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• We developed LUR models for PM2.5

and black carbon in peri-urban South
India.

• We derived predictors from local built-
environment survey and satellite
imagery.

• PM2.5 and black carbon models reached
58% and 79% of explained variability.

• Data from local built-environment
survey were relevant for black carbon
model.

• We observed more spatial variability
than typical values in other study areas.
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Land-use regression (LUR) has been used to model local spatial variability of particulate matter in cities of high-
income countries. Performance of LUR models is unknown in less urbanized areas of low-/middle-income coun-
tries (LMICs) experiencing complex sources of ambient air pollution and which typically have limited land use
data. To address these concerns, we developed LUR models using satellite imagery (e.g., vegetation, urbanicity)
and manually-collected data from a comprehensive built-environment survey (e.g., roads, industries, non-
residential places) for a peri-urban area outside Hyderabad, India. As part of the CHAI (Cardiovascular Health ef-
fects of Air pollution in Telangana, India) project, concentrations of fine particulate matter (PM2.5) and black car-
bon were measured over two seasons at 23 sites. Annual mean (sd) was 34.1 (3.2) μg/m3 for PM2.5 and 2.7 (0.5)
μg/m3 for black carbon. The LURmodel for annual black carbon explained 78% of total variance and included both
local-scale (energy supply places) and regional-scale (roads) predictors. Explained variance was 58% for annual
PM2.5 and the included predictors were only regional (urbanicity, vegetation). During leave-one-out cross-
validation and cross-holdout validation, only the black carbon model showed consistent performance. The LUR
model for black carbon explained a substantial proportion of the spatial variability that could not be captured
by simpler interpolation technique (ordinary kriging). This is the first study to develop a LURmodel for ambient
concentrations of PM2.5 and black carbon in a non-urban area of LMICs, supporting the applicability of the LUR
approach in such settings. Our results provide insights on the added value of manually-collected built-
environment data to improve the performance of LUR models in settings with limited data availability. For
Keywords:
Black carbon
Exposure assessment
India
Land-use regression
Particulate matter
Peri-urban area
al Health (ISGlobal), Doctor Aiguader, 88, 08003 Barcelona, Spain.
nchez).

. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2018.03.308&domain=pdf
https://doi.org/10.1016/j.scitotenv.2018.03.308
margaux.sanchez@isglobal.org
Journal logo
https://doi.org/10.1016/j.scitotenv.2018.03.308
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


78 M. Sanchez et al. / Science of the Total Environment 634 (2018) 77–86
both pollutants, LUR models predicted substantial within-village variability, an important feature for future epi-
demiological studies.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Air pollution is a leading risk factor for mortality and morbidity
worldwide. The World Health Organization estimated that 3 million
deaths were attributable to ambient air pollution in 2012; 87% of
these occurred in low- and middle-income countries (LMICs) (World
Health Organization, 2016). Still, high-income countries (HICs) remain
the focus of much of the current literature investigating the health ef-
fects of air pollution (Tonne et al., 2017). Epidemiological evidence
based on populations in HICs may not apply to LMIC populations be-
cause of differences in exposure ranges, air pollution sources, age distri-
butions, and baseline health status. Thus, there is a critical need for
population-level estimates of long-term exposure that can be used for
epidemiological purposes in LMIC settings (Ma et al., 2017), where the
majority of air pollution and pollution-related health effects occur.

Land-use regression (LUR) is a modeling method widely used in ep-
idemiological studies to estimate particulate matter and black carbon
concentrations at fine spatial scale in urban areas of North America
and Europe (Eeftens et al., 2012, 2016; Hoek et al., 2008; Montagne
et al., 2015; van Nunen et al., 2017; Weichenthal et al., 2016; Wolf
et al., 2017; Zhang et al., 2014). There have been some attempts to
apply the methodology in China and India but this literature is scarce
and is limited to urban areas (Huang et al., 2017; Saraswat et al.,
2013; Wu et al., 2015, 2017). LUR models have shown reasonable per-
formance in urban areas where much of the locally-emitted particulate
matter is generated by road traffic (Karagulian et al., 2015), but condi-
tions in peri-urban or rural areas in LMICs, such as India, may differ
(e.g. higher contribution of domestic fuel use and open burning)
(Paliwal et al., 2016). Previous studies have demonstrated the limited
transferability of LUR prediction models to areas other than those in
which they were developed (Patton et al., 2015; Wang et al., 2014). In
Bangalore, India, increasing concentrations of PM2.5 were observed
with increasing proximity to roads in a middle-income neighborhood,
a spatial pattern similar to what would be observed in HIC (Both et al.,
2011). However, this was not the pattern observed in a low-income
neighborhood, which was attributed by the authors to solid fuel use
(Both et al., 2011), highlighting the complexity of spatial patterns of
air pollution in LMICs. It is unknown how well LUR prediction models
perform in less urbanized area of LMICs that showed different contribu-
tion of particulatematter sources. Challenges to the development of LUR
models in these settings include limited availability of geographic infor-
mation systems (GIS) data, sources of particulate matter emissions not
well correlatedwith existing land use data, and lack of routinemonitor-
ing data.

