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ABSTRACT: Air pollution measurements collected through sys-
tematic mobile monitoring campaigns can provide outdoor con-
centration data at high spatial resolution. We explore approaches
to minimize data requirements for mapping a city’s air quality
using mobile monitors with “data-only” versus predictive model-
ing approaches. We equipped two Google Street View cars with
1-Hz instruments to collect nitric oxide (NO) and black carbon
(BC) measurements in Oakland, CA. We explore two strategies
for efficiently mapping spatial air quality patterns through
Monte Carlo analyses. First, we explore a “data-only” approach
where we attempt to minimize the number of repeated visits
needed to reliably estimate concentrations for all roads. Second,
we combine our data with a land use regression-kriging (LUR-K)
model to predict at unobserved locations; here, measurements
from only a subset of roads or repeat visits are considered. Although LUR-K models did not capture the full variability of on-
road concentrations, models trained with minimal data consistently captured important covariates and general spatial air
pollution trends, with cross-validation R2 for log-transformed NO and BC of 0.65 and 0.43. Data-only mapping performed
poorly with few (1−2) repeated drives but obtained better cross-validation R2 than the LUR-K approach within 4 to 8 repeated
drive days per road segment.

1. INTRODUCTION

Exposure to air pollution is a major risk factor for adverse
health effects and premature death.1−6 Urban air pollutant con-
centrations can vary sharply over short spatial scales,7−9 with
important consequences for population exposures and environ-
mental health.10 In the context of epidemiological studies, highly
spatially resolved exposure estimates can reduce exposure mea-
surement error11 and enable researchers to study populations
within small study areas.12 Other applications of high-resolution
air quality maps may include assessment of environmental equity,
studies of pollutant sources and dynamics, and the basis for air
quality management and public awareness.
Numerous approaches exist for quantifying intraurban vari-

ation in air pollutant concentrations.9,13 Land use regression

(LUR) has been a popular approach14 because of its simplicity,
interpretability, and ability to predict fine-scale variations in
pollution. LUR models are traditionally developed with central-
site air quality monitors15−18 or networks of fixed-location air
quality instruments designed specifically for creating a LUR
within a given city or study area.19−24 More recently mobile
monitoring campaigns, including both the approaches of
collecting air quality data in a vehicle while in motion25−36

and short-term stationary measurements (e.g., 30 min) at
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predetermined stops,29,31 have been used to successfully
develop LUR models. A strength of mobile air quality moni-
toring is its ability to increase the spatial resolution of measure-
ments to a substreet level, however at the expense of temporal
sparsity at any given location. As mobile monitoring is increas-
ingly contemplated as an approach for developing high-
resolution air quality maps over large spatial domains, a better
understanding of the data requirements to efficiently produce
reliable estimates is needed. Here, we systematically assess how
key study design parameters such as repetition frequency and
road coverage affect the performance of alternative mobile
monitoring study designs. By exploring the trade-off between
sampling effort and mapping fidelity, our results illuminate
efficient approaches for large-scale mobile data collection.
The goal of this study is to systematically assess the data

requirements for accurately and efficiently mapping long-term
average air quality at a high-spatial resolution using mobile moni-
toring. Using an unusually rich data set of repeated mobile air
quality measurements collected with specially equipped
Google Street View cars, we explore and evaluate two alter-
native strategies for efficiently mapping spatial air quality
patterns. First, following Apte et al. (2017),7 we use a “data-
only” approach where we map concentrations solely on the
basis of repeated observations while attempting to minimize
the number of repeated visits to each road. Second, we com-
bine our data with a land use regression-Kriging (LUR-K)
model to predict at unobserved locations and consider sampl-
ing schemes where only a subset of a city’s roads or repeat
visits are measured. The LUR-K approach can make spatial
predictions at a large number of locations even with a small
number of repeated measurements on a subset of city roads.
Potential advantages of the model-free “data-only” approach
include avoiding the extra effort of training and evaluating
predictive models, avoiding potential biases that may result
from the model structure, and avoiding assumptions regarding
the relationship between air pollution and land-use. To eval-
uate these approaches, we use a Monte Carlo scheme to
systematically subsample the full data set and then develop
data-only maps or LUR-K models and compare the reduced-
data results to our full data set of long-term maps.

