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A B S T R A C T

Exposure to household air pollution is a leading cause of morbidity and mortality globally. However, due to the
lack of validated low-cost monitors with long-lasting batteries in indoor environments, most epidemiologic
studies use self-reported data or short-term household air pollution assessments as proxies of long-term exposure.
We evaluated the performance of three low-cost monitors measuring fine particulate matter (PM2.5) and carbon
monoxide (CO) in a wood-combustion experiment conducted in one household of Spain for 5 days (including the
co-location of 2 units of HAPEX and 3 units of TZOA-R for PM2.5 and 3 units of EL-USB-CO for CO; a total of 40
unit-days). We used Spearman correlation (ρ) and Concordance Correlation Coefficient (CCC) to assess accuracy
of low-cost monitors versus equivalent research-grade devices. We also conducted a field study in India for 1
week (including HAPEX in 3 households and EL-USB-CO in 4 households; a total of 49 unit-days). Correlation
and agreement at 5-min were moderate-high for one unit of HAPEX (ρ = 0.73 / CCC = 0.59), for one unit of
TZOA-R (ρ = 0.89 / CCC = 0.62) and for three units of EL-USB-CO (ρ = 0.82–0.89 / CCC = 0.66–0.91) in
Spain, although the failure or malfunction rate among low-cost units was high in both settings (60% of unit-days
in Spain and 43% in India). Low-cost monitors tested here are not yet ready to replace more established exposure
assessment methods in long-term household air pollution epidemiologic studies. More field validation is needed
to assess evolving sensors and monitors with application to health studies.

1. Introduction

Inefficient combustion of solid fuels such as wood, animal dung, and
coal are used by nearly half of the world's population (~ 3 billion
people) for cooking, lighting, and heating (Smith et al., 2004). House-
hold air pollution from combustion of solid fuels was ranked the eighth
leading risk factor for non-communicable diseases globally in 2015,
accounting for an estimated 2.9 million deaths and 85.6 million dis-
ability-adjusted life years lost (Forouzanfar et al., 2016). Household air
pollution is particularly relevant in resource-limited regions where a
substantial proportion of the population lacks access to clean household
energy, such is the case for South Asia and sub-Saharan Africa, where
household air pollution represents the fourth leading environmental
risk factor (Forouzanfar et al., 2016).

Fine particulate matter (particulate matter with aerodynamic dia-
meter of 2.5 µm or less; PM2.5) and carbon monoxide (CO) are com-
monly used as indicators of exposure to the mixture of particulate and

gaseous products of incomplete combustion resulting from inefficient
household fuel use (Smith et al., 2004; Naeher et al., 2007). Epide-
miologic studies focused on quantifying the adverse health effects of
chronic exposure to household air pollution would ideally assess par-
ticipants’ exposure to household air pollution over the long-term, per-
haps over weeks to months rather than hours or days. However, many
of the devices currently available are expensive and have high logistical
barriers or suffer from technical constraints (e.g. low battery life, high
cleaning frequency, filter exchange, etc.) that preclude continuous and
long term monitoring of household air pollution in population-based
studies, particularly in low- and middle-income countries where often
electricity supply is lacking or unreliable (Pillarisetti et al., 2017;
Gordon et al., 2014; Clark et al., 2013). Thus, most household air
pollution studies have relied on self-reported data or short-term mea-
surements taken in 24 h (Naeher et al., 2001; Bruce et al., 2004;
Balakrishnan et al., 2004; Gao et al., 2009; Rehman et al., 2011;
McCracken et al., 2013; Van Vliet et al., 2013; Yamamoto et al., 2014;
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Pokhrel et al., 2015; Chen et al., 2016) or in two or three 24-h incre-
ments (i.e. 48 h, 72 h) (Helen et al., 2015; Downward et al., 2015; Hu
et al., 2014; Pope et al., 2014; Jiang and Bell, 2008) as proxies for long-
term exposure. Although short-term measurements can serve as useful
indicators of long-term exposures when taken repeatedly in panel stu-
dies, longer term measurements may be preferable to reduce some
forms of exposure misclassification and for the study of chronic disease
risk. Recent rapid growth of low-cost, easy-to-use, battery-operated,
portable air pollution sensors potentially offers important new oppor-
tunities for long-term sampling in population-based studies (Koehler
and Peters, 2015; Kumar et al., 2016; McKercher et al., 2017). These
off-the-shelf sensors are commonly custom-built in aerosol monitors for
different air pollutants and research purposes (Edwards et al., 2006;
Mead et al., 2013; Holstius et al., 2014; Gao et al., 2015; Barakeh et al.,
2017; Cao and Thompson, 2017). Sensors’ performance characteristics
have been summarized elsewhere (Rai et al., 2017; Aleixandre and
Gerboles, 2012), although most of the emerging monitors have not yet
been thoroughly characterized (Snyder et al., 2013; Lewis and Edwards,
2016). Most of the existing field-validation studies have been done in
outdoor environments (Mead et al., 2013; Holstius et al., 2014; Gao
et al., 2015; Olivares and Edwards, 2015; Hojaiji et al., 2017;
Mukherjee et al., 2017; Zikova et al., 2017) such that their performance
in real-world indoor environments remains hard to predict. Although
remarkable efforts have been done to develop inexpensive and rugged
household air pollution-based monitors (Pillarisetti et al., 2017), vali-
dation of affordable measurement technology and approaches to ac-
curately assess long-term household air pollution exposure remains a
research priority (Clark et al., 2013).

We therefore tested and benchmarked low-cost monitors with po-
tential application for monitoring PM and CO related to household air
pollution exposure, by characterizing monitors in terms of accuracy,
within-device variability (or intra-variability), response to wide ranges
of concentrations and environmental conditions, and ease of use.
Specifically, our objective was to evaluate the performance of three
monitors (HAPEX, TZOA-R, and EL-USB-CO) with potentially long-
lasting batteries in two scenarios: i) a semi-controlled wood-combustion
validation study using co-located equivalent benchmark monitors under
different concentration and ventilation conditions, and ii) a 1-week
field-based pilot study in households in southern India.

