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Abstract
Reducing exposure to air pollution is an important goal for many local and national governments.
Disparities in air pollution exposure by race, ethnicity, and socioeconomic class are well documented;
reducing these disparities is another important policy target. Meeting both goals requires tools to
evaluate how emission reduction options affect average exposures and exposure disparities. Here, we
consider the role of emission location in implementing control strategies, and investigate the effect of
two practical, space-based approaches—low-emission zones and truck rerouting—on diesel particle
levels in Southern California. We employ Eulerian grid modeling to explore the impact that emission
location has on four outcomes important to policymakers: total pollution exposure, exposure
efficiency (i.e. exposure impact per unit emission), exposure inequality (i.e. deviations from exposure
being equally distributed across the population; unequal exposure among individuals), and exposure
injustice (i.e. associations between exposure and demographic attributes such as race or ethnicity;
unequal exposure among groups). Our results highlight potential trade-offs (e.g. an increase in
equality but reduction in justice for interventions in some locations) as well as opportunities for
‘win-win’ solutions (locations for which emission reductions would reduce all four target outcomes).
We find that a simple, straightforward approach—reducing emissions in neighborhoods with a high
proportion of minority residents—may or may not yield the strongest benefits to environmental
justice; the reason is that the straightforward approach fails to account for meteorology and where
pollution travels after being emitted. In short, we demonstrate an approach that can be used to
identify areas in which emissions reductions would have high efficiency and would also result in
disproportionately large reductions to average exposure, exposure inequality, and exposure injustice.
The approach presented here could be used to design and prioritize local or national emission
reduction efforts.

1. Introduction

In the United States, ambient fine particulate matter
(PM2.5) causes approximately twice as many deaths
per year as are caused by traffic accidents (PM2.5:
∼88 000 deaths/year); globally, PM2.5 causes ∼4.2 mil-
lion deaths per year, a rate that exceeds the combined
total of traffic accidents, malaria, HIV/AIDS, and
tuberculosis [1]. Regulations to reduce air pollution

exposures include the US Clean Air Act. Passed in 1970
and amended in 1990, this act provides the greatest
monetized benefits of any federal legislation [2], with
benefits estimated to be more than 30 times greater
than costs [3]. The act obliges the federal government
to set national standards for outdoor concentrations;
states are responsible for meeting the standards. Since
1970, consumption and GDP have increased, yet air
quality in the United States has improved dramatically

© 2018 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/aa9cb5
https://orcid.org/0000-0002-3695-2578
https://orcid.org/0000-0003-4087-1209
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aa9cb5&domain=pdf&date_stamp=2016-03-30
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
mailto:jdmarsh@uw.edu
https://doi.org/10.1088/1748-9326/aa9cb5


Environ. Res. Lett. 13 (2018) 024002

[4]. Even so, disparities persist, both for exposures
(which are generally higher-than-average for minority,
lower-income, and lower-education individuals [5])
and health. For example, relative to whites, Blacks’
levels of exposure are ∼50% higher for industrial air
pollution [6] and ∼30% higher for transportation-
related air pollution [7, 8]. For conditions in 2006,
reducing minorities’ NO2 concentrations to levels
experienced by whites would reduce ischemic heart dis-
ease mortality by∼7000 deaths per year [7]; that health
benefit is equivalent to 25 million people increasing
their physical activity level from ‘insufficiently active’
(<2.5 hours/week of physical activity) to ‘sufficiently
active’ (>2.5 hours/week of physical activity), or 3 mil-
lion fewer adults beginning to smoke [7]. Although
more widely documented and researched in the US,
disparities also exist globally [9, 10]. Disparities in the
burden that racial or other groups bear from environ-
mental risks are described by the term ‘environmental
injustice.’