2. MATERIAL AND METHODS

2.1. Air Quality Data Collection and Processing. We
used two Google Street View cars equipped with the Aclima
mobile platform (Aclima Inc., San Francisco, CA) to measure

air quality on city streets in Oakland, CA on 326 days from
May 28, 2015 to May 19, 2017. This data set is based on the
instrumentation platform and mobile sampling approach
described in detail in Apte et al. (2017).7 We consider two
species that are markers of traffic air pollution: nitric oxide
(NO, measured by chemiluminescence) and black carbon (BC,
measured by photoacoustic spectroscopy). Further details on
the measurement platform and summary driving statistics are
available elsewhere7 and as Supporting Information (SI).
We repeatedly measured air quality during weekday daytime hours
on every road in a 30 km2 domain in Oakland, CA. Described
in detail in the SI, this domain incorporates residential, com-
mercial, and industrial areas. We display results for two neigh-
borhoods to emphasize the high spatial resolution data, West
Oakland and Downtown, with additional results for East
Oakland presented as SI. Overall, we collected approximately
3.5 million (NO) and 3.7 million (BC) 1-Hz observations.
This data set is unique for nearly complete coverage of all city
streets within the domain and for the many repeated measure-
ments at each location (minimum and median of 10 and 41 days
of repetition at each location, see Figure S1).
Our data processing steps followed those of Apte et al.7

We first applied a multiplicative time-of-day factor based on
central-site monitoring to adjust for diurnal variation in ambi-
ent air quality, which had only a minor (±10%) effect on long-
term average spatial patterns.7 We then divided the ∼640 km
of roads in our domain into 19,149 road segments, each 30 m
in length, and then “snapped” each pollution observation to the
nearest segment. To ensure that each repeated drive through a
given road segment (drive pass), which had varying numbers
of highly correlated 1-Hz measurements, was represented
equally in our analysis, we updated our data reduction scheme
here as follows. First, we reduced the measurements for each
“drive pass” through a 30-m road segment (typically ∼3−10 s)
into a single drive pass mean concentration. We then com-
puted the median of repeated drive pass mean concentrations
as our core metric for analysis, as shown Figure 1a for NO (see
Figure S2 for BC). Because this “median of drive pass means”
approach incorporates information from numerous repeated
drive passes, it is robust to anomalously or idiosyncratically
polluted drive passes, and it produces a concentration map that
is highly correlated (R2 > 0.9) with the data reduction
approach used in Apte et al.7

2.2. Monte Carlo Simulation of Mobile Monitoring
Scenarios. We outline here our approach to evaluating

Figure 1. (a) Median of drive pass mean NO concentrations for the full 2-year data set. This data set is used to validate model predictions.
(b) Representative example of subsampled training data set with 4 days of driving at each road segment. This Monte Carlo subsampled data set
results in the LUR-K median predictive performance out of the 100 subsampled data sets with 4 drive days. (c) Representative example (also
median predictive performance) of a subsampled training data set incorporating 30% of the roads in the domain. Map data © 2018 Google.
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alternative schemes for developing high-resolution air quality
maps with mobile monitoring. We consider high spatial
resolution as the ability to precisely distinguish between and
within street-to-street variability. As a starting point, we take
our full 2-year data set of average (i.e., median of drive pass
means) concentrations on every 30-m road segment to be our
reference data set, representing our best estimate of the true
spatial variability of weekday daytime concentrations (Figure 1a).
The level of monitoring effort (∼1,400 h, 40,000 km of driving)
required to generate this data set could be difficult to replicate
elsewhere. We then evaluate the following suite of alternative
mapping approaches that could potentially reduce the data col-
lection effort:

• Data-Only Map: Starting with the full 2 years of
observations, we develop a subsampled data set with N
driving days at each 30-m road segment from the full
2 years of observations. We estimate the long-term con-
centrations at each 30-m road segment as the median of
drive pass means for this subsample.

