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A B S T R A C T

Assessing historical exposure to air pollution in epidemiological studies is often problematic because of limited
spatial and temporal measurement coverage. Several methods for modelling historical exposures have been
described, including land-use regression (LUR). Satellite-based LUR is a recent technique that seeks to improve
predictive ability and spatial coverage of traditional LUR models by using satellite observations of pollutants as
inputs to LUR. Few studies have explored its validity for assessing historical exposures, reflecting the absence of
historical observations from popular satellite platforms like Aura (launched mid-2004). We investigated whether
contemporary satellite-based LUR models for Australia, developed longitudinally for 2006–2011, could capture
nitrogen dioxide (NO2) concentrations during 1990–2005 at 89 sites around the country. We assessed three
methods to back-extrapolate year-2006 NO2 predictions: (1) ‘do nothing’ (i.e., use the year-2006 estimates di-
rectly, for prior years); (2) change the independent variable ‘year’ in our LUR models to match the years of
interest (i.e., assume a linear trend prior to year-2006, following national average patterns in 2006–2011), and;
(3) adjust year-2006 predictions using selected historical measurements. We evaluated prediction error and bias,
and the correlation and absolute agreement of measurements and predictions using R2 and mean-square error R2

(MSE-R2), respectively. We found that changing the year variable led to best performance; predictions captured
between 41% (1991; MSE-R2 = 31%) and 80% (2003; MSE-R2 = 78%) of spatial variability in NO2 in a given
year, and 76% (MSE-R2 = 72%) averaged over 1990–2005. We conclude that simple methods for back-extra-
polating prior to year-2006 yield valid historical NO2 estimates for Australia during 1990–2005. These results
suggest that for the time scales considered here, satellite-based LUR has a potential role to play in long-term
exposure assessment, even in the absence of historical predictor data.

1. Introduction

Exposure assessment in studies of long-term health effects of air
pollution is often hampered by sparse or missing measurements (Hart
et al., 2009; Hystad et al., 2012). This challenge is most pronounced in
studies of multi-decadal exposures, which is one reason why there are
fewer studies focused on them compared with the relatively large body
of evidence on shorter-term exposures (Hansell et al., 2016). One op-
tion for addressing these limitations is land-use regression (LUR) and

other air pollution modelling techniques. LUR is a frequently used
method for assigning exposures in epidemiological studies. It uses en-
vironmental predictors (such as nearby road length, traffic volume and
land use categories) to capture variability in measured pollutant con-
centrations, and can then be applied to estimate concentrations at un-
measured locations (Hoek et al., 2008; Marhsall et al., 2008).

Traditionally, most LUR models were developed for specific cities
and their applicability to other locations was limited, which con-
strained their use in national- or multi-national health studies (Allen
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et al., 2011; Briggs, 2007; Poplawski et al., 2009). Recently, several
studies have incorporated satellite-derived observations of pollutants
and other predictors of ground-level pollutants (e.g., impervious sur-
faces and tree cover). These satellite-based LUR models can potentially
serve the dual purpose of improving predictive ability and extending
spatial coverage compared with traditional LUR (Jerrett et al., 2017),
which has led to national-and multi-national models for nitrogen di-
oxide (NO2), PM2.5 (< 2.5 µm) and PM10 (< 10 µm) (Bechle et al.,
2015; Beckerman et al., 2013; de Hoogh et al., 2016; Hoek et al., 2015;
Hystad et al., 2011; Knibbs et al., 2014; Novotny et al., 2011; Vinneau
et al., 2013; Young et al., 2016). Notably, the technique has recently
been used to develop a global model for NO2 that captured 54% of
spatial variation in 2011 mean concentrations (Larkin et al., 2017).

Previous studies have demonstrated a role for LUR in historical NO2

exposure assessment, either through development of models using
historical predictor data (i.e., to match or approximate the year(s) of
interest) or, when this is not feasible, via back-extrapolation of esti-
mates from more recent models (e.g., Beelen et al., 2007; Cesaroni
et al., 2012; Chen et al., 2010; Eeftens et al., 2011; Gulliver et al., 2013;
Gulliver et al., 2016; Levy et al., 2015; Wang et al., 2013). However,
despite the potential benefits of satellite-based LUR models their va-
lidity for historical exposure assessment has received limited attention
(Hystad et al., 2012). This aspect of satellite-based LUR remains largely
unexplored, perhaps reflecting the absence of historical, high spatial
resolution satellite data. For example, the ozone monitoring instrument
(OMI) aboard the Aura satellite is a popular source of NO2 observations
and was launched in mid-2004.

In this study, we sought to evaluate the ability of national satellite-
based LUR models for Australia to capture historical levels of NO2 using
multiple back-extrapolation methods. We aimed to add to the limited
literature on historical estimation of NO2; most studies have been
performed in North America and Western Europe using relatively dense
monitoring networks, and only one study used satellite data (Hystad
et al., 2012). Australia provides a useful contrast to these other loca-
tions because of its continental scale, highly urbanised and con-
centrated population, and relatively scant temporal and spatial cov-
erage from the ground-based NO2 monitoring network.