Much of the existing scientific research on envi-
ronmental justice focuses on documenting disparities
in exposure or risk. Limited research identifies quan-
tifiable strategies and opportunities to address these
disparities, and even fewer articles consider multiple
health- and equity-based outcomes [5]. The few publi-
cations on this topic support the idea that quantifying
environmental justice and health-based outcomes can
help identify scenarios that maximize both goals. Levy
et al evaluated potential emission reductions for power
plants in terms of reductions in premature mortalities
and improvement in equity (i.e. Atkinson Index); they
reported that scenarios with the largest improvements
in health-based outcomes also had the largest improve-
ments in equity [11]. The authors also identify potential
tradeoffs (e.g. greater or lesser improvement of one goal
relative to the other) and that the results may vary by
pollutant, spatial distribution of the population, and
existing pollutant levels. A separate article on mobile
sources reported similar findings: control scenarios
with greater improvements in equity also exhibited
greater improvements in health-based outcomes [12].
A study of specific source categories in Southern
California (on-road, off-road [e.g. construction equip-
ment], trains, ships, and stationary [e.g. generators])
reported ‘win-win’ opportunities and potential trade-
offs between equity- and efficiency-based goals [5]. An
analysis of large greenhouse gas emitters in California
found that the majority of the total air pollution expo-
sure disparity by ethnic/racial group can be attributed
toa select few facilities locatednearminority communi-
ties.Therefore, implementingclimate changeandGHG
control strategies (e.g. market-based, unrestricted cap-
and-trade) that do not distinguish these facilities from
others could exacerbate pollution exposure disparities
[13]. Conversely, opportunities are present to improve
both climate change and equity. Collins et al reported
similar findings with industrial toxic pollutants: a few
facilities contribute to a majority of disproportionate

minority human health risk. Therefore, they report
that targeted regulation on the worst environmental
polluters could have a larger impact on equity than
broad-based regulations [14].

The present paper expands on the limited
prior research by investigating how spatially targeted
emission-reductions can reduce environmental injus-
tice while also meeting multiple other air quality
management goals. We highlight how spatial target-
ing can be incorporated into practical strategies such
as low-emission zones (LEZs) and truck re-routing
that are already in use in many major cities. Since air
quality management involves multiple goals, we con-
sider multiple outcomes important to policymakers.
We use Eulerian reactive grid modeling for South-
ern California to calculate how reducing emissions
of a known carcinogen, PM2.5 from diesel engines
(DPM) [15–17], would affect (1) total exposure, (2)
exposure efficiency (i.e. human inhalation of pollu-
tion, per amount emitted), (3) exposure inequality
(i.e. deviations from a scenario in which exposure
is equally distributed across the population), and (4)
exposure injustice (i.e. associations between exposure
and demographic attributes such as race or ethnic-
ity). All four outcomes are important for air quality
management: total exposure is a proxy for total health
impact, efficiency is an indicator of the proportion of
emissions that are actually inhaled (e.g. which emis-
sions are near people), inequality reflects differential
individual exposures, and injustice reflects differential
group/subpopulation exposures. We demonstrate that
the spatial targeting approach presented here can be
used to identify areas in which emission reductions
would have high efficiency and would also result in dis-
proportionately large reductions to average exposure,
exposure inequality, and exposure injustice.

2. Methods

We modeled DPM in Southern California using the
Comprehensive Air Quality Model with extensions
(CAMx), an Eulerian reactive air dispersion model. By
using meteorological, deposition, emission, and chem-
ical inputs, CAMx temporally and spatially represents
the transport, removal, and chemical reactions of pol-
lutants in a three-dimensional grid [18]. Model inputs
were from the Multiple Air Toxics Emission Study III
(MATES III) [16]. The modeling domain (total size:
240 km× 150 km; grid size: 2 km× 2 km grids; total
population = 15.9 M) included areas within the South
Coast Air Basin in Southern California and encom-
passed the Los Angeles metropolitan area, the Long
Beach and Los Angeles ports, and nearby shipping lanes
in the Pacific Ocean. Simulations employed 1-hour
time steps to quantify annual average concentrations
for the year 2005 (see supplementary data, figure S2
available at stacks.iop.org/ERL/13/024002/mmedia).
One reason for choosing this model is that it has
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been reviewed, validated, and used by technical experts,
including members of the California Air Resources
Board. For MATES III, the average predictive accu-
racy (percentage difference between monitored and
modeled concentrations) forfineelemental carbonpar-
ticulate matter—a major component of DPM—is 17%,
which is within the Environmental Protection Agency’s
predictive accuracy goal of 30% for particulate matter
modeling [16].