To address the need for air pollution exposure assessment in LMICs,
we developed LUR models to predict spatial variation of PM2.5 and
black carbon in a peri-urban area of South India in which local emission
sources include household solid fuel use, local industries, and motor ve-
hicles. We here advance the science of LUR modeling by coupling land-
use data derived from satellite imagery and data derived from a built-
environment survey, a data collection approachnot previously employed
in LUR, allowing us to overcome the limited access to GIS data often
found in LMICs. To help future exposure assessment, we evaluated the
added value of LUR modeling predictions as compared to ordinary
kriging, an interpolation technique that does not require any additional
geographic data. We contribute to the exposure assessment literature
by studying a peri-urban environment in a LMIC forwhich there is scarce
literature regarding the spatial variability of ambient air pollution and no
literature on LUR as an approach to predict such variability.
2. Methods

2.1. Study area

The study area consists of 28 rural and peri-urban villages in the
Southeast of Hyderabad, covering 8.2 km2 in a 22 km × 35 km
(i.e., 770 km2) region (Fig. 1). The area between villages was not of in-
terest as it includes mostly crops and agricultural lands with no or few
inhabitants. All villages were included in the existing APCAPS (Andhra
Pradesh Children and Parents' Study) cohort and CHAI (Cardiovascular
Health effects of Air pollution in Telangana, India) project (Kinra et al.,
2014; Tonne et al., 2017). Villages vary in terms of surface, population
size, socioeconomic status, urbanization, and primary cooking fuel.

2.2. Sampling campaign (PM2.5 and black carbon)

We identified 23 households located in 16 different villages as fixed
sites for sampling. We selected sites to maximize contrasts in several
variables expected to correlate with particulate matter: distance to pri-
mary roads, distance to the city of Hyderabad, distance to industry, 500-
meter buffer household density, and village-level solid fuel use (Fig. 1).
Thiswas done to avoid extrapolation of the LURmodels to values of pre-
dictors for which we had no measurements. The households located in
the 12 villages that were not directly monitored were similar to the
households located in the other 16 villages in terms of distance to pri-
mary roads, distance to the city of Hyderabad, household density in a
50-meter buffer, and village-level proportion of solid fuel use.

We measured 24-hour integrated gravimetric PM2.5 concentrations
at these 23 locations for a total of 21 days in two sessions: 11 noncon-
secutive days during post-monsoon season (Sep–Oct 2015) and 10 non-
consecutive days during summer season (Mar–Apr 2016). Sampling
was done every other day. All sites were sampled the same days. Mon-
itors included pumps (model 224-PCMTX8, SKC Ltd., Dorset, UK) that
drew air through a cyclone separator (cut point: 2.5 μm) attached to a
cassette containing 37-mm filter (Emfab filter, Pallflex®). Monitors
were placed on the households' rooftops. Filters were left on site and
collected daily at noon. Filters were weighed pre- and post-exposure
using the TAPHE (Tamil Nadu Air Pollution and Health Effects) study
protocol which follows RTI (Research Triangle Institute) guidelines
(Balakrishnan et al., 2015). Daily PM2.5 concentrations were derived
from filter mass after correction for mass accumulated on blank filters
(season-specific correction using median blank weight). Of the 483
sampled filters (21 days at 23 sites), 13 experienced devicemalfunction
(running time b 75% of the expected sampling duration or pump airflow
b 20% of the expected value) and 5 showed unexplained weighing er-
rors for PM2.5 (post-weight b pre-weight). We imputed all missing
values (4% of the data) using a linear combination of date and PM2.5

measurements from an ambient background monitoring site (see
below). The overall performance of the imputation model was fair
(adjusted-R2 = 0.61) and predicted and measured values correlated
positively (RSpearman = 0.74).

Daily black carbon concentrationswere derived from optical attenu-
ation (880 nm) of the mass collected on the filters, using a Magee OT21
Sootscan Optical Transmissometer (Magee Scientific, Berkeley, Califor-
nia, USA). Negative concentrations were obtained for 41 filters (8% of
the sample). We assumed these were due to concentrations below the
lower end of our standard curve and we imputed them with the sea-
sonal 5th percentile concentration: 0.21 μg/m3 in summer season and
1.31 μg/m3 in post-monsoon season. Days with device malfunction or

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. The location of the study region (22 km × 35 km rectangle), the 23 households included in air pollution sampling (points), and the ambient background PM2.5 monitor (square).
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lost filters (n = 15) remained missing. Black carbon concentrations
were thus available for 468 samples (97% of the attempted
measurements).

We calculated the annual and seasonal concentrations of PM2.5 and
black carbon for each site by averaging daily concentrations. As we
aimed to predict spatial (not temporal) variability and all sites were
sampled the same days, no temporal adjustment was performed.

2.3. Background PM2.5 monitoring

For the purpose of the CHAI project, continuous monitoring of PM2.5

was implemented from 2015 on at one site in the North of the study
area, far from traffic or other sources, thus being a good indication of
background concentration (Fig. 1). Hourly concentrations were derived
by beta-radiation attenuation using an e-BAM device (Model 9800, Met
One, Grants Pass, OR). We calculated daily averages from noon to noon
to correspond with the 24-h period of the gravimetric sampling. Con-
centrationswere available for 19days (of the expected 21 days) because
of device malfunction for two days in summer season. We imputed the
missing days using measurements from another background monitor
located 13 km away using a linear combination of daily PM2.5, relative
humidity, and temperature. The overall performance of the imputation
model was good (adjusted-R2 = 0.87) and predicted and measured
values correlated strongly (RSpearman = 0.96).