2. Methods

2.1. Overview of satellite-based LUR models

We previously developed satellite-based LUR models for annual
mean NO2 using generalised estimating equations (GEEs) fit to data
from the 68 continuous regulatory chemiluminescence monitors oper-
ating throughout Australia during 2006–2011 (population = 24.5
million; area = 7.7 million km2; ~0.3 NO2 monitors/100,000 persons;
~0.9 monitors/100,000 km2). The models were used to predict annual
NO2 for each year during that period; their development and validation
are described in detail elsewhere (Knibbs et al., 2014, 2016). Briefly, we
developed two models: one included the tropospheric column abun-
dance of NO2 molecules observed by the OMI spectrometer aboard the
Aura satellite as a predictor (molecules per cm2; ‘column model’). The
other model included the estimated ground-level NO2 concentration
(ppb; ‘surface model’), based on also including a surface-to-column
ratio from the Weather Research and Forecasting model coupled with
Chemistry (WRF-Chem). We used five-fold cross-validation with five
replications and found that our column and surface models, respec-
tively, explained 81% (RMSE = 1.4 ppb) and 79% (RMSE = 1.4 ppb) of
spatial variability in annual mean NO2 across Australia during
2006–2011 (Knibbs et al., 2014).

We subsequently evaluated model performance using an in-
dependent data set of passive samplers deployed during 2006–2014. We
found the column and surface models, respectively, captured 66%
(RMSE = 2.0 ppb) and 69% (RMSE = 2.0 ppb) of spatial variability in
annual NO2 at 98 non-roadside sites (Knibbs et al., 2016). The present

study builds on those analyses by exploring the models’ ability to
capture historical levels of annual NO2, and determine their validity for
assigning multi-decadal exposures in cohort studies of health effects.

2.2. Measurement data for historical validation

We contacted the eight agencies responsible for regulatory air
quality monitoring across Australia's six states and two territories. We
obtained daily NO2 concentrations (ppb) from all monitoring sites
during 1990–2005, provided: (a) measurements were performed for at
least one calendar year; (b) a calibrated chemiluminescence monitor
compliant with Australian Standard 3580.5.1–1993 was used (SAI
Global, 2017); (c) data were subject to quality assurance (QA) proce-
dures, and; (d) coordinates for the site location were known to at least
five decimal places. Although NO2 had been measured in some Aus-
tralian capital cities as early as the 1960s, most cities had either no
monitoring or only a single site throughout the 1970s and 1980s, and
measurement techniques and frequency were inconsistent (Cleary,
1969; National Environment Protection Council, 2000). We therefore
selected 1990 as our earliest year because Australia's NO2 monitoring
network underwent substantial expansion in the early-to-mid 1990s
prior to the introduction of the first national air quality standards in
1998 (National Environment Protection Council, 1998). For the present
study, we used 2005 as our last year because the models were devel-
oped using data from 2006 to 2011, and previously validated for
2006–2014 (Knibbs et al., 2014, 2016). That time frame allowed us to
assess our models’ historical performance over the 16-year period
(1990–2005) prior to the 6-year period they were developed for.

We obtained data from 90 monitoring sites. To our knowledge, they
represent all regulatory monitors that met our inclusion criteria. The
sites spanned six of Australia's eight states and territories; no historical
data were available for Tasmania or the Northern Territory, which are
the smallest state and territory by population, respectively. Many of the
sites had been used to develop our LUR models for 2006–2011 (Knibbs
et al., 2014). Because of the sparse Australian monitoring network, we
did not exclude these sites but instead undertook sensitivity analyses to
assess the influence of model development sites and non-development
sites on our validation results, which are described in Section 2.6.

Seven monitoring sites, all in major cities, had been relocated be-
tween 0.2 and 2.2 km from their original location during the study
period, of which one site had been relocated twice (0.5 and 1.0 km,
respectively). Because NO2 can be spatially heterogeneous over such
distances in urban areas, we treated the pre- and post-relocation mea-
surements as being from different sites (Gilbert et al., 2003; Marshall
et al., 2008; Pleijel et al., 2004; Roorda-Knape et al., 1999). This
yielded 98 sites available for further analyses.

2.3. Processing of measurements

We sought to maximise inclusiveness while minimising the potential
for seasonal bias due to missing data. We therefore included sites with
50% or greater non-missing daily NO2 observations in a given year,
provided there was at least one month of valid data per season (Hystad
et al., 2011). As we were interested in assessing our LUR models’ ability
to capture long-term average concentrations, we also recorded sites that
had 50% or greater non-missing data during 1990 through 2005, pro-
vided: (a) at least two years of valid data were collected in the first
(1990–1997) and second (1998–2005) eight years of our sixteen-year
study period, respectively, and; (b) of these, at least one month of data
was collected per season per year. We used this approach as a balance
between seeking to include a sufficiently large number of sites, but
without compromising the ability to capture changes in NO2 over the
study period. We undertook sensitivity analyses to assess the stability of
long-term NO2 trends and the effects of using more stringent site in-
clusion criteria on our results (i.e., requiring 60%, 70%, or 80% of data
to be non-missing).
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2.4. Monitoring site classification