2. Material and methods

2.1. Selection of low-cost monitors

Among all devices available in January 2016, we considered those
that met the criteria required for long-term, unattended monitoring of
household air pollution in epidemiologic studies: (i) low-cost (<US
$600), (ii) battery-operated with long battery life (> 48 h), (iii) not
filter-based, (iv) having wide measurement range, and (v) suitable for
use across meteorological extremes. All information was extracted from
manufacturer datasheets. Based on these considerations, we selected
HAPEX (HAPEX Nano, Climate Solutions Consulting, VT, USA) and
TZOA-R (Model RD02, MyTZOA, SFO, USA) for assessing PM2.5 and EL-
USB-CO (Lascar Electronics Ltd., PA, USA) for assessing CO. A table
summarising characteristics of all the devices used in the study is shown
in Table 1. For more details of these devices and those excluded, see
expanded version in Table S1.

2.2. Low-cost monitors

HAPEX Nano is a passive data-logger designed to monitor house-
hold air pollution exposure (Climate Solutions, 2016). HAPEX is built
on the Sharp sensor GP2Y1010AU0F (Sharp GP for simplification,
Sharp Corporation, Osaka, Japan), which is based on 90° light-scat-
tering technology. Briefly, the Sharp's sensor diode emits a beam of
infrared light that illuminates part of the stream of particles that enters Ta

bl
e
1

Su
m
m
ar
y
of

de
vi
ce

ch
ar
ac
te
ri
st
ic
s.

D
ev

ic
e
(M

od
el
/V

er
si
on

)
M
ea

su
re
(s
)

R
aw

ou
tp
ut

Sa
m
pl
in
g
si
te

N
um

be
r
of

un
it
s
us

ed
R
an

ge
a

Ty
pe

A
pp

ro
xi
m
at
e
ba

tt
er
y
li
fe

a
M
ax

im
um

O
pe

ra
ti
ng

Te
m
pe

ra
tu
re

(°
C
)a

C
os

t
pe

r
un

it
(U

S
D
ol
la
rs
)

D
us
tT
ra
k
D
R
X
(M

od
el

85
34

,
ha

nd
-h
el
d)

PM
1
,P

M
2
.5
,P

M
4
,

PM
1
0

M
as
s
co

nc
en

tr
at
io
n

Sp
ai
n

1
0.
00

1–
15

0
m
g/

m
3

(P
M

2
.5
)

Be
nc

hm
ar
k

6
ho

ur
s

+
50

79
00

BG
I/
M
es
a
La

bs
pu

m
p
(M

od
el

BG
I4
00

4)
-
di
sc
on

ti
nu

ed
PM

2
.5
,a

bs
or
ba

nc
eb

N
on

ap
pl
ic
ab

le
Sp

ai
n

1
N
on

ap
pl
ic
ab

le
Be

nc
hm

ar
k

24
ho

ur
s

+
50

>
10

00

SK
C
pu

m
p
(M

od
el

U
ni
ve

rs
al

PC
X
R
8)

PM
2
.5
,a

bs
or
ba

nc
eb

N
on

ap
pl
ic
ab

le
In
di
a

1
N
on

ap
pl
ic
ab

le
Be

nc
hm

ar
k

12
ho

ur
s
(w

it
h
ex
te
nd

ed
ti
m
es

w
it
h
in
te
rm

it
te
nt

sa
m
pl
in
g)

+
40

>
10

00

TZ
O
A
-R

(v
er
si
on

R
D
02

)
PM

1
,P

M
2
.5
,P

M
1
0
,

T,
R
H

Pa
rt
ic
le

co
un

ts
Sp

ai
n

3
N
ot

re
po

rt
ed

Te
st
in
g

60
da

ys
(1
0
m
in

lo
gg

in
g
ra
te
)

+
40

40
0

H
A
PE

X
N
an

o
(v
er
si
on

1.
0)

PM
2
.5

U
ni
t
le
ss

Sp
ai
n
/
In
di
a

2
5
µg

/m
3
to

15
0
m
g/

m
3

Te
st
in
g

2
ye

ar
s

N
ot

re
po

rt
ed

95
Q
-T
ra
k
(M

od
el

75
75

)
C
O
2
,C

O
,T

,R
H

C
on

ce
nt
ra
ti
on

Sp
ai
n

1
0–

50
0
pp

m
(C

O
)

Be
nc

hm
ar
k

6
ho

ur
s

+
45

31
00

EL
-U

SB
-C
O

C
O

C
on

ce
nt
ra
ti
on

Sp
ai
n
/
In
di
a

3
3–

10
00

pp
m

Te
st
in
g

3
m
on

th
s
(1
0
m
in

lo
gg

in
g
ra
te
)

+
40

12
5

EL
-U

SB
−

2-
LC

D
T,

R
H

T
an

d
R
H

le
ve

ls
Sp

ai
n

1
−

35
to

+
80

°C
,

0–
10

0%
C
om

pl
em

en
ta
ry

3
m
on

th
s

+
80

95

La
bJ

ac
k
(M

od
el

D
ig
it
-T
LH

)-
di
sc
on

ti
nu

ed
T,

R
H

T
an

d
R
H

le
ve

ls
In
di
a

1
−

35
to

+
85

°C
,

5–
95

%
C
om

pl
em

en
ta
ry

3.
3
ye

ar
s

+
85

36

PM
1
:p

ar
ti
cl
es

le
ss

th
an

1
µm

;P
M

2
.5
:p

ar
ti
cl
es

le
ss

th
an

2.
5
µm

;P
M

4
:p

ar
tic
le
s
le
ss

th
an

4
µm

;P
M

1
0
:p

ar
ti
cl
es

le
ss

th
an

10
µm

;T
:T

em
pe

ra
tu
re
;R

H
:R

el
at
iv
e
H
um

id
it
y;

C
O
2
:C

ar
bo

n
D
io
xi
de

;C
O
:C

ar
bo

n
M
on

ox
id
e.

a
A
cc
or
di
ng

to
op

er
at
in
g
m
an

uf
ac
tu
re
r
m
an

ua
ls

or
da

ta
sh
ee
ts
.B

at
te
ry

lif
e
va

ri
es

ac
co

rd
in
g
to

th
e
se
tt
in
gs

sp
ec
ifi
ed

.
b
A
bs
or
ba

nc
e
w
as

al
so

m
ea
su
re
d
bo

th
in

Sp
ai
n
an

d
In
di
a,

bu
t
da

ta
ar
e
no

t
sh
ow

n.