2.4. Geographic covariates

We selected 325 geographic variables with potential to predict spa-
tial variability in particulate matter in our study area and calculated the
values of each variable at all sampling sites. The selected variables



80 M. Sanchez et al. / Science of the Total Environment 634 (2018) 77–86
related to different features (e.g., industries, households, roads, non-
residential places, vegetation) and included indicators of proximity
(distance to the nearest feature) aswell as number or density of the fea-
ture within a buffer of a given radius. A total of eight buffer sizes were
chosen to represent local variability (50m to 300m) as well as regional
variability (up to 5 km) in PM2.5 and black carbon (Supplementary
Table S1).

2.4.1. Built-environment survey
As part of the built-environment survey performed for APCAPS in

2013, the following locations in the study areaweremanually geocoded
with GPS devices: non-residential places inside villages (e.g., bus sta-
tion, shops, temples) (Supplementary Table S1), industrial places with
regular operation (according to industry type), and the main entrance
of the Rajiv Gandhi International airport. Roads throughout the study
area were manually mapped by tracing satellite imagery (importing
data into the OpenStreetMap, www.openstreetmap.org) and confirmed
through visits by the field team. Using APCAPS questionnaire data from
2012, we derived village-level indicators of liquefied petroleum gas use,
solid fuel use, and car-, motorcycle-, and bicycle-ownership.

2.4.2. Satellite data
The night-time light intensity (NTLI) in 2012 was used as a village-

level marker of economic activity and urbanicity. NTLI ranges from 0
(no light) to 63 and is derived from measurements of light emissions
from persistent sources associated with human settlement provided
by the Defense Meteorological Satellite Program satellites (Baugh
et al., 2010; Elvidge et al., 1997). To assess the level of vegetation,we de-
rived the Normalized Difference Vegetation Index (NDVI) and percent-
age of tree cover from the Landsat satellite data at 30-meter spatial
resolution (U.S. Geological Survey, 2017). We calculated the NDVI for
the “greenest” sampling season (post-monsoon, one image from Octo-
ber 2015), the least green sampling season (summer, one image from
April 2015) and their average. The percentage of tree coverwas derived
from a sole composite image taken in 2015.

2.4.3. Pre-processing
We excluded 131 geographic covariates that were not sufficiently

variable i.e., ≥75% of the sample had the same value. A total of 194 var-
iables were considered in the present analysis (Supplementary
Table S1).

2.5. Land-use regression

We developed LUR models to predict annual and seasonal (post-
monsoon and summer) PM2.5 and black carbon concentrations using
the available geographic variables. We adapted the process standard-
ized within the framework of the ESCAPE project (Eeftens et al.,
2012). The average concentration per site was used as the dependent
variable. A single linear regression was fit for each of the geographic
predictors. The predictor with the highest adjusted-R2 (explained vari-
ance) and with expected direction of effect was retained (Supplemen-
tary Table S1). The remaining geographic predictors were evaluated in
turn in the model and the predictor with the highest increase in
adjusted-R2 was added if: a) it showed expected direction of effect,
b) it did not change the direction of effect of previous variables, c) it
was not highly correlated with previous variables (RSpearman b 0.70),
and d) the coefficients' variance were not affected by multi-colinearity
(variance inflation factor b 4). The process was repeated until there
were no variables which fit the criteria or the number of variables
reached 6 (to limit the risk of over fitting) or the adjusted-R2 increased
by b1%. Variables with p-values larger than 0.1 were sequentially re-
moved to obtain the final model i.e., all variables of the model have p-
values ≤ 0.1.

Final LURmodelswere checked for normality of the residuals, spatial
autocorrelation of the residuals (semi-variograms), heteroscedasticity
of the residuals, and influential observations (Cook's D N 1).We checked
whether and how model parameters changed when excluding influen-
tial observation(s). If removal did not cause large changes (10%) in coef-
ficients, the model was retained. If removal caused large changes in
coefficients, the model was rerun using all but the influential observa-
tion(s).

As one sensitivity analysis, we applied the LUR selection process
without restricting the number of predictors to six. All other criteria
were unchanged. As another sensitivity analysis, we applied the LUR se-
lection process using solely the satellite-derived predictor variables
(thus restricting the list to 36 predictors) to assess the added value of
the built-environment survey predictors.
2.6. Ordinary kriging

Ordinary kriging uses the degree of spatial dependence between
sampled sites to interpolate pollutant concentrations in unsampled lo-
cations over the gridded study area (Tyagi and Singh, 2013). Ordinary
kriging requires no additional geographic data as inputs (as opposed
to LUR) which makes it potentially attractive in settings with limited
availability of GIS data. Ordinary kriging is specific to the spatial auto-
correlation found in the study area, generally depicted by the semi-
variogram (plotting the average squared difference between sampled
locations according to distance between locations). In the present anal-
ysis, the semi-variogram for annual PM2.5 could be fit with a Gaussian
model, while the semi-variogram for annual black carbon could be fit
with a spherical model. No ordinary kriging was performed for seasonal
concentrations because no fit could be found. The spatial resolution of
the gridded study area was fixed to 271 m.
2.7. Model evaluation

We compared the accuracy of modeling approach (ordinary
kriging and LUR) on the basis of correlation (RSpearman) and error
(root-mean-squared error, RMSE) between predicted and observed
values.

We performed a leave-one-out cross-validation to assess predic-
tion performance of each modeling approach: each model was fitted
on N-1 sites and the result was used to predict concentrations at the
left-out site. This procedure was repeated N times. We reported
correlation and RMSE between predicted and observed concentra-
tions. For the LUR models, we also reported the overall level of fit
(adjusted-R2).