We first defined monitoring sites using standard Australian Bureau
of Statistics (ABS) criteria; sites were classified as urban if they were
located in the greater metropolitan area of a capital city or were located
in an ABS-defined significant urban area with a population> 20,000
people in the 2011 census (Australian Bureau of Statistics, 2011). We
classified sites that did not meet those criteria in a single category
called ‘rural and remote’. We then classified the remaining urban sites
as either: (1) ‘roadside’ (≤15m to a major road); (2) ‘urban traffic’ (not
roadside, but ≤100m to a major road), or; (3) ‘urban background’ (not
roadside or urban traffic, and>100m to a major road). The distance
thresholds and classifications were based on our previous validation
study (Knibbs et al., 2016), which in turn was informed by the ex-
ponential decay in NO2 observed near major roads, and which has a
half-life of approximately 100m (Gilbert et al., 2003; Karner et al.,
2010; Pleijel et al., 2004; Roorda-Knape et al., 1999). We manually
assessed all borderline sites close to each distance cut-off using Google
Earth and Street View before classifying them. Our ninety-eight sites
comprised four roadside sites (4%), nine urban traffic sites (9%),
eighty-two urban background sites (84%) and three rural and remote
sites (3%). We examined the sensitivity of our site classifications to both
the distance thresholds for each category and the definition of major
roads using our previous methods (Knibbs et al., 2016).

We used the Australian National Pollutant Inventory to assess sites’
proximity to industrial emissions of nitrogen oxides (Department of the
Environment and Energy, 2017a). None of the sites were located<
300m from an industrial point source, and 93% of sites were lo-
cated> 1 km based on point source data from 1999 to 2005; point
source data prior to 1999 were not available.

2.5. LUR model predictions

We sought to use our surface and column LUR models to predict
NO2 at the measurement sites and assess the models’ ability to capture
spatial variability in annual NO2 year-by-year and averaged over the
whole 16-year study period (1990–2005). However, the large majority
of our LUR predictors were not available historically. For example,
satellite-derived tropospheric column observations and surface esti-
mates of NO2, which contribute the most and second-most predictive
ability to our column and surface models, respectively, were unavail-
able because the Aura satellite was launched mid-2004 (Knibbs et al.,
2014).

We instead employed the ‘present-day’ LUR predictors used to de-
velop both LUR models for 2006–2011. Although the satellite NO2

predictors corresponded to each year in that period, the specific year for
other predictors was dependent on data availability. For example, roads
data were from 2013, land-use categories were from 2011, impervious
surfaces were from 2000 to 2001, and industrial NOX emissions were
from 2008 to 2009. Details on data sources and processing have been
reported previously (Knibbs et al., 2014).

2.6. Back-extrapolation of predictions

We then explored three back-extrapolation approaches for esti-
mating historical NO2. First, we used predicted NO2 for the earliest year
in our models’ development (2006) unmodified (i.e., ‘do nothing’ ap-
proach). Second, we set the independent variable ‘year’ in our LUR
models to each year between 1990 and 2005. Because our LUR models
were developed longitudinally for 2006–2011 using GEEs, we were able
to assess how well they captured NO2 prior to this period (Knibbs et al.,
2014). Using this method, all other LUR predictors were the same as the
‘do nothing’ approach, but the temporal gradient of modestly de-
creasing NO2 observed during 2006–2011 when developing our models
was back-extrapolated to 1990. This approach corresponded to a 0.14
and 0.16 ppb change in estimated NO2 (higher concentrations in earlier

years) for the column and surface models, respectively (i.e., a 2.1 ppb
[column model] and 2.4 ppb [surface model] increase in NO2 from
2005 to 1990).

Our third method back-extrapolated predictions for year-2006 using
NO2 measurements at sites that monitored continuously during
1990–2005. We calculated the ratio of annual mean NO2 in each of the
sixteen years to that in 2006 and used it to adjust the year-2006 pre-
dictions using standard methods (Bechle et al., 2015; Gulliver et al.,
2013). We based the ratio on four sites spanning three states (New
South Wales, Victoria and Western Australia). Two sites were in urban
background locations, one was at the urban-rural fringe and one was in
a rural area. Our selection criteria for the sites are described in the
supplement (page S1). We also calculated the absolute difference (in
ppb) between NO2 in 2006 and each year during 1990–2005, to assess
whether using it to adjust the predictions yielded better results than the
ratio method (Gulliver et al., 2013). For both methods, we tested
whether four sites combined were preferable to two urban or two non-
urban sites separately, following the approach used by Gulliver et al.
(2013). The measurement sites used for adjustment of predictions were
excluded from subsequent validation analyses of this back-extrapola-
tion method.

For all three back-extrapolation methods, we used year-2006 as the
basis for our LUR predictions. We also investigated whether this was
comparable to 2006–2011 overall (i.e., the average for the whole
period covered by our models). The first approach used column and
surface estimates of NO2 for 2006 only, while the second used the
average during 2006–11; all other LUR predictors were the same.
Finally, to further assess LUR performance over time, we compared
results for each back-extrapolation method in a given year to those in
four 4-year blocks comprising our study period (1990–1993;
1994–1997; 1998–2001; 2002–2005).