• LUR-Kriging Model: We train LUR-Kriging (LUR-K)
models using a subset of the full 2-year data set. We con-
sider three alternative approaches to subsampling data to
train LUR-K models, described briefly here and in detail
below. First, we consider a “drive day” sampling scheme:
mobile monitors collect N days of data for all 30-m road
segments in the domain, and then a LUR-K predi-
ction for all road segments is trained on this tem-
poral subsample of measurements. Second, we consider
a “road coverage” sampling scheme, where all 2 years of
data for only a portion of the roads in the sampling
domain are included for training a LUR-K model. Third,
we consider “joint” scenarios in which LUR-K predic-
tions are developed on the basis of a subsampled data set
where a limited number of repeated observations are
collected on a limited number of roads. In each case, the
prediction performance of LUR-K models is evaluated
relative to our long-term reference data set using a
10-fold cross-validation scheme described in Section 2.5.

We employed the following Monte Carlo (MC) subsam-
pling schemes to implement each of the above scenarios in 100
independent draws.
2.2.1. Sampling by Number of Days of Driving Per Road

Segment. We develop subsampled data sets where every road
segment is sampled on N unique days. Here, we summarize the
process with a more detailed description in the SI. First, we
developed 16 scenarios where we randomly selected without
replacement N = {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35,
40, 45} days with valid measurements within the Oakland
sampling domain from our full set of 2 years of repeated
observations, preserving at least 95% of all road segments in
the domain to ensure our domain does not change sub-
stantially from one subsample to the next. Our sampling routes
differed daily, and the domain took several days to fully drive,
thus the selection procedure resulted in fewer than the target N
days of repeated measurement at each individual 30-m road
segment. On average, ∼34 unique calendar days of sampl-
ing were required to construct a map with 1 complete drive
day for the full domain, and ∼190 unique calendar days of
driving were needed to provide 10 days of measurements
everywhere (see Figures S3 and S4). The number of calendar
days required to completely sample our domain appears not to
meaningfully affect our findings (see sensitivity analysis in

Figure S5). For large values of N, the desired number of days
occasionally exceeds the number of repeated observations for a
road segment, resulting in the full data set being sampled
(∼75% of road segments have ≥25 days of observations; see
the SI).
We then computed the median-of-drive-pass-mean concen-

trations for every road segment subsample (see example map
in Figure 1b). We applied these reduced data sets to the two
schemes described above: data-only (wherein a map is made
simply by reducing repeated measurements) and LUR-K
(as training inputs to a subsequent LUR-K modeling process).

2.2.2. Sampling by Road Coverage. We developed sce-
narios to simulate a mapping approach where predictive models
are trained to estimate concentrations for an entire domain on
the basis of measurements collected on a small subset of roads.
As a starting point, we decided for two reasons that sub-
sampled maps would always include the full highway network.
First, given the low overall contribution of highways to the
total road length in our sample, we believed that further
restricting the number of highways in a subsample would lead
to unstable predictions at the high end of our concentration
range. Second, these roads were routinely driven here out of
operational necessity, as would likely be the case many mobile
sampling efforts in other urban settings. We then randomly
selected without replacement nonhighway roads to construct
maps where between 10% and 90% of the nonhighway roads
were included, increasing in 10% increments. Subsampling was
performed by street name to ensure contiguous, connected
road segments. For a scenario targeting M% road coverage, we
used an iterative approach to repeatedly and randomly select
road segments by street name until a map containing M ± 1%
of the road network was completed. Note that the subsampling
by road coverage occurs in the training set for each iteration in
the 10-fold cross-validation process. The test set is always the
median of drive pass means based on the full 2-year data set.
For each road segment, we used the median of drive pass means
from the full 2-year data set as the basis for model training.