We additionally performed a cross-holdout validation to evaluate
the LUR models (Wang et al., 2016). The cross-holdout validation is
an extensive process that has been shown to more accurately reflect
out-of-sample predictive ability of LUR models than classical leave-
one-out cross-validation (Wang et al., 2016), in particular with
small datasets. The cross-holdout validation successively built N
“evaluation” models (with variable selection and so on) based on
all N-1 site combinations. The procedure thus built 24 evaluation
models for each PM2.5 average (annual and seasonal) and 23 evalua-
tion models for each black carbon average (annual and seasonal)
with all different predictors and estimates. Pollutant concentrations
were then predicted at the left-out sites. We reported correlation
and RMSE between predicted and observed concentrations as well
as adjusted-R2 of and selected predictors in the evaluation models.
2.8. Model application

The final models (LUR and ordinary kriging) were used to predict
PM2.5 and black carbon annual concentrations at every household
within the study area (n= 23,605 households located in 28 villages).

http://www.openstreetmap.org


Table 1
Annual and seasonal measured concentrations of PM2.5 and black carbon.

Pollutant Time period N sites Measured concentrations (μg/m3)a IQR Sd/mean

PM2.5 Annual 24 34.11 (3.21)
[25.68; 40.66]

3.35 0.09

Post-monsoon 24 29.70 (3.73)
[21.91; 36.83]

4.64 0.13

Summer 24 38.96 (4.07)
[29.83; 48.65]

5.34 0.10

Black carbon Annual 23 2.73 (0.48)
[1.85; 3.65]

0.70 0.17

Post-monsoon 23 2.90 (0.69)
[1.74; 4.56]

0.80 0.24

Summer 23 2.56 (0.40)
[1.98; 3.66]

0.54 0.15

Abbreviations: IQR: inter-quartile range; sd: standard deviation.
a Mean (standard deviation) [min; max].
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3. Results

3.1. Description

The PM2.5 annual mean (sd) across the 24 sites was 34.11 (3.21)
μg/m3 ranging from 25.68 to 40.66 [inter-quartile range: 3.35]
(Table 1). The black carbon annual mean (sd) across the 23 sites
was 2.73 (0.48) μg/m3 ranging from 1.85 to 3.65 [0.70]. PM2.5 con-
centrations were higher in summer season than in post-monsoon
season, while the opposite pattern was observed for black carbon
(Table 1). Black carbon had greater spatial contrast than PM2.5; coef-
ficients of variation (sd/mean) for annual concentrations were 17%
and 9%, respectively. The correlation between the annual concentra-
tions of PM2.5 and black carbon was strong (RSpearman = 0.65).

3.2. LUR models

Most of the developed LURmodels included6 variables (the limitwe
fixed) of which 2–4 were non-significant at 10% level and then re-
moved. The final LUR models for annual and seasonal PM2.5 and black
carbon are presented in Table 2. The predictor explaining the most
variance in annual PM2.5 was tree coverage within 1000 m. All final
LUR models for PM2.5 included the village level of urbanicity (NTLI)
and an indicator of green space (NDVI or tree coverage). Longitude
and elevation were strongly negatively correlated in our study area
(RSpearman = −0.84) and appeared in annual and summer models for
PM2.5. The adjusted-R2 for annual PM2.5 was 0.58. The seasonal models
Table 2
Final land-use regression models for PM2.5 and black carbon.

Pollutant Time period Predictors included in the final land-use regression m

PM2.5 Annual tree_1000 + NTLI + longitude + ndvimax_5000

Post-monsoon NTLI + hh_50 + ndviavg_5000

Summer elevation + tree_300 + NTLI

Black carbon Annual rrlen_5000 + tree_500 + distnrp_e1

Post-monsoon prlen_5000 + tree_1000

Summer rrden_5000 + nrp_e2_300 + nrp_p1_5000 + prlen_

Abbreviations: RMSE, root-mean-square error; sd, standard deviation. RSpearman represents corr
coverage (tree_X), village-level night-time light intensity (NTLI), post-monsoon value for the N
malized Difference in Vegetation Index (ndviavg__), household density (hh_X), ring road lengt
residential places related towood/gas supply (distnrp_e1), and number of non-residential place
the radius of the buffer.
for PM2.5 showed less explained variance than the annual model. Over-
all, models for black carbon performed better than PM2.5 models, with
adjusted-R2 ranging from 0.63 (post-monsoon black carbon) to 0.78
(annual black carbon). In all black carbonmodels, themost contributing
predictor was primary or ring road indicator within 5000 m (Table 2).
Tree coverage within 500–1000 m appeared to predict annual and
post-monsoon black carbon concentrations, while annual and summer
models both included indicators of energy supply places. No restriction
on the number of included predictors led to the same final models ex-
cept for summer PM2.5, for which seven predictors were included in-
stead of three (Supplementary Table S2). Excluding the predictors
derived from the built-environment survey led to a general decrease
in the variance explained in black carbonmodels, from78% to 59% in an-
nual concentrations, while no difference was observed for PM2.5 (Sup-
plementary Table S3). Diagnostic plots confirmed that our main
models complied with underlying assumptions (Supplementary
Figs. S1 and S2). Variograms of model residuals showed no patterns of
semi-variance with distance, indicating no spatial autocorrelation in
model residuals.