2.7. Model development and out-of-range sites

Because sites used to develop the LUR models also comprised the
majority of validation sites in most years, excluding them would have
resulted in too few sites for analysis. In a sensitivity analysis, we instead
excluded the sites not used for development as an indirect assessment of
the influence of model development sites. We excluded sites with values
of one or more LUR predictor outside the range of values observed at
sites used to develop our models. We took that approach to prevent
unrealistically high or low predictions, following methods used by
Wang et al. (2012). We excluded 9 out of 98 sites (two roadside, four
urban traffic, two urban background, and one rural and remote),
leaving 89 available for validation provided they also met our inclusion
criteria for NO2 completeness. We assessed the effect of excluding these
sites by comparing our results to those with the sites included.

2.8. Site representativeness

We used two approaches to assess the representativeness of our
validation sites for estimating NO2 exposures in Australia. We first
compared the distribution of LUR predictors at the validation sites to
those at ~345,000 census ‘mesh block’ centroids covering all of
Australia. Mesh blocks are the smallest spatial unit used in the national
census, and contain 62 people on average (Australian Bureau of
Statistics, 2011). We then undertook a more rigorous assessment by
comparing the validation sites with the geocoded national address file
(G-NAF). The G-NAF contains ~14.1 million points, representing all
addresses in Australia, by combining and comparing land, postal and
electoral records (Public Sector Mapping Agencies, 2013). We restricted
our comparison to the ~8.4 million address points that were matched in
all three of these administrative databases, and which had geocoding
reliability sufficient to assign a centroid within an address parcel
boundary using standard G-NAF QA criteria (Public Sector Mapping
Agencies, 2013).
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2.9. Validation of predictions

We used established LUR validation methods, and regressed pre-
dicted NO2 on measured NO2, assessing model performance on the basis
of R2, RMSE (percentage and absolute), and bias (fractional and abso-
lute) (Basagaña et al., 2012; Johnson et al., 2010; Gulliver et al., 2013;
Wang et al., 2012, 2016). We evaluated model predictions for annual
NO2 in each year during 1990–2005, and also the average over the
entire 16-year period. We assessed the normality and variance of re-
siduals, and tested spatial correlation among residuals using Moran's I.

While R2 is a standard metric for evaluating an LUR model's per-
formance, it is based on the correlation between measurements and
predictions rather than their absolute agreement. A high R2 alone does
not always imply the validity of model predictions in epidemiological
studies (Szpiro et al., 2011; Wang et al., 2012). Therefore, we also
evaluated absolute agreement using mean-square-error R2 (MSE-R2),
which describes how well the relationship between measurements and
predictions follows a 1:1 line (Basagaña et al., 2012; Gulliver et al.,
2013; Szpiro et al., 2011; Wang et al., 2012). Unlike R2, MSE-R2 yields
negative values when the average of measurements has a lower MSE
than the predictions (Basagaña et al., 2012; Szpiro et al., 2011). We
used R (v. 3.2.2) for our analyses (R Project for Statistical Computing,
Vienna, Austria).

3. Results

3.1. NO2 measurements

Fig. 1 shows the location of the 89 validation sites around Australia.
Between 14 (16%, 1991) and 62 (70%, 2003) sites met our inclusion
criteria for annual NO2 in each year during 1990–2005; in total they

collected 690 site-years of measurements over that period. Of the sites
that met the inclusion criteria for a given year, between 6 (43%, 1991)
and 51 (89%, 2005) had been used to develop our LUR models. Forty-
five sites (51%) met our inclusion criteria for long-term average NO2

over the 16-year study period, and they collected 524 site-years of
measurements. Thirty-three of these (73%) had been used to develop
our LUR models.

Descriptive statistics for measured NO2 are presented in Table 1. We
observed a modest but persistent decrease in NO2, averaging ~0.22 ppb
per year during the period with the greatest number of monitoring sites
(1993–2005) (Figs. S1, S2). This value was consistent with the ~0.15
ppb annual decrease observed for 2006–2011 when developing our LUR
models (Knibbs et al., 2014).

3.2. LUR model performance

Our unmodified LUR column model predictions for year-2006 (i.e.,
‘do nothing’ approach) captured between 41% (1991, MSE R2 = −8%)
and 80% (2003, MSE-R2 = 77%) of spatial variability in annual NO2

(Fig. 2, Table S1). Prediction error was greatest for earlier years, with
RMSE ranging from 5.4 ppb (42%) in 1990 to 1.6 ppb (20%) in 2004.
On average, model predictions underestimated measured concentra-
tions, and absolute bias ranged from −3.6 ppb in 1992 (fractional bias
= −0.3) to −0.05 ppb in 2004 (fractional bias = −0.01). We ob-
served very similar performance for the surface model (Fig. 2); the full
results are presented in the supplement (Table S2). Column and surface
models, respectively, captured 75% (MSE-R2 = 61%) and 76% (MSE-R2

= 57%) of spatial variation in annual NO2 averaged over 1990–2005
(Fig. 3). Their prediction biases were −1.3 ppb and −1.5 ppb, re-
spectively, and with RMSE of 2.4 ppb (26%) and 2.5 ppb (27%)
(Table 3).