A. Curto et al. Environmental Research 163 (2018) 53–63

54



the sensing chamber. The light is scattered by particles depending on
their size, index of refraction, and light absorbing characteristics. The
scattered light is then collected by a light-sensitive transistor (photo-
transistor), located at 90° of the source beam. The transistor converts
light into a voltage, which is proportional to the concentration of par-
ticles. Although not size-selective, according to manufacturer HAPEX is
most sensitive to PM with aerodynamic diameter between 1 and 3 µm.
HAPEX has a rechargeable battery that is advertised to run for 2 years
with 20 years of shelf life, although the sampling session cannot last
more than 1.2 years in terms of memory capacity.

TZOA-R is a particle counter that simultaneously categorizes parti-
cles into three non-overlapping bins, labelled according to the manu-
facturer as: “ultrafine” (total particles less than 1 µm- PM1), “fine” (total
particles sized 1 µm up to 2.5 µm), and “coarse” (total particles sized
2.5 µm up to 10 µm) (MyTZOA, 2015). However, the TZOA-R minimum
detection particle size is 0.3 µm, above the established cut-point of<
0.1 µm for ultrafine particles. Like HAPEX, the aerosol in TZOA-R is
analysed through light-scattering technology (with a 655 nm wave-
length laser), although in the TZOA-R the air is drawn in by a tiny fan.
TZOA-R has a rechargeable battery whose duration depends on the
duty-cycle set from the 8 GB microSD card (e.g. with a duty-cycle of
0.83%, i.e. 1 reading every 10min, the manufacturer estimates 60 days
of battery life). There is the option to switch the device off between
readings to reduce the frequency of fan and laser functioning, which
saves battery life and lengthens the shelf life of the device by 2 years.

EL-USB-CO is a USB data-logger that uses an electrochemical sensor
(the NAP-505, Nemoto Sensor Engineering Company Ltd., Tokyo,
Japan) to measure CO. Briefly, gas enters the internal cell of the sensor
via a capillary by diffusion, removing unwanted gases with a charcoal
based filter. CO is then oxidised after reacting with an electrode. The
reactions generate an electrical current proportional to CO concentra-
tion. EL-USB-CO has a non-rechargeable internal battery (1/2AA 3.6 V)
that is advertised to last up to 3 months under specific conditions (i.e.
10 min logging rate, 25 °C temperature, with audible warnings disabled,
and readings below 10 ppm) and with 4 years of shelf life (Lascar
Electronics, 2012) that can be reduced or extended according to the CO
levels to which it is exposed (e.g. the lower the levels, the longer it
lasts).

The TZOA-R and EL-USB-CO devices were commercially-available
and purchased new for this study. We obtained the HAPEX units di-
rectly from the manufacturer at no cost for the purposes of testing. Each
device (except TZOA-R) was factory-calibrated by the manufacturer.
HAPEX calibration process has been described in detail elsewhere
(Climate Solutions, 2015). Briefly, it consists in two steps: i) slope ad-
justment to reduce inter-device variability down to about± 5% (in a
smoke chamber), and ii) zero offset adjustment (in a clean air
chamber). All units of EL-USB-CO were calibrated at 250 ppm with a
flow rate of 0.5 L/min. We used duplicate or triplicate low-cost moni-
tors to study within-device precision.

2.3. Wood-combustion experiment in Spain

Sampling was conducted during five days in a non-smoking private
single-family house in the municipality of Terrassa (Spain) during
February-March 2016. The three low-cost monitors (HAPEX, TZOA-R,
and EL-USB-CO) were collocated with benchmark devices 1m from an
indoor fireplace and 0.6 m above the ground. The fireplace was the sole
source of heat in the house. We used newspaper to start the fire; the fire
was maintained for 12 h using dried hardwood logs from Holm oak tree.
We weighed the wood fuel prior to starting the fire each day. We
controlled air ventilation conditions during fire hours each experiment
day according to a pre-specified protocol by opening or closing the
living room window (120 × 140-cm), such that improved ventilation
hours (21 / 120 h) covered different fire phases (ignition, steady, ex-
tinction) (Fig. S1).

We used the DustTrak DRX (Model 8534, TSI Inc., MN, USA) and the

Q-Trak (Model 7575, TSI Inc.) as the PM2.5 and CO benchmark moni-
tors, respectively. Although they are not regulatory-grade monitors,
their portability and affordability have made them widely used in prior
air quality research studies (Pillarisetti et al., 2017; Edwards et al.,
2006; Holstius et al., 2014; Gao et al., 2015; Bartington et al., 2016;
Jovašević-Stojanović et al., 2015; Budde et al., 2012; Jerrett et al.,
2017). We also included a PM2.5 sampling pump (BGI4004, BGI/Mesa
Labs Inc., Waltham, MA, USA) provided with a cyclone sampler
(GK2.05SH (KTL), BGI/Mesa Labs Inc.) and 37-mm and 2-µm pore size
Teflon filters (Zefon International Inc., Ocala, FL, USA). Five gravi-
metric samples were obtained each experiment day; filters were
changed every 4 h during the daytime and after 8 h during the night
time (Fig. S1) in order to obtain a larger number of measurements (n =
25). All pollutant concentrations measured in the experiment are shown
in Table S2.

2.4. Field-based study in India

Field sampling was conducted in 4 convenience-sampled house-
holds located in 4 villages outside of Hyderabad (southern India) during
March-April 2016 (see Fig. S2 for the map of villages). Participants
were part of the CHAI project (Cardiovascular Health effects of Air
pollution in Telangana, India) (Tonne et al., 2017). Based on our ex-
perience in the wood-combustion experiment in Spain, we tested only
the HAPEX and EL-USB-CO devices in the Indian households. In each
household we placed one HAPEX and one EL-USB-CO unit in the main
living area at least at 1m above the ground for 1 week. The first 24 h,
devices were collocated with a PM2.5 sampling pump (Universal 224-
PCXR8, SKC Inc., Eighty Four, PA, USA) provided with a Triplex cy-
clone (SCC1.062, BGI/Mesa Labs Inc.) and 37-mm Pallflex® Emfab™
membrane filters. Ambient temperature and relative humidity were
measured using LabJack (Model Digit-TLH, LabJack, Lakewood, CO,
USA) in a CHAI background fixed station.