We evaluated and prioritized spatial reduction
scenarios for air pollution, based on four goals: inter-
vention impact, efficiency, equality, and justice. To
measure progress toward these goals, we measured the
emissions’ impact, efficiency, inequality, and injustice.

1. Impact was measured using total inhalation intake
(units: mass per time) by the population; this metric
provides a proxy for the total health burden of a
pollutant. An impact of 464 g d−1 would mean that
464 g are cumulatively inhaled by the population
each day.

2. Efficiency was measured as intake fraction: the mass
of pollutant inhaled per mass emitted. Intake frac-
tion is generally reported in ppm (parts per million);
an intake fraction of 1 ppm would mean that 1 𝜇g is
inhaled per 1 g emitted.

3. Inequality was measured with the Dissimilarity
Index, a 0-to-1 representation of the deviation from
a scenario in which pollutant exposure is distributed
equally among all individuals. The Dissimilarity
Index is commonly used in public health and sociol-
ogy research, simple to calculate, and intuitive [19,
20], and values for the Dissimilarity Index correlate
with other popular inequality metrics (see supple-
mentary data, figure S3). A Dissimilarity Index of
0.20 would mean that 20% of the total pollution
would need to be redistributed to achieve a hypo-
thetical scenario in which all people are exposed to
the same concentration. This measure contains no
information about which groups are more or less
exposed, instead focusing on differences in individ-
ual exposure.

4. Injustice was measured using the difference in aver-
age air pollution exposures for ‘minority’ (n = 9.8
million) and white non-Hispanics (‘white’; n = 6.1
million). This metric reflects differences between
groups/subpopulations. (In this paper, ‘white’ refers
to white non-Hispanic individuals, and ‘minority’
refers to everyone else [i.e. all non- (white non-
Hispanic) individuals]. For the study location, white
individuals comprise<50%of the totalpopulation.)

First, we determined the impacts of spatial emis-
sion reductions via 385 sensitivity analyses. In each
sensitivity analysis, emissions within one 2 km× 2 km
grid were zeroed, and the results of the revised model
and baseline model were compared to determine the
approximate impact of pollution sources within the

selected grid. This multi-simulation (‘brute force’)
approach is advantageousbecauseof its simplicity,wide
use in air dispersion modeling, and applicability to the
development of emission reduction scenarios [21, 22].

For all metrics, we assumed at-home emission
exposures equal to outdoor concentrations (no indoor
sources), with no microenvironments (e.g. travel inside
of a car), and a time-invariant breathing rate (14.5 m3

d−1 person−1).Demographicdata (e.g. population size,
racial information, economic information) was derived
using year-2000 US Census block groups (see supple-
mentarydata,figuresS4andS5).Prior researchsuggests
that the simplified census-basedanalysis employedhere
yields results that are consistent with more refined
models incorporating time-varying breathing rates and
microenvironments [5].

Forcomputational efficiency,weselected,modeled,
and analyzed a representative sample of grid cells. Grid
cells were selected based on a population-weighted ran-
dom sample. We then interpolated the remaining grids
using Ordinary Kriging in ArcGIS (see supplemen-
tary data for further analysis and supplementary data
figure S7 for selected grid locations). Finally, as detailed
in the Results section, we used linear regression and
then linear regression with spatial lag to explore associ-
ations between the demographics in a grid cell and the
changes to domain-wide environmental inequality and
injustice that resulted from reducing emissions in that
cell.