Fig. 1. The 89 NO2 monitoring sites around Australia used for historical validation (cross symbols). The sites are shown against a 1 km × 1 km national grid of population density
produced by the Australian Bureau of Statistics using data from the 2011 census (Australian Bureau of Statistics, 2014). The three insets show (clockwise) Brisbane, Sydney, and
Melbourne; the three most populous cites in Australia.
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Table 1
Descriptive statistics for measured daily NO2 (ppb) by year and overall.

Year n sites Mean S.D. Min.* 5th 25th 50th 75th 95th Max.

1990 15 13.2 8.6 0.1 2.0 6.8 11.7 17.9 30.0 57.0
1991 14 12.8 8.1 0.1 2.6 6.8 11.3 17.0 29.0 54.0
1992 15 13.1 8.4 0.1 2.7 6.8 11.5 18.0 29.0 63.1
1993 33 10.3 7.7 0.1 1.6 5.0 8.7 13.9 24.9 71.6
1994 38 9.9 6.8 0.1 1.8 5.0 8.4 13.5 23.2 53.0
1995 41 10.3 6.3 0.1 2.0 5.4 9.1 14.0 22.1 46.7
1996 41 8.9 5.6 0.1 1.7 4.7 8.0 12.2 19.3 46.0
1997 49 9.5 6.4 0.1 1.7 4.7 8.1 13.3 21.7 46.0
1998 48 8.9 6.1 0.1 1.2 4.1 7.8 12.4 20.6 52.0
1999 54 8.5 5.8 0.1 1.0 4.0 7.4 12.0 19.4 36.9
2000 51 8.2 5.6 0.1 1.0 4.0 7.0 11.4 18.8 38.1
2001 56 8.5 5.7 0.1 1.0 4.0 7.4 12.0 19.4 37.7
2002 57 8.2 5.9 0.1 1.0 3.9 7.0 11.3 19.9 39.0
2003 62 8.1 5.6 0.1 1.0 4.0 7.0 11.1 19.0 40.9
2004 59 7.7 5.3 0.1 1.1 3.9 6.7 10.5 18.0 39.0
2005 57 7.8 5.3 0.1 1.3 4.0 6.6 10.8 18.2 36.0
1990–2005 45 9.3 6.3 0.1 1.6 4.6 8.0 12.9 21.1 83.5

* Minimum refers to lowest positive value.

Fig. 2. LUR model performance by year measured by R2 and MSE-R2. The top row shows column model predictions using the ‘do nothing’ (A), change year predictor (B), and adjust using
measurement (C) approaches. The bottom row shows the same results for the surface model (D, E, and F). Full validation statistics are in Table 2 and the supplement.
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Fig. 3. Measured vs. LUR-predicted annual NO2 averaged over 1990–2005 at 45 sites. The top row shows column model predictions using the ‘do nothing’ (A), change year predictor (B),
and adjust using measurement (C) approaches. The bottom row shows the same results for the surface model (D, E and F). The dashed line is the regression line and the solid line is the
line of agreement. Full validation statistics are in Table 3.

Table 2
Validation statistics by year for column model predictions after changing the ‘year’ predictor.

Year n sites R2 β (95% CI) Int. MSE-R2 RMSE (ppb) RMSE (%) Bias (ppb) FB (–)

1990 15 0.49 0.26 (0.13, 0.39) 8.6 0.36 4.5 34.6 −0.9 −0.08
1991 14 0.41 0.30 (0.12, 0.48) 7.9 0.31 4.1 31.7 −1.3 −0.10
1992 15 0.52 0.41 (0.21, 0.60) 6.2 0.38 3.8 28.5 −1.6 −0.13
1993 33 0.60 0.45 (0.34, 0.56) 5.4 0.56 3.2 31.0 −0.3 −0.03
1994 38 0.69 0.48 (0.39, 0.57) 4.8 0.62 2.8 27.9 −0.4 −0.04
1995 41 0.66 0.54 (0.44, 0.65) 4.3 0.63 2.3 22.7 −0.4 −0.04
1996 41 0.57 0.60 (0.46. 0.74) 4.3 0.53 2.3 25.9 0.7 0.07
1997 49 0.71 0.58 (0.49, 0.67) 3.6 0.68 2.3 24.3 −0.4 −0.04
1998 48 0.71 0.61 (0.51, 0.70) 3.5 0.70 2.2 24.7 −0.1 −0.01
1999 54 0.74 0.64 (0.55, 0.73) 3.2 0.73 2.0 23.8 0.2 0.02
2000 51 0.78 0.67 (0.58, 0.75) 2.9 0.76 1.8 22.5 0.1 0.02
2001 56 0.72 0.63 (0.54, 0.72) 2.9 0.71 2.0 23.8 −0.2 −0.02
2002 57 0.75 0.61 (0.53, 0.69) 3.1 0.72 2.1 25.2 −0.1 −0.01
2003 62 0.80 0.67 (0.60, 0.75) 2.8 0.78 1.8 22.0 0.1 0.02
2004 59 0.78 0.74 (0.66, 0.83) 2.2 0.78 1.6 20.4 0.2 0.03
2005 57 0.76 0.73 (0.64, 0.82) 2.2 0.76 1.6 20.7 0.1 0.01