Prediction RMSE were about 50% of the sampled standard deviation
for black carbon but higher (N60%) for PM2.5 (Table 2). For both pollut-
ants, almost all predictions fall within one standard deviation of the
measured concentrations. Predicted concentrations for black carbon
correlated strongly with measured concentrations in the annual
model (RSpearman = 0.85) and the seasonal models (0.69 for post-
monsoon and 0.81 for summer). For PM2.5, correlations between pre-
dicted and measured concentrations were lower (b0.70). The
odels Variance explained (adjusted-R2) RMSE Error
Mean (sd)
[min;max]

RSpearman

0.58 1.86 0.00 (1.89)
[−3.59;2.77]

0.66

0.48 2.29 0.00 (2.34)
[−6.21;4.11]

0.70

0.34 3.02 0.00 (3.08)
[−6.96;3.72]

0.57

0.78 0.20 0.00 (0.21)
[−0.41;0.43]

0.85

0.63 0.39 0.00 (0.40)
[−1.05;0.69]

0.69

1000 0.65 0.21 0.00 (0.21)
[−0.58;0.22]

0.81

elation coefficients betweenmeasured and predicted concentrations. Variable names: tree
ormalized Difference in Vegetation Index (ndvimax_X), annual average value for the Nor-
h (rrlen_X), primary roads length (prlen_X), ring road density (rrden_X), distance to non-
s related to petrol supply (nrp_e2_X) and to religious center (nrp_p1_X)with _X indicating
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correlation between the predicted annual concentrations of PM2.5 and
black carbon was strong (RSpearman = 0.61) and similar to the correla-
tion found between measurements.
3.3. LUR models evaluation

During leave-one-out cross-validation, black carbonmodels showed
better robustness than PM2.5 models (Table 3). Most black carbon
predictions stayed in range of one standard deviation of measured con-
centration and predictions remained strongly correlated with measure-
ments. For PM2.5, correlations between predictions and measurements
decreased (e.g., from 0.66 to 0.49 for annual model). During cross-
holdout validation, adjusted-R2 of the evaluation models built on N-1
sites were similar to or slightly larger than the adjusted-R2 of the full-
sites models (Table 3). The most-selected predictors in the evaluation
models were consistent with those selected in the full-sites models,
though variables in PM2.5 models showed more diversity than in black
carbon models. Influential observations were detected in 3 of the 24
evaluation models built for annual PM2.5, while none were detected
for annual black carbon. The predictive ability of the black carbon eval-
uation models was moderate, with overall correlations ranging from
0.23 to 0.59 between measurements and predictions (Table 3). In con-
trast, cross-holdout validation for PM2.5 showed much increased RMSE
(up to 4 times the full-sites model) and null correlations betweenmea-
sured and predicted values.
3.4. Application

Fig. 2 illustrates the annual concentrations of PM2.5 and black carbon
obtained from the LURmodel to 23,605 households in the 28 villages of
the study area. Corresponding concentrations from ordinary kriging are
shown in the online supplement (Supplementary Fig. S3).

When comparing the predictions of the twomethods (Fig. 3), larger
within-village variability was observed when using LUR as compared
to the ordinary kriging, particularly for black carbon (intra-class correla-
tionswere 0.72 and 0.99, respectively). The annual predictions for PM2.5

obtained from LUR showed larger coefficient of variation than the pre-
dictions obtained from ordinary kriging (9% and 4%, respectively).
Table 3
Evaluation of land-use regression models developed for PM2.5 and black carbon using A) leave

Time period A) B)

Variance
explained
(adjusted-R2)

RMSE RSpearman Variance
explained
(adjusted-R2

Mean (sd)
[min;max]

Mean (sd)
[min;max]

Mean (sd)
[min;max]

PM2.5 Annual 0.58 (0.04)
[0.40;0.65]

2.03 (1.35)
[0.33;5.23]

0.49 0.56 (0.11)
[0.32;0.81]

Post-monsoon 0.48 (0.05)
[0.37;0.68]

2.21 (1.92)
[0.08;7.99]

0.52 0.51 (0.11)
[0.30;0.72]

Summer 0.34 (0.05)
[0.15;0.44]

2.85 (2.47)
[0.20;8.99]

0.34 0.53 (0.12)
[0.18;0.78]

Black carbon Annual 0.78 (0.02)
[0.74;0.83]

0.20 (0.13)
[0.01;0.54]

0.82 0.79 (0.04)
[0.73;0.89]

Post-monsoon 0.63 (0.03)
[0.55;0.74]

0.35 (0.29)
[0.00;1.14]

0.60 0.67 (0.05)
[0.60;0.80]

Summer 0.65 (0.04)
[0.55;0.78]

0.23 (0.18)
[0.02;0.67]

0.76 0.65 (0.04)
[0.60;0.78]

Abbreviations: RMSE, root-mean-square error; sd, standard deviation. RSpearman are correlation
age (tree_X), village-level night-time light intensity (NTLI), post-monsoon value for theNormal
Difference in Vegetation Index (ndviavg__), household density (hh_X), ring road length (rrlen_
density (rrden_X), number of rice mill industries (nrice_mill_X), number of operational brick k
supply (distnrp_e1), number of paved bus route (nrp_s8_X), and number of non-residential p
cating the radius of the buffer.
4. Discussion

To our knowledge, this is the first study to apply a LUR approach to a
non-urban area of a LMIC. Our results show the feasibility of LUR in a
settingwithmultiple local sources of particles and shed light on the spa-
tial variability of PM2.5 and black carbon concentrations in a peri-urban
area of South India. The final LURmodels for annual PM2.5 and black car-
bon showed moderate to good explained variance (adjusted-R2 of 58%
and 79%, respectively), though only the black carbon model was robust
through the validation process. Themodel for annual PM2.5 included re-
gional predictors retrieved from satellite imagery, while the black car-
bon model included both regional predictors and local predictors
derived from a built-environment survey of the study area. Thus, our
results provide insights on the added value of manually-collected
built-environment data to increase the performance of the LUR model
to predict black carbon concentrations in a peri-urban setting of
LMICs. For both pollutants, LUR provided greaterwithin-village variabil-
ity in predictions as compared to ordinary kriging, an important feature
for epidemiological studies relying on spatial variation in exposure.

