NH3, and SOx (Section
2.3).

Fig. 3a shows the health impacts from VOC emissions from growing
switchgrass. Although this includes VOC emissions from herbicide ap-
plication, as well as other on- and off-site emissions, 98% of the impacts
shown here are biogenic (see 2.2.4). Although biogenic VOC emissions
are low for switchgrass throughout most of the year [18], these emis-
sions increase to 26.3 kg ha−1 y−1 in the high yield scenario due to

injury from harvest. In the low yield scenario, the biogenic VOC
emissions from switchgrass are 11.8 kg ha−1 y−1, close to the
13.7 kg ha−1 y−1 of biogenic VOC emissions for unmanaged grassland
[76]. Fig. S1 shows the estimated impacts from biogenic VOC emissions
for unmanaged grassland that might be displaced by growing switch-
grass at yields of 9 Mg ha−1 y−1 and 20 Mg ha−1 y−1. Almost all of
these impacts result from biogenic VOC emissions.

The spatial distribution of all pollutants is such that areas upwind of
highly populated areas tend to have higher impacts for growing
switchgrass. For primary PM2.5 emissions (Fig. 3b), the impact pattern
is more varied across space, owing to the difference in dust emissions in
different locations (Section 2.2.3). Impacts of NOx emissions (Fig. 3c)
and SOx are small relative to the other PM2.5-related species.

Fig. 4(a)-(b) show the impacts of NH3 emissions from urea and UAN
fertilization, respectively, at the baseline yield of 20 Mg ha−1 and N
fertilization rate of 100 kg ha−1. The air quality impact of NH3 emis-
sions from fertilizer application dominates that of any other pollutant
from any on-site process, accounting for 81% of the average total im-
pacts across all counties for urea fertilization and 68% for UAN ferti-
lization (Fig. 5).

Fig. 3. Monetized air quality impacts of on-site (a) VOC, (b) PM2.5, and (c) NOx emissions
for switchgrass production (yield 20 Mg ha−1, fertilization rate 100 kg ha−1 N as urea).

Fig. 4. Monetized air quality impacts of on-site NH3 emissions for switchgrass production
(yield 20 Mg ha−1, fertilization rate 100 kg ha−1 N as (a) urea and (b) urea-ammonium
nitrate solution).
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4. Discussion

4.1. Comparison with other studies

The life cycle emissions inventory in this study augments the GREET
life cycle inventory, as detailed in Section 2.2.2–2.2.6. Many of the
same processes were included in the recent inventory compiled by
Zhang et al. [21]. However there are some differences with the study of
Zhang et al., notably their assumption of a UAN solution as N fertilizer
[21], which the present study considers in addition to urea. The method
employed in the present study for estimating the fugitive dust emissions
is the same as the method by Zhang et al., apart from the transport
fraction being taken into account in the present study, which reduces
the primary PM2.5 emissions from dust by 46% on average across all
counties in the study domain. The approach for estimating VOC emis-
sions from herbicide application in this study also reflected Zhang et al.
[21]; however, neither biogenic emissions, which dominate the life
cycle VOC emissions inventory, nor the production of farm equipment
were included in Zhang et al. [21].

The study of Hill et al. [22] estimates the air quality impacts of the
life cycle of switchgrass-derived ethanol production and use. Unlike the
present study, which provides impact estimates for different switch-
grass growing scenarios, Hill et al. [22] considers only one scenario
(yield: 7.1 Mg ha−1, fertilization rate: 74 kg ha−1, fertilizer: ammo-
nium nitrate, location: CRP land). The life cycle emissions inventory of
feedstock production in Hill et al., as a percentage of the life cycle
emissions from one of the scenarios studied in this paper (yield:
9 Mg ha−1, fertilization rate: 50 kg ha−1, fertilizer: UAN), are: 6% of
VOCs, 84% NOx, 20% PM2.5, 64% SOx, and 53% NH3. These differences
can be explained by (a) the difference in fertilization rate, (b) the in-
clusion of more processes in the present study (i.e., biogenic VOCs and
dust emissions) and (c) the use of ammonium nitrate fertilizer in Hill
et al. [22], for which only 2% of the applied nitrogen is volatilized as
NH3 [when compared with the higher volatilization rates UAN (8%)
and urea (15–20%)].