3. Results and discussion

First, we evaluated population exposure to DPM based
on the year-2005 emissions inventory for California’s
South Coast Air Basin. As highlighted above, model
validation steps have previously been conducted. Our
baseline results for our four outcome metrics, each
measuring progress toward a different goal, are shown
in table 1: reduction in population intake of DPM is
used as a proxy for intervention impact; intake fraction
(also called ‘exposure efficiency’; defined as the propor-
tion of pollution inhaled by people) is used as a proxy
for intervention efficiency; reduction of the Dissimilar-
ity Index, or the proportion of emissions that would
need to be redistributed to achieve equal exposure
across the population, is used as a proxy for interven-
tion equality; and reduction in the difference between
mean exposures for minorities vs. whites is used as
a proxy for intervention justice. Baseline exposures
were consistent with prior research [5, 23–33]. The
intake fraction was 18 ppm, meaning 18 grams of DPM
were inhaled per million grams emitted [5, 23–26]. The
Dissimilarity Index was 0.20, meaning that achieving
equality would require redistributing 20% of exposures
[5]. Mean DPM exposures were 0.62 𝜇g m−3 (38%)
higher for minorities (2.25 𝜇g m−3) than for whites
(1.63 𝜇g m−3) [5, 27–33]. (The proportion of individ-
uals with exposures higher than the arithmetic mean
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Table 1. Emission reduction goals.

Goal Metric Equation
a

Baseline value
b

Impact Population intake intake =
∑𝑛

𝑖=1 𝐶𝑖 ∗ 𝑄𝑖 464 g d−1

Efficiency Intake fraction
c

𝑖𝐹 = 1
𝐸

∗
∑𝑛

𝑖=1 𝐶𝑖 ∗ 𝑄𝑖 18 ppm

Reduce Inequality Dissimilarity Index
d

𝐷 = 0.5 ∗
∑𝑛

𝑖=1
||||

𝐶𝑖∑𝑛
𝑗=1 𝐶𝑗

− 1
𝑛

||||
0.20

Reduce Injustice Difference between mean exposures for whites versus minorities
e Difference = 𝜇minority − 𝜇white 0.62 𝜇g m−3

a Variables: C𝑖, concentration (𝜇g m−3) for person i; Q𝑖, breathing rate (here, 14.5 m3 d−1) for person i; E, total emissions (g d−1); n, number

of people (∼16M); 𝜇minority, 𝜇white, mean exposures for minorities and whites, respectively.
b Results here are year-2005 estimates.
c An intake fraction (iF) of 18 parts per million (ppm) means that 18 𝜇g diesel PM2.5 are inhaled per g emitted.
d A Dissimilarity Index (D) of 0.20 means that reaching total equality would require redistributing 20% of total diesel exposure.
e A difference of 0.62 𝜇g m−3 represents the disparity between mean exposures for minorities and whites. That value is ∼31% of the overall

population average exposure, 2.01 𝜇g m−3.

[2.01 𝜇g m−3 d−1] was approximately double for
minorities than whites [62% vs 32%].) As context
for the 0.62 𝜇g m−3 greater DPM exposure value for
minorities, we note that Pope et al [34] reported a
0.61-year increase in life expectancy per 10 𝜇g m−3

decrease in PM2.5 exposure. A ‘back-of-the-envelop’
calculation suggests that the 0.62-𝜇g m−3 greater
level of exposure for minorities would correspond to
∼14 days of life lost per individual (i.e. 0.61 years *
(0.62/10) =∼0.04 years per individual), or collectively,
an estimated ∼370 000 years of lost life expectancy in
total for the 9.8 million minority individuals in the
study area.