Previous LURmodels of PM2.5 in urban areas have included primarily
traffic-related predictors, either road length (Brokamp et al., 2017;
Eeftens et al., 2012; Huang et al., 2017; Lee et al., 2017; Wolf et al.,
2017; Wu et al., 2014, 2017) or traffic load/intensity (Dirgawati et al.,
2016; Eeftens et al., 2012, 2016). None of the PM2.5 models in our
study included traffic-related features, likely because of the peri-urban
nature of our study area. Nonetheless, night-time light intensity, an in-
dicator of urbanicity, was included in all PM2.5 models. This feature
could relate to well-mixed traffic-related air pollution associated with
urban areas as well as other emission sources (e.g., solid-fuel use) asso-
ciated with rural areas. In the present work, all PM2.5 models included
an indicator for green spaces which is consistent with some previous
LUR developed for cities that included indicators of green or natural
spaces (Brokamp et al., 2017; Dirgawati et al., 2016; Eeftens et al.,
2012, 2016; Hoek et al., 2011; Liu et al., 2016; Wu et al., 2015, 2017).
Some previous LUR developed for PM2.5 in cities included predictors of
both small buffer sizes (≤100 m, generally traffic-related indicators)
and large buffer sizes (e.g. population density, natural spaces, and in-
dustry) (Eeftens et al., 2012, 2016; Hoek et al., 2008; Wolf et al., 2017;
Wu et al., 2014). In contrast, our PM2.5 models mostly included predic-
tors with large buffer sizes (village-level indicator or buffers ≥300 m),
-one-out cross-validation and B) cross-holdout validation.

)

Most included predictors during cross-holdout
validation process (% of inclusion)

RMSE RSpearman

Mean (sd)
[min;max]

NTLI (58%), tree_1000 (54%), longitude (50%),
ndvimax_5000 (50%)

7.48 (19.08)
[0.60;96.24]

−0.06

ndvimax_5000 (54%), NTLI (42%), hh_50 (38%),
tree_2000 (25%)

4.32 (2.73)
[0.45;10.29]

−0.18

elevation (75%), NTLI (63%), tree_300 (63%),
nrice_mill_1000 (58%), LPG (46%), nrp_e2_300 (33%),
nbrick_kiln_work_2000 (29%), ndvimax_5000 (29%)

6.14 (7.30)
[0.44;32.74]

−0.18

tree_500 (87%), rrlen_5000 (83%), distnrp_e1 (78%) 0.30 (0.25)
[0.01;0.90]

0.59

prlen_5000 (83%), LPG (52%), ndvimax_100 (26%),
tree_500 (26%)

1.01 (2.20)
[0.06;10.96]

0.39

rrden_5000 (78%), nrp_e2_300 (74%),
nrp_p1_5000 (61%), prlen_1000 (57%)

0.36 (0.27)
[0.02;1.14]

0.23

coefficients betweenmeasured and predicted concentrations. Variable names: tree cover-
ized Difference in Vegetation Index (ndvimax_X), annual average value for the Normalized
X), primary roads length (prlen_X), village-level liquid petroleum gas use (LPG), ring road
iln industries (nbrick_kiln_work_X), distance to non-residential place related to wood/gas
laces related to petrol supply (nrp_e2_X) and to religious center (nrp_p1_X) with_X indi-



Fig. 2.Maps of predicted annual concentrations from the land-use regression models for 23,605 households of the study area for PM2.5 (left) and black carbon (right). Only households
inside villages are presented as the area between villages includes mostly crops and agricultural lands with no or few inhabitants. Village names are not displayed for confidentiality
purposes.
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reflecting predominantly regional source contributions. This is consis-
tent with results from an ongoing analysis of the ambient background
monitoring data in the study area which estimated that local sources
contributed to b25% of the ambient PM2.5, according to moving average
subtraction method (Watson and Chow, 2001). The explained variance
Fig. 3.Comparison of PM2.5 and black carbon annual concentrations predicted by land-use regre
Red points are sampled sites values. Solid line is identity. Dashed lines represent±1 standard de
the reader is referred to the web version of this article.)
of our model for annual PM2.5 was lower than previously observed in
cities (≥70% in most case) (Dirgawati et al., 2016; Huang et al., 2017;
Liu et al., 2016; Wolf et al., 2017; Wu et al., 2017) but was still similar
to LUR in Beijing, China (Wu et al., 2015); Hong Kong (Lee et al.,
2017); Cincinnati, USA (Brokamp et al., 2017); and some European
ssion and ordinary kriging at 23,605 households of the study area. Colors represent villages.
viation ofmeasurement. (For interpretation of the references to color in this figure legend,
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areas (Eeftens et al., 2012). The low predictive ability we foundmay re-
late to limited variability inmeasured concentrations, quality of the pre-
dictor variables, and complexity of sources.