Hill et al. [22] estimate the mean human health cost for the pro-
duction and combustion of an additional 3.78 hm3 of switchgrass-de-
rived cellulosic ethanol to be 188 M$ (2016) [88]. When normalized to
the yield of switchgrass, this amounts to 16.90 $ Mg−1. This health cost
can be compared with the cropland-area-weighted mean air quality
impact of 33.01 $ Mg−1 found in the scenario from this study. Cor-
recting for the difference in NH3 volatilization rate, this impact be-
comes 17.51 $ Mg−1. However, the human health cost reported by Hill
et al. [22] takes into account the reduced impacts from displaced fuels,
end-use of the fuel, and health effects additional to mortality, although
mortality accounts for 93% of the monetized health effects.

4.2. Ecosystem disservices

This paper adopts the distinction of ecosystem disservices proposed
by Shackleton et al. [27] (Section 1), noting that what constitutes ex-
actly an ecosystem disservice is not settled in the literature. Some re-
searchers say ecosystem disservices must have a direct causal link with
ecosystem functions; otherwise, they are simply social costs of mana-
ging or acquiring ecosystem services [27]. Following this distinction, of
all the different emissions associated with switchgrass production, only
biogenic VOC emissions can be considered as an ecosystem disservice.
Other emissions are merely “anthropogenic” social costs associated
with acquiring an ecosystem service (i.e., biofuel feedstock, a provi-
sioning service).

However, some anthropogenic emissions have ecosystem compo-
nents. For example, applying urea fertilizer to soil results in ammonia
volatilization, which is responsible for the majority of the monetized air
quality-induced mortality impacts from growing switchgrass in our
baseline scenario. This volatilization process involves urea hydrolysis,
catalyzed by urease from soil microorganisms [89]. Thus, ammonia
volatilization from urea fertilization can be construed as an ecosystem
function, albeit one arising as a response to human activity. Some au-
thors explicitly consider cases such as this to be “ecosystem disservices”
[90].

Ecosystem disservices exist on a continuum between natural and
social hazards [27]. In agricultural systems, they can arise through
interactions between anthropogenic activity and ecosystem functions
[91]. Although switchgrass emits VOCs without human intervention
(i.e., biogenic VOC emissions), the rate of emissions increases drama-
tically when the plant material is harvested [18]. So, similar to urea
volatilization, this ecosystem disservice can, in part, be construed as a
side effect of anthropogenic crop management.

In general, there is a lack of literature on the economic valuation of
ecosystem disservices. Here, we attempt to monetize these disservices
as a function of switchgrass management, where farmers can reduce
biogenic VOC emissions by harvesting after the growing season. The
average monetized air quality impact from biogenic VOC emissions of
switchgrass amounts to 8% of the total health damages in the baseline
scenario, at 3.60 $ Mg−1, but can be as high as 57 $ Mg−1 in extreme
cases (e.g., in Hudson, NJ). The emissions factors used here are based on
Eller et al. [18], in which switchgrass is harvested during the growing
season. Harvesting post-senescence is likely to reduce plant wound re-
sponse, lowering biogenic VOC emissions dramatically. In this case, the
health damages may be closer to those of VOC emissions from un-
managed and unharvested grassland, giving rise to an average air
quality impact of 1.90 $ Mg−1 (i.e., an average reduction of 53% in
health damages).

4.3. Impact intervention

We have shown that NH3 emissions from fertilizer application are
the largest on-site contributor to the air quality impact of growing
switchgrass. Using UAN instead of urea as an N fertilizer reduces this
impact.