Baseline and post-monitoring questionnaires were available for all
households. Post-monitoring questions related to the first 24 h of sam-
pling and included type of cooking and lighting fuels used during
monitoring, quantity of the cooking fuels used (weighed with a balance
pre- and post- sampling), cooking characteristics (e.g. type and location
of the stove used, number of windows opened, cooking time), house-
hold characteristics (e.g. location, size, kitchen type) and the use of
other sources contributing to indoor air pollution (e.g. smoking, in-
cense, mosquito coil).

2.5. Data post-processing

Since light-scattering readings are dependent on the site-specific
characteristics of the aerosol sampled (e.g. size), we corrected all
DustTrak DRX raw data using the linear function obtained from our 25
co-located gravimetric measurements. This correction is also relevant
for the low-cost PM2.5 monitors, which are not direct-mass reading:
HAPEX is unitless and TZOA-R is a particle counter. For HAPEX and
TZOA-R we obtained the correction factor as follows:

=

−

g mCorrection Factor [average PM from gravimetric] (in µ / )

/ [average PM from light scattering] (raw unit)

3

Since gravimetric methods are cumbersome and expensive, for long-
term sampling ideally one would do a collocation with the low-cost
device for the shortest time possible to obtain an on-site correction
factor. To simulate this scenario, we obtained the correction factor
using the first 24 h for HAPEX (in both settings) and for the last 24 h for
TZOA-R (in the experiment; due to TZOA-R's failure the first 3 days as is
further explained in subsection 3.1). All HAPEX and TZOA-R raw data
were then multiplied by its respective 24-h correction factor to get mass
concentration and to account for the characteristics of the aerosol
sampled. As a sensitivity analysis, we further evaluated the potential
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additional benefit (if any) of using longer gravimetric collocations
calculating correction factors from 1 to 5 days. Since light-scattering
devices tend to underestimate PM at low relative humidity (RH)
(< 40%) and overestimate PM at high RH (>60%) (Soneja et al.,
2014), we adjusted all light-scattering PM data (i.e. DustTrak, HAPEX,
and TZOA-R) for humidity effects using a standard adjustment equation
(Chakrabarti et al., 2004). All PM2.5 data shown is filter- and humidity-
corrected.

We defined monitor failure when the monitor did not provide data
(i.e. missing values or repeated zeros). Failure rate was calculated di-
viding the failed unit-days (e.g. 2 units × 5 days = 10 unit-days) by the
total unit-days. We judged a monitor to be unreliable when values and
time-series patterns were considered implausible given the sampling
conditions or contextual information.

Scripts for reading the raw output files from the low-cost monitors
are provided in Supplementary Material. Raw PM2.5 and CO data from
all devices used in the wood-combustion experiment is available for
download at http://hdl.handle.net/10230/28201.

2.6. Statistical analysis

We used Spearman correlation coefficients and concordance corre-
lation coefficients (CCC) to evaluate the correlation and agreement
respectively between PM2.5 and CO levels from each low-cost monitor
and the corresponding benchmark monitor in the experiment. CCC, also
known as Lin's coefficient, is in practice similar to the intraclass cor-
relation coefficient (ICC) (Watson and Petrie, 2010). CCC takes into
account how far observations are from the best-fit line and how far the
best-fit line is from the perfect agreement line (i.e. 45-degree line) when
the results from one device are plotted against the other (Watson and
Petrie, 2010). Bland-Altman plots were also produced. We also calcu-
lated these metrics to assess correlation and agreement among multiple
units of the same low-cost devices (within-device variability) and to
compare the PM1 and PM10 fractions given by TZOA-R and DustTrak
DRX.

We fitted linear regression models between the low-cost (depen-
dent) and its equivalent benchmark device (independent) values al-
lowing for different intercepts and slopes under each condition: “Non-
fire”, “Fire, window opened”, and “Fire, window closed”. As our pri-
mary performance metric, we chose the adjusted coefficient of de-
termination (or R2). We also calculated the low-cost monitor partial
contribution to R2 (Chevan and Sutherland, 1991). We considered both
logarithmic and squared root transformations.

All analyses were conducted with R (version 3.3.1, the R Foundation
for Statistical Computing, https://www.r-project.org/) using “corrplot”
and “epiR” packages. Additional details about the methods, such as the
dimensions of the sampling sites and the filter weight process is in
Supplementary Material.

3. Results

3.1. Failure rate of low-cost monitors: wood-combustion experiment

One of the two HAPEX units and two of the three TZOA-R units
failed early in the experiment. Data from the first three sampling days
of the remaining TZOA-R unit contained repeated zeros. Thus, PM2.5

data was available from only one HAPEX unit (with 7232min of data)
and one TZOA-R unit (with 2315min of data) (see time-series in Fig.
S3). The unsuccessful HAPEX unit gave repeated missing values, which
was determined to be part of a defective batch according to manu-
facturer. One of the unsuccessful TZOA-R devices had a broken fan; the
cause of failure of the other TZOA-R unit is unknown. On the other
hand, all the three EL-USB-CO units took CO measurements during all
the experiment days. CO levels from all the three units, however, were
disproportionately higher (an average of 48 times higher) the last two
days than the first days of operation (Fig. S4). This could be because the

last two days the fire was more intense, and higher intensity increases
temperature, lowers RH, and limits the oxygen entrance into the flame
zone, which creates high concentrations of CO (Reid et al., 2005). As a
sensitivity analysis, we therefore created five regression models, one
per each sampling day, adding temperature as an explanatory variable.
Temperature had a positive and significant effect on EL-USB-CO mea-
surements, but the magnitude of the effect was ⁓20 times larger the
last two days (3.5 and 3.1 ppm increase for each °C) than the first days
(0.02–0.153), indicating that the effect of temperature was not constant
across days. We therefore judged the monitor to have been unreliable
and performed the analysis omitting the last two days (i.e. ~
4390min).