Black carbon has been proposed as a useful indicator for the health
effects of particulate matter, particularly in areas dominated by primary
combustion such as in the present analysis (e.g., solid fuel use for
cooking) (Janssen et al., 2011). Previous LUR models for black carbon
(or PM2.5 absorbance as proxy) have been developed in HICs and in-
cluded traffic indicators, roads length or density, buildings or population
density, industries, and water bodies (Dirgawati et al., 2016; Eeftens
et al., 2012, 2016; Lee et al., 2017; Montagne et al., 2015; Wolf et al.,
2017). In the present study, the most predictive variable for black car-
bon was an indicator of traffic but within a large buffer size. In our
study area, indicators of ring/primary roads within 5000 mwere highly
and negatively correlated with village-level proportion of liquid petro-
leum gas use. Thus, the road length predictors selected here to predict
black carbon may be representative of fuel use in a more local scale
rather than solely be indicative of traffic within 5000 m. Other selected
predictors of black carbon were mostly local, in particular locations re-
lated to energy supplies. Overall, our LUR models effectively captured
the local spatial variability of black carbon, with a high explained vari-
ance of almost 80% for the annual model, which was comparable with
(Dirgawati et al., 2016; Eeftens et al., 2012, 2016; Montagne et al.,
2015; Wolf et al., 2017) or higher than (Dons et al., 2014; Lee et al.,
2017) previously developed models.

We conducted extensive model evaluation including leave-one-out
cross-validation and cross-holdout validation. The decrease in perfor-
mance of our PM2.5 models during leave-one-out cross-validation was
in range with previously developed LUR (Dirgawati et al., 2016;
Eeftens et al., 2012, 2016; Huang et al., 2017; Lee et al., 2017; Wolf
et al., 2017;Wuet al., 2014). However, performance of our PM2.5models
was way poorer during cross-holdout validation in terms of explained
variance, influential observations, and predictive ability, which
questioned the reliability and robustness of the models we developed.
Cross-holdout validation has been shown to accurately reflect out-of-
sample predictive ability of LUR models when using limited sample
size (Wang et al., 2016). The relatively small sample size might be one
explanation for poor performance (Basagaña et al., 2013) or the spatial
variation of PM2.5 in the areamight not bewell captured by the sampled
sites. In contrast, our black carbon models were stable during cross-
holdout validation, with high consistency in predictor selection and
moderate to good performance of variance explained and predictive
ability, supporting the reliability and robustness of the models.

There was limited similarity between the PM2.5 and black carbon
models. First, models for black carbon performed better than those for
PM2.5 as they explained more spatial variation and were more robust
through evaluation process. The higher spatial variability in black car-
bonmeasurementsmight be one explanation. Consistentwith our anal-
ysis, better performance for black carbon (or PM2.5 absorbance) models
than for PM2.5 has been found in other locations (Dirgawati et al., 2016;
Eeftens et al., 2012; Wolf et al., 2017). Second, our model for annual
PM2.5 only included regional-scale predictors that were all derived
from satellite imagery (expect household density), while the model
for annual black carbon included both local- and regional-scale predic-
tors that were mostly retrieved from the built-environment survey.
Some previous models for black carbon and PM2.5 showed similar pre-
dictors for the same area (Lee et al., 2017; Saraswat et al., 2013; Wu
et al., 2014). In the ESCAPE project, predictors for PM2.5 and PM2.5

absorbance were also similar, though the ones for PM2.5 absorbance
had larger buffer sizes (unlike our findings) (Eeftens et al., 2012). The
observed discrepancy with the literature may in part be explained
by the specificity of our peri-urban study area experiencing a mix
of regional and very local sources of particulate matter. The consid-
ered predictors, mostly derived from built-environment survey,
likely captured some sources that are usually not relevant for or
available in most urban areas of HICs, such as energy use (e.g.
biomass burning, liquid petroleum gas) and specific non-residential
places (e.g. temples, shops).

Manually-collected geographic predictors derived from the built-
environment survey were valuable to improve the variance explained
by the LUR models for black carbon, but not PM2.5. The built-
environment survey data allowed us to consider culture-specific classes
of predictors, such as distance to religious centers and energy supply
places, which have not been considered previously in the LUR literature,
either because they were unavailable or irrelevant. Other authors have
highlighted the importance of culture- or site-specific land-use classes
to predict particulate matter in Taipei, Taiwan, or Quebec, Canada
(Smargiassi et al., 2012; Wu et al., 2017). The added value of built-
environment survey data to LUR models of air pollution should be ex-
plored in other settings, particularly those with diverse local sources
or limited GIS data.

Similar to other studies, ordinary kriging predictions here showed
limited spatial variability, in particular within-village, as compared to
those from LUR models (Alexeeff et al., 2015). Universal kriging, a
two-step approach that combines LUR and ordinary kriging, has been
proposed to improve predictions (Mercer et al., 2011; Young et al.,
2016).We could not apply universal kriging because correlations were
not found in the residuals of the LURmodels, suggesting that ourmodels
already capturedmajor predictors of PM2.5 and black carbon spatial var-
iations. The increased within-village variability observed using LUR
models supports the use of LUR predictions for epidemiological studies
on the long-term effect of air pollution in the study area.