Next, we modeled how the location of an emission
reduction strategy could affect the impact, efficiency,
inequality, and injustice of an intervention (figure 1).
Figure 1(a) shows that eliminating all emissions from a
single grid cell in downtown Los Angeles would reduce
total population inhalation of DPM in the region (i.e.
pollution impact) by more than 414 000 𝜇g d−1; by
contrast, when emissions were eliminated from certain
parts of Newport Beach, the reduction in inhalation
would be less than 46 800 𝜇g d−1. The results in figure
1(a) reflect a combination of two factors: total emis-
sions per grid cell and the fraction of emissions inhaled.
Both aspects are important, and both are generally
higher for downtown Los Angeles than for Newport
Beach. The former factor (emissions) is displayed in
the supplementary data, figure S1; the latter factor
(intake fraction) is displayed in figure 1(b). Figures
1(c) and (d) show how shifts in the inequality and
injustice metrics vary depending on where an emission
reduction occurs. Values represent the positive or neg-
ative impacts to the inequality or injustice metrics of
a 1 t d−1 emission increase in a grid cell. For example,
a 1 t d−1 decrease in a single grid cell in downtown Los
Angeles would reduce total inequality (Dissimilarity
Index) by more than 0.010. Overall, the results high-
light locations, such as downtown Los Angeles, where
reducing DPM emissions would have high efficiency
and would yield marked reductions in total pollution
impact, inequality, and injustice.

The maps in figure 1 differ from each other, which
illustrates how the choice of metric can have important

implications for exactly which areas are targeted for
emission reduction—and why considering multiple
metrics can be beneficial. Both the port region and
downtown Los Angeles exhibit high amounts of pop-
ulation intake (i.e. pollution impact), downtown Los
Angeles owing to its high population density and major
transportation corridors, and the port region owing to
shipping-related emissions (e.g. ships, tractor trailers).
However, the pollution in downtown Los Angeles has a
greater intake fraction (so that targeting this area trans-
lates into higher intervention efficiency), making this
location the better choice for maximizing both impact
and efficiency. Another example illustrates the tension
that can occur when seeking to maximize multiple out-
comes. To reduce the inequality metric (figure 1(c)),
which is blind to which groups experience higher levels
of exposure, one would likely focus on metropolitan
Los Angeles, extending to the ports of Los Angeles and
Long Beach. By contrast, to reduce the injustice metric,
which considers racial makeup, one would target emis-
sion reductions in some of the same areas (downtown
Los Angeles and the area immediately east of the LA
Port) but some different areas as well (e.g. LAX and
immediately south; Sylmar and the Van Nuys area).
Targeting emission reductions to the area east of the
LosAngeles/OrangeCounty linewouldreduce inequal-
ity (figure 1(c)) but increase injustice (figure 1(d)).
(People inhaling the emissions from that area have
higher-than-average exposures, and a greater-than-
average proportion of them are white; thus, emission
reductions in that area would reduce exposures for
more-exposed individuals while also widening the gap
in average exposures between whites and minorities.)
Evaluating the ethics of tradeoffs among the four goals
is important but is not considered here.

Next, we explored how modeling could be used to
target two types of emission reduction strategies cur-
rently in use: LEZs and truck re-routing. First, via a
spatial overlay of the results in figure 1, we sought
locations for which all four metrics were in the top
quartile (figure 2). Figure 2 also shows the largest
contiguous area identified from that overlay. We then
modeled the result of implementinganLEZ there, anair
quality strategy used in hundreds of cities worldwide.
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LAX
Anaheim

Ontario

Van Nuys

Riverside

Long Beach

Los Angeles

Newport Beach

Santa Clarita

Dissimilarity Index
Below -0.007

-0.006 - 0.000

0.001 - 0.009

Above 0.010

Low Emissions

0 69 13834.5 Kilometers

Difference
Below -0.013

-0.012 - 0.000

0.001 - 0.038

Above 0.039

Low Emissions

Intake Fraction
Below 8.01

8.02 - 18.84

18.85 - 26.23

Above 26.24

Low Emissions

Intake
Below 48600

48601 - 206000

206001 - 414000

Above 414001

Low Emissions

(A) (B)

(C) (D)