3.2. Wood-combustion experiment characteristics

Wood consumption averaged (min-max range) 50.7 (42.5–70.0)
kg·d−1. According to the EL-USB-2-LCD data-logger, temperature and
RH reached during fire hours ranged from 19° to 55.5°C and from 10%
to 48%, respectively (Table S3). There were no high-humidity episodes;
the maximum RH reached if taking into account non-fire hours was
53.5%. Correlation (ρ) and agreement (CCC) between the EL-USB-2-
LCD data-logger (low-cost) and the Q-Trak (benchmark) was high for
both temperature (ρ = 0.95 / CCC = 0.80) and RH (ρ = 0.96 / CCC =
0.89). There was a high linear correlation between the DustTrak DRX
and gravimetric (BGI pump) techniques (Fig. S5).

3.3. Low-cost versus benchmark devices: wood-combustion experiment

Correlation and concordance matrices of all the PM2.5 and CO de-
vices used are shown in Fig. 1. Bland-Altman plots are shown in
Supplementary Material (Figs. S6, S7, S8). When compared to BGI,
using 4 h (daytime) or 8 h (night time) averaging times, correlation (ρ)
and agreement (CCC) of HAPEX (ρ = 0.65 / CCC = 0.58) and TZOA-R
(ρ = 0.69 / CCC = 0.66) were each moderate. When compared to
DustTrak DRX, 5-min correlations were found to be higher for both low-
cost monitors (ρ = 0.73 / CCC = 0.59 for HAPEX; ρ = 0.89 / CCC =
0.62 for TZOA-R), while agreement remained moderate. The three col-
located units of EL-USB-CO showed moderate-high correlation and
agreement when compared to Q-Trak (ρ = 0.82–0.89 / CCC =
0.66–0.91) and between units of the EL-USB-CO (ρ = 0.80–0.93 / CCC
= 0.41–0.84).

When the averaging time was increased to 1-h, the correlation be-
tween DustTrak DRX and HAPEX was lower than the 5-min averaging
time, although the agreement was slightly higher (ρ = 0.68 / CCC =
0.66). For TZOA-R, the 1-h averaging time did not materially change
the correlation, but substantially improved the agreement with the
DustTrak DRX (ρ = 0.91 / CCC = 0.81). Longer averaging time did not
materially change the correlation or agreement between the EL-USB-CO
with its benchmark instrument (Q-Trak), but did result in improved
within-device correlation and agreement (ρ = 0.82–0.94 / CCC =
0.51–0.86). The correlation and agreement when comparing the PM1

fraction of TZOA-R with DustTrak DRX were moderate-high (ρ= 0.90 /
CCC = 0.64), whereas they were very poor when considering the PM10

fraction (ρ = 0.46 / CCC = 0.21). When applying gravimetric correc-
tion to HAPEX using gravimetric data from all the sampling days (rather
than only using the first 24 h of col-located data), 5-min agreement
between HAPEX and DustTrak DRX improved modestly from CCC =
0.59 (correction based on 1 day of gravimetric data) to CCC = 0.66
(correction based on 5 days).

Scatter plots showing pollutant levels stratified by fire and room
ventilation conditions and by low-cost devices are shown in Figs. 2–4.
Since the performance of the low-cost monitors varied according to
each of the three conditions, we included the 3-category variable as an
interaction term in all models. When only analyzing the last two days of
data to allow comparison between HAPEX and TZOA-R, model R2 va-
lues were 74% for HAPEX and 85% for TZOA-R. The partial R2 for the
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effect of the device (Table S3) was 43% for HAPEX and 76% for TZOA-
R, indicating that HAPEX was highly influenced by the fire and venti-
lation conditions. HAPEX performance was poor during fire and
window opened hours (Fig. 2, central panel), substantially over-
estimating DustTrak DRX values. TZOA-R values were consistently
lower than DustTrak DRX in all conditions, especially during non-fire

conditions (Fig. 3, left panel). When analyzing only the first three days
of data for unit 1 of EL-USB-CO (Fig. 4), R2 was 82% and the partial
contribution to R2 for the device was 71%. All units of EL-USB-CO (see
Figs. S9 and S10 for the other two units) clearly underestimated the Q-
Trak values during non-fire hours (left panels). Regarding the other
conditions, there was not a clear pattern since performance depended
on the condition and the device unit under consideration. Logarithmic
and squared root transformations for all pollutants did not improve the
model fit.

3.4. Field-based study characteristics

All households monitored were non-smoking single houses located
in residential areas with the kitchen in a separated room from the living
area. All households used liquefied petroleum gas (LPG) and electricity
as the only sources of cooking and lighting, respectively. Although not
used the first day of sampling, three households reported periodic use
(2–10 times/month) of a secondary outdoor stove using either coal
(household 2) or biomass (households 3 and 4) fuel.

During the first 24 h of sampling, the total cooking time per
household varied from 90 to 190min consuming between 175 and
425 g of LPG; half of the households had a window open near the LPG
stove. One household (household 3) reported the use of incense (9 h
duration) and an oil lamp (45min) in the living area during the first
24 h of sampling. PM2.5 and CO concentration, temperature and RH
ranges were overlapping between the semi-controlled sampling in Spain
and the real-world sampling in India (Table 2). However, the influence
of RH on PM2.5 values was more evident in India than in Spain.

Temporal variability of PM2.5 and CO over 1 week is shown in Fig. 5
(using 6010 filter- and humidity-corrected 5-min of PM2.5 data, and
8317 5-min of CO). PM2.5 and CO peaks did not coincide and correla-
tion based on 5-min average data between pollutants was weak for the
three households with simultaneous data: 0.05, −0.04, and −0.17.
Although none of the monitors failed in India, we considered EL-USB-
CO to be unreliable in three of the households (1, 2, and 4) because
there was a noticeable baseline shift in the EL-USB-CO time-series (i.e.
baseline values were not constant over time) that was accompanied by
an unexpected decreasing pattern of CO. None of these households re-
ported any type of indoor burning activity the first 24 h. We observed
increases in PM2.5 in the living area corresponding to self-reported
cooking activities during the first 24 h, but no corresponding increase in
CO.