Note FB = fractional bias. The equivalent results for the surface model and other back-extrapolation methods are presented in the supplement.
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When we changed the ‘year’ independent variable in our LUR
models to match each year being assessed, we observed identical R2

statistics to the ‘do nothing’ scenario because all predictions changed by
the same amount of NO2 in a given year (i.e., 0.14 and 0.16 ppb were
added to year-2006 column and surface model predictions for each
successively earlier year from 2005 back to 1990). However, we found
improvements in the absolute agreement of measurements and pre-
dictions for both column and surface models that were more pro-
nounced in earlier years (1990–1995), and which were associated with
reduced prediction error and bias (Fig. 2, Table 2, Table S3). The largest
prediction bias and RMSE were −1.6 ppb (1992, fractional bias =
−0.1) and 4.5 ppb (1990, 35%), respectively, both of which were
markedly better than under the ‘do nothing’ scenario. We also observed
improved absolute agreement for annual NO2 averaged over
1990–2005, with MSE-R2 of 72%, bias of −0.1 ppb (fractional bias =
−0.01), and RMSE of 2.1 ppb (22%) for both models (Fig. 3, Table 3).

When we applied an adjustment to the year-2006 ‘do nothing’ LUR
predictions using the ratio of NO2 measured at four sites in each year to
that in 2006, we found improved R2 and MSE-R2 values and reduced
prediction error and bias compared with the ‘do nothing’ approach for
both models (Fig. 2, Table S4, Table S5). However, the improvement in
validation statistics for a given year was less marked than that observed
when we changed the ‘year’ independent variable. The prediction of
annual NO2 averaged over 1990–2005 was substantially better than
under the ‘do nothing’ scenario, and similar to the results when chan-
ging ‘year’ (Fig. 3, Table 3). Both the ratio- and difference-based ad-
justments yielded consistent results (Tables S6 and S7), and using four
sites to derive a combined adjustment led to improved performance
compared with two urban or two non-urban sites (not shown).

3.3. Sensitivity analyses

The results we present are based on year-2006 satellite predictors
and sites with 50% or greater data, including both model development
and non-development sites, but excluding out-of-range sites. This se-
lection was informed by our sensitivity analyses, which are presented in
the supplement. Briefly, our site classifications were robust to changing
the definition of major roads and a halving of road distance thresholds
(Table S8). Doubling the distance thresholds resulted in an increase in
the number of sites classified as urban traffic and a corresponding re-
duction in sites classified as urban background. Adopting more strin-
gent inclusion criteria for data completeness (i.e., from 50% to 60%,
70%, or 80%) reduced the number of sites available for validation in
most years, but did not substantially change the validation statistics
(Tables S9-S12). Using year-2006–2011 mean values of satellite pre-
dictors in the column and surface models yielded validation results that
were similar to those when using year-2006 values (Tables S13-S14).
We observed an improvement in validation statistics compared with our
main analysis that included both development and non-development
sites (Tables S15-S16). Excluding nine sites with predictors outside the
range used to develop our LUR models led to better validation statistics
(Tables S17-S18). Finally, model performance in four 4-year time
blocks (1990–1993; 1994–1997; 1998–2001; 2002–2005) was com-
parable to that in a given year (Table S19).

3.4. Validation QA and representativeness

The residuals in our validation analyses had approximately normal
distributions and constant variance (Figs. S3-S19). There was no evi-
dence of overt spatial correlation (Table S20). We found that the per-
centiles of LUR predictors at the historical validation sites were com-
parable to those at both ~345,000 census block centroids and ~8.4
million Australian addresses in the G-NAF (Table S21).

4. Discussion

4.1. Overall findings

We evaluated the ability of national satellite-based LUR models,
developed for 2006–2011, to capture spatial variability in historic an-
nual NO2 concentrations across Australia during 1990–2005. Because of
the absence of historical satellite and other LUR predictor data, we
explored three approaches for back-extrapolating LUR estimates for
2006. We observed the best performance when we changed the ‘year’
independent variable in our LUR models to match the year being esti-
mated, which extrapolated the linear decrease in NO2 during 2006–11
to 1990–2005. We suspect the reason why this method performed best
is because of the consistency with which measured NO2 concentrations
have declined in Australia; the average annual decrease in NO2 during
the models’ development (2006–2011) was similar to that during the
historical validation period (1990–2005; see Fig. S1).

The next-best method was back-extrapolation of 2006 predictions
using adjustment based on historical NO2 measurements. We found that
for both methods, the correlation (R2) and absolute agreement (MSE-
R2) of measurements and predictions were similar, which is an im-
portant consideration when using LUR in epidemiological studies
(Basagaña et al., 2012). Our column- (simpler) and surface-based (more
complex) satellite LUR models yielded comparable results, which is in
keeping with our previous results and supports the use of the simpler
column approach (Knibbs et al., 2014, 2016; Bechle et al., 2015). The
prediction error and bias we observed here was generally consistent
with a previous independent validation for 2006–2014 (Knibbs et al.,
2016).