One limitation of our study is the small number of monitoring sites
included in the model development relative to the number of consid-
ered predictors, which could have decreased the reliability of the devel-
oped LUR models. Indeed, limited sample size has been shown to
artificially increase the variance explained when too many predictors
are offered to the model (Basagaña et al., 2012). Nonetheless, the mon-
itor density in our study areawas relatively high (23–24monitors for an
area of interest of 8.2 km2) and the number of sites was comparable to
previous studies in HICs. For several cities included in the ESCAPE pro-
ject, the monitoring density was lower: ≤20 sites for larger area than
ours (Eeftens et al., 2012). Tominimize the risk of overfitting and collin-
earity, stringent criteria were applied during selection process – we
used a supervised approach with a priori defined directions of effects,
we considered only predictors with enough variability, we restricted
predictor inclusion by checking correlation and variance inflation factor,
and we limited the number of predictors in the final model. We also
made an extensive effort to evaluate the robustness of the selected pre-
dictors and the performance of the models with leave-one-out cross-
validation and cross-holdout validation. Despite extensive procedure,
the lack of external dataset may have limited the evaluation of our
models. Variability in measured concentrations could have limited the
potential for prediction in thepresent analysis, thoughwe selected sam-
pling sites to maximize contrasts in pollutant concentrations. Another
limitation of the present analysis was the village-level resolution of bio-
mass cooking fuel use. Availability of data with better resolution may
improve the interpretability or the performance of themodel. However,
a household-level indicator derived from comprehensive household
survey did not show stronger crude association with our air pollution
measurements. The temporal discrepancy between our sampling cam-
paign (2015–2016) and the collection of the geographic variables
(NTLIwas derived for year 2012 and built-environment surveywas per-
formed in 2013) could have impacted the performance of our models.
Though, we do not expect changes in sources or land use to be large
over a few years. We used NTLI data from 2012 because it had been
processed to achieve better spatial resolution; however we observed
strong correlation between data we used and data concurrent with
our sampling campaign (2015). Industry is mostly an informal sector
in the study area with highly unpredictable operating time and dura-
tion, making the likely timing of emissions difficult to capture in the
built-environment survey. This may partly explain why industries
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were not selected in our models. Changes in sources or levels of partic-
ulatematter associatedwith urbanization could limit the applicability of
our models in the future, although substantial changes in sources or
land use are not likely to happen within a decade.

The outdoor concentrations we measured and modeled in peri-
urban South India exceed typical PM2.5 and black carbon concentrations
used for epidemiological purposes in the United States and Europe
(Beelen et al., 2014; Chan et al., 2015; Kaufman et al., 2016; Lepeule
et al., 2014; Rice et al., 2015), although they were substantially lower
than concentrations in North India (Gautam et al., 2016; Sharma and
Kulshrestha, 2014). In particular, the spatial variability of PM2.5 and
black carbon in our study area (as inter-quartile range or sd/mean)
was consistently higher than typical values found in the literature
(Beelen et al., 2014; Chan et al., 2015; Kaufman et al., 2016; Lepeule
et al., 2014; Rice et al., 2015). Previous authors have highlighted the
dearth of epidemiological cohort studies in regions with relatively
high PM2.5 exposures leading to uncertainty when predicting health ef-
fects across the global exposure range (Burnett et al., 2014; Lelieveld
et al., 2015). The exposure-response function developed by Burnett
et al. considered only relative risks associated with ambient PM2.5

levels b 29 μg/m3 to model the shape of the relationship between
PM2.5 and ischemic heart disease (Burnett et al., 2014). By comparison,
the ambient concentrations measured in our study area were similar to
the PM2.5 levels for passive smoking considered by Burnett et al.
(Burnett et al., 2014).

Well-performing models to predict exposure in low-/middle-in-
come countries is essential to fill the gap in epidemiological evidence
regarding health effects of long-term exposure to outdoor air pollu-
tion at exposures higher than those typically observed in North
America and Europe. We showed that coupling a LUR approach
with a built-environment survey was more effective in capturing
within-village spatial variability, an essential point in epidemiology,
than the ordinary kriging approach. Future air pollution exposure as-
sessment in areas with limited geographic data and/or culturally
specific sources could benefit from the combination of manually-
collected built-environment data and remote sensing data. The LUR
models we developed will be applied locally to all APCAPS partici-
pants living in the Southeast region of Hyderabad, India, supporting
the epidemiological investigation of the long-term effects of PM2.5

and black carbon in this population.

Abbreviations

LUR land-use regression
HIC high-income country
LMIC low-/middle-income country
GIS Geographic Information System
NTLI night-time light intensity
NDVI Normalized Difference Vegetation Index
NRP non-residential places
PM2.5 particulate matter with a diameter ≤ 2.5 μm
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Appendix A. Supplementary data

Description of the evaluated predictors for PM2.5 and black carbon
(Table S1); sensitivity analysis of the land-use regression models for
PM2.5 and black carbon with no restriction on the included number of
predictors (Table S2); sensitivity analysis of the land-use regression
models for PM2.5 and black carbon considering only satellite-derived
predictors (Table S3); predictions from ordinary kriging for annual
PM2.5 and annual black carbon (Table S4); diagnostic plots of the devel-
oped land-use regression models for PM2.5 (Fig. S1) and black carbon
(Fig. S2); maps of predicted annual concentrations using ordinary
kriging for 23,605 households of the study area for PM2.5 and black car-
bon (Fig. S3). Supplementary data to this article can be found online at
https://doi.org/10.1016/j.scitotenv.2018.03.308.
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