Fig. 1. Correlation (above the diagonal) and concordance (below the diagonal) matrices
between the low-cost devices and the benchmark monitors used in the experiment in
Spain. BGI and DustTrak DRX: benchmark PM2.5 monitors; HAPEX and TZOA-R: low-cost
PM2.5 monitors; Q-Trak: benchmark CO monitor; (EL-)USB-CO: low-cost CO monitor. The
number at the end of each (EL-)USB-CO indicates a different unit of the same device. To
obtain both matrices, PM2.5 data from the 5 sampling days was used for all monitors
except for TZOA-R, for which only data from the two last sampling days was obtained. To
obtain both matrices, CO data from the last two sampling days was omitted due to
monitor malfunctioning. The “NA” in the case of TZOA-R correlations means that no
simultaneous and valid data are available for both devices. Note that correlation and
agreement for BGI pairs were averaged over 4 h for daytime / 8 h for night time. All other
data in Figure are based on 5min averages. DustTrak DRX, HAPEX, and TZOA-R data
presented here are adjusted gravimetrically and by relative humidity. Colour legend bar
at the right indicates the magnitude of the correlation and agreement from −1 to 1;
lighter cells indicate proximity to 0.

Fig. 2. Scatter plots of 5-min PM2.5 levels from HAPEX (low-cost) versus DustTrak DRX (benchmark) during the experiment in Spain stratified by fire and room ventilation conditions.
PM2.5: particles less than 2.5 µm (in µg/m3). Plots include only the last two days to allow comparison with TZOA-R. Solid lines correspond to the fitted mean concentration of HAPEX.
Dashed lines correspond to the 95% confidence interval for the prediction. Grey lines represent the ideal (HAPEX= DustTrak DRX). The fitted linear model showed an R2 = 0.74. All data
presented here are adjusted gravimetrically and by relative humidity.
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4. Discussion

All three low-cost monitors evaluated in the semi-controlled ex-
periment showed very high (> 40%) failure or malfunction rates, with
TZOA-R reaching the highest: 86% of unit-days. Under more hetero-
geneous sampling conditions in India, HAPEX and EL-USB-CO devices
showed no device failures, but unreliable CO patterns, suggesting EL-
USB-CO malfunctioning. Successful low-cost units showed moderate to
high correlation and agreement when compared side-by-side with more
robust benchmark monitors. However, the performance of HAPEX
(based on the Sharp GP sensor) and EL-USB-CO (based on the NAP-505
sensor) was influenced by the conditions created in the experiment (e.g.
increased natural ventilation).

All devices were previously unused, therefore failures were unlikely
due to instrument fatigue. Since the PM monitors tested were proto-
types (alpha version for HAPEX and beta version for TZOA-R), their
high failure rate may have resulted from early stage design problems
(e.g. TZOA-R had a firmware bug in the internal Real Time Clock, re-
sulting in poor time stamp mapping). However, this is not the case of

the EL-USB-CO, which is an established device that has been previously
used in household air pollution studies as a personal monitor (Lee et al.,
2015; Quinn et al., 2016) and as an indoor monitor (Chen et al., 2016;
Bartington et al., 2016; Klasen et al., 2015; Ochieng et al., 2013;
Tumwesige et al., 2017). Generally it has been used to measure CO for
periods of 24 h or less, although three studies have attempted to use it
for longer periods (Bartington et al., 2016; Quinn et al., 2016; Ochieng
et al., 2013). None of these studies showed unexpected patterns of CO,
although Ochieng et al. (2013) also suggested EL-USB-CO mal-
functioning after obtaining 48-h average CO concentrations of 0 ppm in
two households. The expected pattern, shown in Chen et al. (2016) and
Tumwesige et al. (2017) and also described in Quinn et al. (2016), is a
flat line with CO background levels close to 0 indicating the absence of
any combustion source, with some peaks indicating a prompt burning
activity, similar to what we obtained for household 3 in Fig. 5. For other
households, we observed a week-long baseline shift with an implausible
decreasing CO pattern not attributable to self-reported burning activ-
ities and not correlated with simultaneous PM2.5 concentrations. The
high temperatures and the low oxygen and humidity conditions

Fig. 3. Scatter plots of 5-min PM2.5 levels from TZOA-R (low-cost) versus DustTrak DRX (benchmark) during the experiment in Spain stratified by fire and room ventilation conditions.
PM2.5: particles less than 2.5 µm (in µg/m3). Plots include only the last two days. Solid lines correspond to the fitted mean concentration of HAPEX / TZOA-R. Dashed lines correspond to
the 95% confidence interval for the prediction. Grey lines represent the ideal (TZOA-R = DustTrak DRX). The fitted linear model showed an R2 = 0.85. All data presented here are
adjusted gravimetrically and by relative humidity.

Fig. 4. Scatter plots of 5-min CO levels from unit 1 of EL-USB-CO (low-cost) versus Q-Trak (benchmark) during the experiment in Spain stratified by fire and room ventilation conditions.
CO: Carbon Monoxide (in ppm). Plots include only the first three days of sampling. Solid lines correspond to the fitted mean concentration of EL-USB-CO. Dashed lines correspond to the
95% confidence interval for the prediction. Grey lines represent the ideal (EL-USB-CO = Q-Trak). The fitted linear model showed an R2 = 0.82.
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achieved in the last two monitoring days in the experiment could have
caused the instability problems found in EL-USB-CO, which typically
occur in electrochemical-based monitors (Aleixandre and Gerboles,
2012). However, authors cannot ensure to what extent this situation
accelerated sensor aging and lead to the malfunctioning later in India.
But taking into account the days that the monitor failed and the time
(i.e. after starting a new monitoring session), malfunction was likely
due to zero drift, which accentuates the need to zeroing the device
before each deployment. Although the EL-USB-CO has been widely used
to assess CO levels in different settings (Chen et al., 2016; Bartington
et al., 2016; Lee et al., 2015; Quinn et al., 2016; Klasen et al., 2015;
Ochieng et al., 2013; Tumwesige et al., 2017; Piedrahita, 2017), there
are limited published reports evaluating the performance of the EL-
USB-CO monitor versus benchmark monitors under semi-controlled or
real-world conditions. However, we highlight the work in Ghana of
Piedrahita (2017) who identified failure and malfunction of the EL-
USB-CO in 25% of their sampling days and subsequently conducted
laboratory tests to further investigate its performance. They concluded
that frequent calibration of the EL-USB-CO is needed, since using raw
data (as we did) can produce an average exposure error of 19% (versus
1.9% doing multiple calibrations each sampling day and 1.2% doing
pre- and post-calibrations) (Piedrahita, 2017).