4.2. Approaches to historical estimation

Despite the large body of literature documenting adverse health
effects of outdoor air pollution, relatively few studies have assessed
outcomes following long-term exposures of 10 years’ duration or more.
This gap in the literature is often attributed to limited exposure data
(Crouse et al., 2015; Hansell et al., 2016; Hystad et al., 2013). Historical
estimation of air pollutants, most frequently NO2 (but also PM2.5, PM10,
black smoke, SO2, and O3), is an attractive option for addressing this
limitation in retrospective cohort and case-control studies. A number of
methods have been reported in the literature. Traditional LUR models
are a popular approach, and studies with access to historical predictor
and measurement data have developed models for specific periods of
interest as far back as 1962 (e.g., Gulliver et al., 2011). In addition, two
types of back-extrapolation have been employed; either using historical

Table 3
Validation statistics for model predictions of annual NO2 averaged over 1990–2005.

Model Back-extrapolation n sites R2 β (95% CI) Int. MSE-R2 RMSE (ppb) RMSE (%) Bias (ppb) FB (–)

Column Do nothing 45 0.75 0.58 (0.50, 0.67) 2.6 0.61 2.4 26.1 −1.3 −0.15
Surface Do nothing 45 0.76 0.59 (0.51, 0.68) 2.3 0.57 2.5 27.3 −1.5 −0.18
Column Change year 45 0.75 0.58 (0.50, 0.67) 3.8 0.72 2.1 22.3 −0.1 −0.01
Surface Change year 45 0.76 0.59 (0.51, 0.68) 3.7 0.72 2.1 22.0 −0.1 −0.01
Column Adjust with ratio 41 0.75 0.64 (0.54, 0.74) 2.9 0.73 2.0 22.1 −0.4 −0.04
Surface Adjust with ratio 41 0.76 0.65 (0.55, 0.75) 2.6 0.72 2.1 22.5 −0.6 −0.07

Note FB = fractional bias.
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predictors in contemporary models (e.g., Levy et al., 2015; back to
1961), or contemporary predictions adjusted using historical mea-
surements when historical predictors are not available (e.g., Gulliver
et al., 2016; back to 1991). Traditional LUR models have been used for
historical estimation at city- through to national-scale (Beelen et al.,
2007; Cesaroni et al., 2012; Levy et al., 2015).

Spatio-temporal models of varying complexity, including kriging,
inverse distance-weighting and generalised additive models (GAMs),
have also been used for regional- and national-scale estimates of his-
torical pollutant concentrations back to 1980 (Dadvand et al., 2011;
Hart et al., 2009; Keller et al., 2015; Kim et al., 2017; Yanosky et al.,
2009). Dispersion models (back to 1960) and Chemical Transport
Models (CTMs; back to 1988), parameterised with estimated historical
emission data, have been used at city- through national-scale (Bellander
et al., 2001; Hogrefe et al., 2009). Other methods include adjustment of
historical PM10 and total suspended particulate (TSP) measurements
using ratios to estimate PM2.5 across the USA (Lall et al., 2004; back to
1972), as well as near-road NO2 and benzene models based on street
canyon geometry and traffic flow in Denmark (Raaschou-Nielsen et al.,
2001; back to 1968).

Despite the diversity of methods used to estimate historical air
pollution exposures, few have focused on satellite-based LUR, and few
have been applied outside of North America and Europe (Hystad et al.,
2012). This method has a number of appealing aspects, including spa-
tial coverage and ability to be used at national scales. However, the
limited availability of historical satellite observations, as was the case
in this study, is likely to have constrained its more widespread appli-
cation. Our approach to address this constraint used predictions from
the first year for which our LUR model was developed (2006), and then
three alternatives for adjusting the predictions for use during
1990–2005.

4.3. Comparison to other studies

The study most comparable to ours was performed by Hystad et al.
(2012). Their Canadian national models used monitor-derived back-
extrapolation of year-2001–2006 satellite-observed surfaces for PM2.5,
year-2005–2007 surfaces for NO2, and a CTM surface for O3, to estimate
historical exposures during 1975–1994. Their models explained up to
38%, 51% and 56% of spatial variability in annual mean NO2, PM2.5

and O3, respectively, over their study period when validated against a
10% sample of withheld data. While they used satellite surfaces alone in
that study, rather than as an independent variable in an LUR model, in
subsequent work they described the application of a national year-2006
satellite-based LUR for NO2 (Hystad et al., 2011) to historical estimates
during 1975–1994 (Hystad et al., 2015), 1984–2006 (Crouse et al.,
2015) and 1999–2008 (Stieb et al., 2016). Direct comparison with our
study is difficult because historical validation data for their satellite-
LUR estimates were not presented. However, a consistent finding in
their work is that applying satellite-based LUR historically yields si-
milar results when used alongside other long-term NO2 exposure as-
sessment methods in case-control and cohort studies (Hystad et al.,
2015; Stieb et al., 2016), and captures spatial contrasts in exposure
when used alone in large cohort studies (Crouse et al., 2015). Taken
together with our findings, this suggests that satellite-based LUR has a
potential role to play in long-term exposure assessment, even in the
absence of historical predictor data.