These results highlight the importance of ammonia abatement

Fig. 5. Monetized air quality impacts of switchgrass production for each pollutant,
averaged across all counties, also shown a percentage of total air quality impacts.
Note: “Off-site fertilizer production” refers to the production of sulfuric acid, potassium
oxide, phosphoric acid, ammonia, urea, ammonium nitrate, and nitric acid. Impacts of
non-biogenic on-site VOC emissions and SOx are negligible.
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strategies. Such strategies include:

• reducing the amount of N applied, perhaps by growing switchgrass
in locations that require less N [92];

• changing fertilizer type, as in the case of urea to UAN;

• breeding switchgrass to increase N use-efficiency;

• changing timing of application relative to soil, water, and climate
conditions [93];

• using fertilizer coatings [94];

• incorporating N into soil using selective tilling or irrigation [95];
and

• growing mixes of diverse prairie species that include legumes to
reduce N input by increasing nitrogen fixation [96].

Ammonia emissions from agricultural sources can have impacts on
human wellbeing other than via the health effects related to air quality.
Ammonia deposition may provide additional biomass from croplands
and forests, while deposition in freshwater bodies may decrease sal-
monid fish populations, which may reduce food production [97] [98].
These trade-offs from switchgrass can have interesting effects locally
and nationally, and should be the focus of future research.

4.4. Future work

This study estimates the air quality impacts of growing switchgrass,
compared across many locations, fertilization rates, yield scenarios and
fertilizer types. Further considerations of the expected human health
effects of switchgrass production may include:

4.4.1. Downstream impacts of using the feedstock for fuel
Switchgrass can be used to produce cellulosic ethanol, gasification-

based fuels [99], and electricity to power electric vehicles. Emissions
from biomass burning, refineries, or tailpipe emissions are known to
have large human health impacts [100] [101] [102].

4.4.2. Emission reductions from displaced fuels
Using switchgrass-derived fuel may reduce the use of gasoline in the

transport sector. Thus, future studies should consider the reduced air
quality effects of no longer producing the displaced gasoline.

4.4.3. Deployment scenario
The efficiency of industrial and agricultural operations tends to in-

crease as the scale increases, meaning that a larger-scale operation may
have lower emissions factors. While the emissions factors and yields
used in this study are suitable for large-scale deployment, they may
vary depending on the exact deployment scenario considered.

4.4.4. Comparisons with other feedstocks
Corn is likely to have higher N application rates. This would prob-

ably increase off-site emissions of SOx, PM2.5, NOx and VOCs due to
fertilizer production, and increase NOx emissions from fertilizer appli-
cation. However, NH3 emissions from fertilizer application will depend
on the form of the fertilizer used (Section 2.2.3). For annual crops, more
fertilizer may be applied using incorporation or subsurface banding
[103], which may drastically reduce N volatilization [42]. However,
annual crops are also likely to entail more extensive soil disruption
from tilling, increasing dust PM2.5 emissions (Section 2.2.3). Biogenic
VOC emissions for corn are also likely to be greater [104].

4.4.5. Other health impacts
Nitrogen fertilization can also affect human health through water

quality [105]. The form of N applied, and the amount lost to volatili-
zation, may have affect the amount of N available for leaching or
runoff. Further, human health impacts of pesticide and herbicide toxi-
city may be appreciable, and should be the focus of future research
studies.

5. Conclusions

Our results show that air quality-induced human health impacts
from growing switchgrass vary greatly by location in the US and are
notably higher when using urea fertilizer compared to UAN. In the life
cycle emissions inventory for growing 1 Mg of switchgrass, VOC
emissions are larger by mass than for any other pollutant considered;
however, NH3 emissions give rise to the greatest air quality-induced
health impacts. Further research should consider how switchgrass
compares to other bioenergy crops in terms of human health impact
related to air quality, as well as considering the impacts of different uses
of the feedstock, whether for producing cellulosic ethanol, electricity,
renewable fuels, or other types of bioenergy and bioproducts. Our work
also demonstrates the usefulness of evaluating the environmental im-
pacts of agriculture and bioenergy within an ecosystem service context.
In particular, an accounting of the ecosystem services and disservices
from switchgrass production identified biogenic emissions of VOCs
from switchgrass harvest as a potentially large contributor to reduced
air quality. Management practices such as harvesting post-senescence
can reduce this ecosystem disservice. Further research should explore
both the contribution of biogenic VOCs from switchgrass harvest to
tropospheric ozone formation and other means of biogenic VOC miti-
gation.
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