The peer-reviewed literature on low-cost monitor validation studies
in real-world conditions is scarce (Snyder et al., 2013; Lewis and
Edwards, 2016). Some agencies, university departments and research
groups have made public their low-cost monitors performance evalua-
tions (Air Quality-Sensor Performance Evaluation Center (AQ-SPEC),
2018; The Community Robotics, 2018; Environmental Protection
Agency, 2018). Although some of these evaluations are performed for
weeks or use true reference monitors such as Federal Equivalent
Methods (FEM), they are usually done in laboratory chambers (Edwards
et al., 2006; Jovašević-Stojanović et al., 2015; Environmental
Protection Agency, 2018; Manikonda et al., 2016; Wang et al., 2015;
Sousan et al., 2016, 2017; Castell et al., 2017) or in fixed outdoor lo-
cations (Mead et al., 2013; Holstius et al., 2014; Gao et al., 2015;
Mukherjee et al., 2017; Zikova et al., 2017; Jovašević-Stojanović et al.,
2015; Castell et al., 2017), not reflecting a wide range of realistic indoor
conditions, such as those reached in our study. However, the field-based
study done by Semple et al. (2015) is notable as they co-located a low-
cost particle monitor, the Dylos, against a TSI SidePak under real-life
indoor smoking conditions in 17 Scottish homes during approximately
24 h. Although Dylos was found to be a useful low-cost monitor for
indoor environments, it was excluded from our analysis for having a
short battery life (~ 6 h; Table S1). None of these evaluations include
the monitors tested in this study although the sensor inside the HAPEX
(the Sharp GP) has been evaluated (Rai et al., 2017; Olivares and
Edwards, 2015; Budde et al., 2012; Wang et al., 2015; Sousan et al.,
2016) and as part of other monitors (e.g. Foobot, TSI AirAssure)
(Pillarisetti et al., 2017; Olivares and Edwards, 2015; Hojaiji et al.,
2017; Air Quality-Sensor Performance Evaluation Center (AQ-SPEC),
2018; The Community Robotics, 2018; Manikonda et al., 2016; Sousan
et al., 2017). Manufacturers of HAPEX and TZOA-R tested their moni-
tors under laboratory conditions before making them commercially
available. Both low-cost monitors were respectively collocated inside a
test chamber with an Indoor Air Pollution Meter (Aprovecho Research
Center, OR, USA) and a DustTrak DRX (Model 8533) similar to the one
used in this study. Both R-squared reported were very high: 0.99 for
HAPEX (Climate Solutions, 2015) and 0.89–0.92 for TZOA-R (MyTZOA,
2015). In contrast, our study found lower R-squared for HAPEX (R2 =
0.74) and TZOA-R (R2 = 0.85) both at 5-min averaging time, and only
a moderate agreement when compared to a gravimetric method (CCC
= 0.58 for HAPEX; CCC = 0.66 for TZOA-R) at 4 h/8 h averaging
times, suggesting that the performance of low-cost monitors can vary
considerably outside a controlled testing laboratory, as has been pre-
viously pointed out (Zikova et al., 2017; Sousan et al., 2016; Castell
et al., 2017). Furthermore, these manufacturer's tests were performedTa
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over relatively short time periods, generally less than 12 h, and in the
case of HAPEX less than 1 h. Due to the logistical constraints of con-
tinuously maintaining the fire in the wood-combustion experiment, we
did not evaluate the performance of the low-cost monitors against
benchmark devices over long time periods relevant for household air
pollution research (e.g. ≥ 1 week). However, our data provide insights
on the performance of these devices with ≥ 2 continuous days of
sampling, a considerable improvement above the duration typically
used in laboratory testing.

The performance of the low-cost devices varied across concentration
ranges and ventilation conditions created in the experiment. The
HAPEX device was particularly sensitive to the fire and ventilation
conditions, with large overestimates during hours with increased ven-
tilation. This may be because HAPEX is a passive device that operates
on the principle of diffusion, such that higher rates of natural ventila-
tion may have affected its performance. This finding is not surprising as
increasing ventilation transforms the relatively homogenous aerosol
mix into a relatively heterogeneous mixture of indoor and ambient
atmospheres. This is consistent with previous work done by Olivares
and Edwards (2015), who evaluated the performance of the ODIN
monitor, which is also based on the Sharp GP, in an outdoor environ-
ment influenced by woodsmoke. When compared to a TEOM-FDMS,
ODIN tended to slightly overestimate PM2.5 values as wind speed in-
creased. As other PM sensors (Wang et al., 2015), Sharp sensor per-
forms worst at low concentrations, which are often created at higher
wind speeds (Olivares and Edwards, 2015). TZOA-R generally under-
estimated PM2.5 concentrations, but its performance was less sensitive
to changes in conditions resulting from the fire and increased ventila-
tion. The EL-USB-CO also tended to underestimate CO levels, being
particularly relevant during hours with no fire. This is probably because
of the differences in accuracy and resolution between EL-USB-CO
(±7 ppm accuracy; 0.5 ppm resolution) and Q-Trak (± 3 ppm;
0.1 ppm), which may be more important when CO values are closer to
0. Although overall we found moderate-high within-device correlation
for the three EL-USB-CO units, each device had different sensitivity to
conditions created in the experiment. Similarly, Ochieng et al. (2013)

found high within-device variability (24%) when collocating 12 EL-
USB-CO units in Kenya for 48-h three times.