Figure 1. Changes in the four area-wide outcome metrics for pollution, as a function of where diesel PM2.5 emission reductions occur.
In each map, a cell’s color is determined by the result of reducing that cell’s emissions to zero, while leaving emission levels in the
other cells intact. (a) Impact: population intake (𝜇g d−1) attributable to emissions in that cell. (b) Efficiency: intake fraction (ppm)
for emissions in that cell. Results for (c) inequality [Dissimilarity Index] and (d) injustice [difference in basin-wide average exposures
for minorities and whites (𝜇g m−3)] reflect the impact of a 1 t d−1 emissions reduction. Colors in plots (a) and (b) were assigned by
emissions quartile (i.e. each color contains 25% of total emissions; not necessarily proportional to land area). Values for plots (c) and
(d) were first divided into positive vs. negative values, and then each subset was subdivided at the emissions-based median for that
subset (i.e. red and orange each contain half of the emissions with a positive-value metric; light and dark green each contain half of the
emissions with a negative-value metric). Grey regions reflect low-emission regions (59% of total area; 1% of total emissions).

LEZs often reduce or eliminate the entry of high-
emitting vehicles (e.g. older, more-polluting diesel
trucks) into a designated zone via rules and/or tolls,
although they can also target non-vehicle emissions.
Here, the LEZ was 588 km2 (1.6% of basin-wide area)
and represented ∼2.7 tonnes-per-day of emissions
(∼10% of the basin-wide total), with an areal-average
intake fraction of 36 ppm (approximately double the
basin-wide average). We simulated the results of a 25%
emission reduction inside the LEZ, with no emission
changesoutside theLEZ(i.e. a 2.6%[∼0.7 t d−1] reduc-
tion in domain-wide emissions). The magnitude of
this emission reduction is comparable to that observed
for other LEZs worldwide [35–38]. Our results (table
2) indicate that this emission reduction would reduce
pollution impact by 5%, inequality by 18%, and injus-
tice by 6%. Therefore, targeting emission reductions
to certain locations can yield disproportionately large
advantages for impact, efficiency, equity, and justice:
win-win-win-win situations.

We next examined the broader effects of an LEZ
by considering truck re-routing; rules or tolls would
lead vehicles to circumvent the LEZ. We performed
simulations for trucks starting in the port region and
needing to travel either north (figure 3(a)) or east
(figure 3(b)) to reach popular cargo destinations. In
each case, two paired routes started and ended at the
same place; however, one route passed through the LEZ
while the other avoided it as much as possible. For this
exploratory analysis, we did not consider the effects
of differential traffic congestion. For all four routes,
the emissions resulted in ‘unjust’ population exposures
(higher exposure for minorities than whites; see tables
2 and S3). However, the non-LEZ routes were 67%
(figure 3(a)) and 34% (figure 3(b)) less unjust than
the respective LEZ routes. In addition, intake fractions
(i.e. exposure efficiency) indicated that total pollution
inhaled per gram emitted was 14%–17% lower for the
non-LEZ route than for the LEZ route. These results
reinforce how spatially targeted reductions can reduce
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Figure 2. The area of interest represents the area in which reducing emissions would have the highest intake fraction (‘efficiency’;
top quartile) as well as the greatest reductions for impact, inequality, and injustice (top quartile). The hypothetical low-emission zone
(LEZ: inset map) is based on the largest contiguous area within the area of interest.

Table 2. Results of two emission reduction strategies.

Intake
a

(g d−1) Intake fraction
(ppm)

Dissimilarity index White-vs-minorities exposure difference
(𝜇g m−3)

Low-emission zone
Baseline 464 –

c 0.197 0.62

25% emissions reduction
b

439 –
c 0.186 0.51

Reduction 25.0 (5%) –
c 0.011 (6%) 0.11 (18%)

Truck re-routing
d

Route 1 – 28.1 –0.012 0.04
Route 2 – 33.7 0.003 0.13

Reduction 5.6 (17%) 0.015 (500%) 0.09 (69%)

Route 3 – 28.7 0.013 0.10
Route 4 – 33.3 0.015 0.15

Reduction 4.6 (14%) 0.002 (13%) 0.05 (33%)

a Basin-wide intake from basin-wide emissions. For example, the basin-wide total intake of all emissions is 464 g d−1 before implementing the