2.2.3. Sampling Jointly by Road Coverage and Drive
Days. We simulated a mobile measurement approach where a
fraction of roads in the measurement domain is sampled on a
restricted number of repeated occasions. Here, we combined
elements of the algorithms devised in the two preceding sec-
tions. We first constructed an air quality map via subsampling
for the complete measurement domain on a restricted number
of days. Then, using the road subsampling algorithm described
in section 2.2.2, we randomly selected a subset of all roads in
the domain for inclusion in model training. We considered
scenarios with combinations of 1, 4, and 14 days of repetition
per road segment on {10, 20, ..., 80, 90} percent of the roads in
the modeling domain.

2.3. Model Development: Geographic Covariates.
Geographic covariates were constructed prior to model devel-
opment. The candidate set of variables is summarized below,
with details available in the SI (Table S2). Briefly, the 121 vari-
able candidate set of covariates included binary road classifi-
cations, binary local truck routes, local zoning classifications,
normalized difference vegetative index, percent landcover, road
length, population density, and continuous point source vari-
ables such as National Priority Listing sites, airports, and ports
(see the SI). Continuous variables had a distance hyper-
parameter such as exponential decay distance37 or buffer size,
with a minimum buffer size of 50 m. Owing to the limited
availability of fine-scale predictor data sets, our set of candidate
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model covariates most strongly represents features at scales
of ≥50 m.
2.4. Land Use Regression with Kriging (LUR-K).

We used a LUR-K approach to model the observed 30-m
median of drive-pass mean pollutant concentrations. Prior to
model development the distributions for NO and BC were
examined graphically for normality. Statistical analyses used
log-transformed data for NO and untransformed data for BC.
LUR-Kriging models were selected following a similar
approach developed for the European Study of Cohorts for
Air Pollution Effects (ESCAPE) studies.38 Briefly, an ordinary
least-squares (OLS) LUR was fit using a modified stepwise
procedure. Variables were added based on an increase in
model R2, variables were required to be statistically significant
to enter the model, variables were constrained to a priori
assumption of physical interpretations (i.e., sources are
expected to increase pollution therefore their coefficients are
positive), and variance inflation (VIF) was maintained below 3.
Once the geographic covariates are selected and the model is

trained, the LUR was integrated into a Kriging framework to
produce a LUR-Kriging model, sometimes known as Kriging
with an external drift.39−41 LUR-Kriging combines an ordinary
linear LUR plus a spatially explicit error term that accounts for
the spatial autocorrelation between points. Here, the error
covariance was modeled as an exponential model with a nugget
effect.42 The full set of covariance model parameters and
explanatory model coefficients was estimated using an iterative
algorithm in which the covariance was estimated from the LUR
residuals followed by a generalized least-squares estimate of all
parameters with the updated covariance matrix.43

2.5. Performance Evaluation. For the model-based
approaches in the subsampling analyses, we implemented
K-fold cross-validation to assess the ability of LUR-K models
to select consistent, parsimonious models and make indepen-
dent, out-of-sample predictions of our long-term average
measurements. Using an algorithm described in the SI, we
defined K = 10 contiguous, similarly sized spatially clustered
cross-validation groups16 to minimize the spatial autocorrela-
tion of near-neighbors in the cross-validation (Figure S6).
Owing to the high spatial density of mobile monitoring
samples, this cluster approach to cross-validation reduces the
effect of the extremely close neighbors and more rigorously
approximates out-of-sample prediction performance. In 10-fold
cross-validation, the subsampled road segments selected for
model training are divided into K = 10 spatially clustered folds.
We then cycle through the 10 possible permutations of K−1 =
9 folds, each time training a LUR-K model on 9 out of the
10 folds, while reserving data from the 10th fold for indepen-
dent model evaluation.
For each set of 10 folds, we apply the fitted LUR-K model to