The suitability of emerging low-cost air quality monitors for long-
term household air pollution assessment depends not only on mea-
surement performance, but also reliability, ease of use for researchers,
and impact on participant burden. All of the devices tested in this study
have a lightweight, miniaturized, and silent design that make them well
suited for personal and area monitoring. However, there were re-
markable differences between the devices measuring PM in terms of
ease of use. Whereas HAPEX software provides an interface that we
found to be user-friendly and intuitive, TZOA-R lacked such an inter-
face (data need to be copy-pasted from the microSD card, which is more
prone to errors during data management) and we also found that the
TZOA-R operating manual was not clear regarding the pre-sampling
settings (e.g. distinguishing between “sample_period” and “sample_-
time”). On the other hand, none of the PM monitors are direct-mass
reading, which means they need to be collocated with cumbersome
gravimetric devices in order to obtain mass concentration measure-
ments. Although this has been pointed out as a main concern for light-
scattering monitors (Snyder et al., 2013), we found that one day of
collocated monitoring is adequate for gravimetric correction: adding an
additional four days of data improved the agreement between HAPEX
and DustTrak DRX by approximately 12%. Additionally, it is well-
known that sensors’ performance depends on the type of aerosol being
sampled (e.g. the Sharp GP sensor is sensitive to organic and smaller
particles) (Wang et al., 2015), and this is particularly relevant in
household air pollution-related research where correction factors are
influenced by fuel and combustion characteristics, which differ across
households and seasons (Pillarisetti et al., 2017). One advantage of
TZOA-R is that it includes temperature and humidity sensors that are
used as input in an automated adjustment step, thus separate tem-
perature and RH correction would not be necessary. TZOA-R also per-
formed quite well for particles< 1 µm in diameter, making it a po-
tentially useful candidate in studies focusing on exposures to smaller
size fractions and adverse health effects, which has been recognized a
major challenge for low-cost sensing (Kumar et al., 2016).

Fig. 5. 1-week PM2.5 (measured by HAPEX) and simultaneous CO (measured by EL-USB-CO) levels (5 min averaged) in households from southern India. PM2.5: particles less than 2.5 µm;
CO: Carbon Monoxide. Dashed red line is showing the 0 level. PM2.5 values were adjusted gravimetrically and by relative humidity. Only household 1 and 3 were measured with the same
EL-USB-CO unit.
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This is one of the few published studies characterizing the perfor-
mance of low-cost monitors with potential application for long-term
household air pollution research in conditions commonly encountered
in low- and middle-income countries. Other strengths of our study in-
clude evaluation of multiple monitors, over the course of multiple days
and across a range of air pollution levels and environmental conditions
such as natural ventilation and temperature stress. While the conditions
in the wood-combustion experiment provide unique insights into the
performance of these devices in a more realistic environment than a
laboratory setting, they are not likely representative of some conditions
typically observed in household air pollution studies conducted in low-
resource settings, especially in environments with high RH.
Nonetheless, the pollutant concentrations, temperature, and RH con-
ditions encountered in our field study in southern India were not dis-
similar from those in the semi-controlled experiment, and these addi-
tional data provide an indication of the device performance under more
realistic conditions over one week.

Limitations of the study also should be considered. This study was
not intended to conduct a systematic and comprehensive evaluation of
all monitors available in the market. Rather we chose monitors that we
thought potentially useful for our future studies on the basis of potential
for long-term, unattended sampling. Although the benchmark monitors
used are expensive research-grade monitors, they are not true “re-
ference” monitors. We did a custom calibration with a co-located
gravimetric sampler to correct DustTrak DRX values, but we did not
calibrate the Q-Trak monitor as we did not have a reference method to
measure CO. The small sample size and convenience sampling in the
pilot study in India included only households using relatively clean
household energy for cooking, which might not be comparable to
households relying primarily on biomass fuel for cooking. Another
limitation of our study is that we were not able to study the within-
device variability in all low-cost devices because of the high rate of
device failure. Although we corrected our PM data for meteorological
outdoor data, we had no indoor temperature and RH data to more ac-
curately correct the PM concentration in the Indian households. This
also impeded us to further explore the role of changing indoor tem-
peratures to the CO pattern observed, although if temperature had had
a big impact, CO patterns would have been cyclic and diurnal
throughout the week rather than consistently decreasing. This is an
important limitation given that both light-scattering and electro-
chemical sensors have temperature and RH dependence. Manufacturers
should provide calibration equations or tables with correction constants
to help users to better deal with meteorological changes. Future field
studies should include additional temperature and RH monitors or
multi-sensor monitors like TZOA-R to correct for indoor meteorological
conditions.

Low-cost technology for measuring air quality is a quickly evolving
field and device models are often updated in quick succession; more
advanced sensors/monitors will continue to change the landscape of air
quality monitoring (Environmental Protection Agency, 2013). Since our
research was completed, HAPEX and TZOA-R have launched newer
versions. According to the manufacturer, HAPEX version 3.0 in-
corporates improvements in the user interface and the algorithms that
reduce noise, reaching 100% working rates. Similarly, TZOA-R has
launched the RD03, which adds a Volatile Organic Compound (VOC)
sensor, longer lifetime and better sensitivity and accuracy, among other
improvements. Other potentially-useful devices that should be included
in upcoming evaluations for monitoring household air pollution is the
PATS + (Pillarisetti et al., 2017), successor of the UCB-PATS and also
built on the Sharp GP sensor, but not available at the time of our study
(Table S1).

5. Conclusions

Advances in battery technology have improved the feasibility of
continuous monitoring over periods greater than 24 h. But in the light
of our semi-controlled validation and field-based measurements, none
of the low-cost monitors we tested seem ready to replace more estab-
lished household air pollution measurement devices. The next genera-
tion sensors and/or monitors may deliver more material benefits in
long-term monitoring of air pollution exposure. However, real-world or
in-field validation studies of these devices are essential before they are
deployed in household air pollution-related research. Further evalua-
tions should include several weeks of continuous sampling to test sta-
bility and durability, multiple units of each device, and cover a range of
concentrations, temperatures, and humidity levels.
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