LEZ or truck re-routing. For the illustrative calculations shown here, we do not estimate emission-reductions from truck re-routing.
b Scenario represents a 25% reduction in all emissions within the low-emission zone (2.6% reduction overall).
c For a primary pollutant like diesel PM2.5, emission reduction would not change the intake fraction (i.e. fraction of DPM emissions inhaled

does not depend on amount emitted). Intake fraction values are 17.8 ppm overall and 35.9 ppm for emissions in the low-emission zone.
d See figure 3(a) and (b) for routes. ‘Reduction’ represents the change that occurs after converting from the heavily-LEZ route to the

non-/reduced-LEZ route (switching from route 2 to route 1; switching from route 4 to route 3).

multiple exposure metrics (here, exposure efficiency
and injustice) [9].

Importantly, we found that our predictions could
not be replicated with simple linear regression models.
Values for the injustice metric were only moderately
correlated with income (R2 = 0.18) and with propor-
tion of the population that is minority (R2 = 0.37); in

simple regressionmodels for the injustice metric (tables
S1 and S2), the normalized regression coefficient is
−0.098 for income and 0.32 for proportion of the pop-
ulation that is minority (i.e. on average, holding other
variables constant, a 1-standard-deviation change in
the proportion of the population that is minority cor-
responds to a 0.32-standard-deviation change in the
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LAX

Anaheim

Van Nuys

Long Beach

Los Angeles

Newport Beach

Route 1 - I405

Route 2 - I110

Major Routes

Area of Interest

Route 3 - I605

Route 4 - I710

Major Routes

Area of Interest

(A) (B)

Figure 3. Alternative routes (A) and (B) represent two hypothetical truck re-routing scenarios to avoid or reduce travel in the LEZ.

injustice metric). These simple regression models only
considerdemographics in the samegrid cell as the injus-
tice metric and therefore ignore domain-wide patterns
in meteorological and demographic variables, as well
as potential spatial autocorrelation in the dependent
variables (e.g. the injustice metric) and in regression
model residuals. (For an example of the importance
of these domain-wide patterns, consider that our spa-
tial simulations showed that reducing emissions in
white and higher-income areas along the coastline
south of LAX would reduce injustice and inequality.
One reason for that finding is the proximity of those
grid cells to minority and low-income neighbor-
hoods directly adjacent and downwind; see figures
1(c) and (d).) Ignoring spatial autocorrelation gen-
erally inflates regression coefficients: the normalized
regression coefficients—the values –0.098 and 0.32
given above—are ∼20%–60% smaller in regression
models that account for spatial autocorrelation (basis:
queen order of contiguity 1, 2, and 3; see supple-
mentary data). Overall, those findings highlight that
simply identifying areas with high proportions of low-
income or minority residents may or may not be an
effective means of targeting emission reduction inter-
ventions; the demographics of other areas, as well as
patterns of pollution dispersion, are also important
considerations.

4. Conclusion

Results and methodologies presented here represent a
new lens with which to approach and quantify envi-
ronmental inequities; ‘win-win’ opportunities exist
in which multiple pollution reduction goals can be
accomplished. These methods can be applied to other
pollutants, years, or locations for which spatially
detailed fate and transport models have been devel-
oped. Fortunately, fate and transport models have been
developed for many locations throughout the world.
The resulting information may have applications in
various well-known contexts, including issuing new

emission permits; targeting enforcement of existing
permits; crafting zoning rules for pollution sources;
low-emission zones; and developing pollution reduc-
tion strategies, including education and other outreach
activities.

Understanding the spatial patterns of exposure
will allow us to prioritize emission control strate-
gies that maximize intervention impact, efficiency,
equality, and justice, thus bringing us closer to meet-
ing local and national goals to reduce exposure to
pollution and address health disparities. Local and
national policymakers could use our approach to
consider impact, efficiency, environmental inequality,
and environmental injustice when evaluating emission
reduction opportunities.
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