make predictions in the single held-out spatial cluster. In con-
ventional LUR modeling practice, model predictions would be
compared against the data withheld from the training data set
for each of the K folds. In contrast, our core analyses of model
performance compared model predictions for each road seg-
ment within the held-out cluster with the long-term median-of-
drive-pass-mean concentrations at those locations. Whereas
the former analysis approach provides information on how well
the model reproduces the training data set, the latter approach
summarizes how well the model predicts long-term average
concentrations.
For each set of 10 folds, we summarize model performance

in terms of two statistics: R2 (i.e., squared Pearson correlation

coefficient) and the normalized root mean squared error
(NRMSE, root mean squared error normalized to the observed
mean). The R2 and NRMSE for the spatially clustered K-folds
were calculated as follows:

R R Z Z( , )2 2= * (1)

K

Z Z
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Here, Zi are the observed medians of drive-pass means based
on the entire 2-year data set at K-fold i, Zi* are the predicted
medians of drive-pass means at K-fold i, and nk is the sample
size for the k-fold. For NO, R2 is based on the log-transformed
NO data, and the NRMSE is calculated in the normal/
untransformed space. The best value of NRMSE is 0, while
favorable values of NRMSE are considered to be less than 1,
which indicate the mean error is less than the sample mean.
10-fold cross-validation is not feasible in data-only approaches

since there is no basis for prediction at unsampled locations.
We assessed model performance for the data-only approach by
comparing the simulated median of drive-pass means based on
a given MC iteration to the median of drive-pass means for the
full 2-year data set.
For each scenario, we repeatedly developed models on 100

independent MC subsamples of the full data set. For each
subsample, we evaluate R2 and NRMSE and then compute the
distribution of these performance metrics for repeated
subsamples.

3. RESULTS AND DISCUSSION
In this study, we examine strategies to efficiently develop air
quality maps from mobile monitoring data, either via a “data-
only” scheme that averages repeated measurements or via
LUR-K models trained on repeated measurements. As the
following sections discuss in detail, two key results of our
analysis are that (i) robust LUR-K models can be effectively
developed even with very sparse mobile monitoring data, but
(ii) the data-only approach outperforms LUR-K in precision
(R2) after a small number of drive days (cf. Figure 2a-b).
Figure 2 illustrates representative results and residuals for

these two approaches (left column: maps of daytime NO, right
column: residuals in comparison to Figure 1a). Visual inspec-
tion suggests that each approach recreates some key features of
the long-term observed concentrations. NO concentrations are
elevated strongly on highways (and modestly on arterials)
relative to residential streets. Elevated NO levels in Downtown
Oakland are evident in each of the maps. However, the full
data set (Figure 1a) contains numerous localized pollution
hotspots at road intersections, industries, and other emissions
sources, only some of which are reproduced in the Figure 2
maps (compare Figures S2 and S7 for BC). Figure S9
illustrates similar results for the East Oakland domain.
Figure 2a depicts an example data-only map for NO concen-

trations in our Oakland domain (excluding East Oakland),
which incorporates 4 days of sampling at each location
(85 total hours of measurement, approximately 6% of the full
measurement data set). Even with only 4 days of measurement
data per road segment, the key spatial patterns of NO are
evident (median R2 = 0.65, median NRMSE = 1.18), including
pollution hotpots near some industries and intersections.
However, there is evident “noise” − errors that appear to be
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approximately randomly distributed in space − that arises
because of the limited number of samples at each location.
Figures 2b-e illustrate four alternative approaches to training