Gulliver et al. (2016) compared year-1991 non-satellite LUR models
for NO2 across Great Britain, developed using historical predictor data,
with estimates from a year-2009 model that was back-extrapolated
using historical measurements. When validated, the back-extrapolated
model: (1) explained up to 8% less variability in measured NO2 (R2 =
62% vs. 56%), and; (2) had a small increase in RMSE, compared with
the year-specific 1991 model. Using both models to estimate exposure
at the 1.3 million postcodes in Great Britain showed high levels of
correlation and absolute agreement. Unlike Gulliver et al. (2016), we

did not have historical predictor data to develop year-specific LUR
models, and instead relied on back-extrapolation of year-2006 esti-
mates. However, the consistency they observed between the two ap-
proaches suggests the latter may be well-justified in the absence of data
to develop the former.

4.4. Limitations

Our study has multiple limitations. We used a relatively small
number of monitoring sites to assess historical performance; between
43% and 89% of such monitors were also used to develop our LUR
models, depending on year. This reflected the scarcity of long-term NO2

monitoring in Australia. It also likely means the model performance we
observed is overly optimistic (Basagaña et al., 2012; Cesaroni et al.,
2012; Eeftens et al., 2011; Johnson et al., 2010; Wang et al., 2012). We
previously reported a 10 to 15 percentage point decrease in our models’
R2 from development to validation when evaluated against an in-
dependent set of 98 passive sampler measurements spanning non-
roadside sites in two Australian cities during 2006–2014 (Knibbs et al.,
2016). We have probably over-estimated model performance in the
current study by a similar amount. A more conservative estimate of the
models’ performance may be that they capture 60–65% of spatial var-
iation in annual NO2 averaged over 1990–2005.

Because the large majority of sites used to develop and historically
validate our models were located in urban background areas, we were
unable to assess how well they capture NO2 hot-spots. This aspect is a
consequence of using regulatory ambient monitoring data, which is
high-quality but mostly confined to areas free from strong nearby NO2

sources. We previously used independent passive sampler data to
evaluate model predictions at roadside locations in 2006–2014, and
observed reasonable correlation but poor absolute agreement (R2 =
36%, MSE-R2 = −18%). However, we also showed that a typical re-
sidential address in Australia is unlikely to be located at roadside and
immediately next to a major road (Knibbs et al., 2016). Urban back-
ground sites are more representative of a typical address in Australia,
and this is further supported here by the consistency observed between
historical validation sites and the G-NAF database of all address cen-
troids in the country.

We did not have complete historical LUR predictor data, which
motivated our study of back-extrapolation of NO2 in the first instance
because we could not develop historical year-specific LUR models (e.g.,
Gulliver et al., 2016). The three approaches we used to back-extrapolate
year-2006 NO2 (i.e., ‘do nothing’, changing the ‘year’ predictor, ad-
justment using monitors) all assume that the relationships between LUR
predictors and NO2 observed when developing our models for 2006–11
apply back to 1990. The extent to which this holds true is difficult to
assess due to the lack of detailed historical data, but other proxies are
available; for example, the national population increased by 1.2% per
year on average during our study period (Australian Bureau of
Statistics, 2010). Although national-scale land-use change was mostly
minor, increases in intensive urban and agricultural land use from
23,000 to 31,000 km2 were reported (Department of Agriculture,
Fisheries and Forestry, 2011). The number of vehicle kilometres tra-
velled (VKT) increased by 10–20% during the study period in some
cities and remained stable in others, but vehicle combustion technology
also improved contemporaneously (Department of the Environment
and Energy, 2017b). While we cannot exclude the possibility of changes
in the LUR predictor/NO2 relationship in some parts of Australia, which
would lead to reduced predictive performance and validity for exposure
assessment, we suspect that the magnitude of change has been rela-
tively small and spatially consistent. Finally, it is possible that the
correlation between NO2 and other pollutants may have changed over
time and/or space, which could affect the validity of NO2 as a proxy for
exposure to other pollutants in epidemiological studies.
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4.5. Conclusions

We found that simple back-extrapolation methods for year-2006
predictions from national satellite-based LUR models captured up to
75% of spatial variation in annual NO2 averaged over 1990–2005 at 45
sites around Australia. Prediction error and bias were generally con-
sistent with a previous validation for 2006–2014, and the absolute
agreement of measurements and model predictions (measured by MSE-
R2) was similar to their correlation (measured by R2). We observed that
the validation sites appear suitable for assessing NO2 exposures of the
Australian population, based on comparison with ~8.4 million ad-
dresses in Australia. Historical estimation of air pollution exposure
using LUR can facilitate studies of long-term health effects, but is often
hampered by predictor data availability, especially in satellite-based
LUR. Our approach for national-scale historical exposure assessment
could potentially be applied in other locations with scarce monitoring
and predictor data. We plan to use it in a cohort study of 265,000 older
Australians.
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