a LUR-K model to predict concentrations at every 30-m road
segment. Figure 2b represents a scenario where the LUR-K
model incorporates the full 2 years of measurement data for
training and is described in greater detail in the following
section. By incorporating the full data set, this model achieves
the best performance (R2 = 0.60, NRMSE = 1.05) of all LUR-
K models in our analysis. Of course, it would generally be both
impractical and illogical to collect extensive repeated measure-
ments at every location for which one wishes to make model
predictions. Figures 2c-e illustrate that the LUR model perfor-
mance remains similar even when the amount of model
training data is substantially restricted. In Figure 2c, the train-
ing data set is restricted to a subset of roads accounting for all
highways and a random set of 30% of the nonhighway road
network (20% of the full data set hours), resulting in only a
negligible change in model predictions and performance
(median R2 = 0.58, median NRMSE = 1.09). In Figure 2d,
the training data set is restricted to only 4 days of observation,
resulting in a different model with a slight decrement in perfor-
mance (median R2 = 0.56, median NRMSE = 1.12), but with a
large drop in training data requirements (6% of full data set;
∼80 h). Figure 2e illustrates an example model trained on a
highly restricted data set (30% road coverage, 4 days of observa-
tion) with a dramatic reduction in data requirements (2% of full
data set; ∼25 h), also accompanied by a slight reduction in model
performance (median R2 = 0.56, median NRMSE = 1.12).

3.1. Full Data Set Model. LUR-K predictions incorporat-
ing the full 2 years of driving for NO are shown in Figure 2b.
The predictions capture regional and local variability but often
fail to correctly predict fine-scale hotspots. GIS covariates
selected in each of the 10-folds included road type indicators
(highway roads, residential roads, etc.), local truck route
indicator, NDVI within a 50 m buffer, distance to the port, and
elevation. Table 1 shows covariates selected for log-NO and

BC models including the average (min, max) coefficients across
each fold and the number of occurrences. The LUR-K 10-fold
cross-validation has a NRMSE of 1.05 and R2 of 0.60.
Black carbon LUR-K predictions based on the full 2 years

of monitoring are available in the Supporting Information

Figure 2. Example air quality maps constructed using sampling and/
or modeling approaches. (a) Data only map drawn from Monte Carlo
subsample with 4 days at each road segment. Residuals are computed
as the difference between subsampled 4 day map and the long-term
concentrations shown in Figure 1a. (b) 10-fold cross-validation LUR-
K prediction (and residual) surface trained on all the road segments
and the entire 2-year data set. (c) 10-fold cross-validation LUR-K
prediction (and residual) surface trained on the full 2-year data set
and 30% subsample of road segments. Note the similarity in
predictions between (b) and (c). (d) 10-fold cross-validation LUR-
K predictions trained on a 4-day subsample for the full domain of
road segments. (e) 10-fold cross-validation LUR-K predictions trained
on a 4-day subsample and 30% of the road segments. The number of
training data is given as N and span a range from 92,000 independent
points (∼25 h of sampling to cover 30% of roads in domain 4 times
each) up to the size of the full data set. For all panels, the R2 is based
on the log-transformed NO data, and the RMSE is calculated in
untransformed space. Normalized RMSE values are provided in
parentheses. Map data © 2018 Google.

Table 1. Log-NO Models for the 10-Fold Cross-Validation
of the Full 2-Year Data Seta

variable name units
average coefficient

(min, max)
no. out of
10-folds

highway roads binary 0.90 (0.73, 1.78) 10
major roads binary 0.66(−) 1
residential roads binary −0.70 (−0.71, −0.57) 9
local trucks binary 0.49 (0.40, 0.58) 10
NDVI 50 m unitless −4.2 (−4.7, −2.4) 7
elevation 1000 m meters 0.007 (0.006, 0.007) 6
port 5000 m unitless 0.10 (0.075, 0.15) 3
developed high
250 m

percent 0.008 (0.008, 0.008) 2

develop low 2500 m percent 0.05 (−) 1
inverse distance to
airport

meters−1 3.3 (−) 1

aColumns include the variable name and buffer size if applicable,
variable units, the average coefficient over 10-folds, and the number of
folds it appeared in.
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(Figure S7). Observed BC has a similar spatial pattern as NO,
with an R2 between the full data set NO and BC LUR-K
predictions of 0.73. Fine-scale variability in observed BC is
more pronounced owing to 1 Hz noise in the raw data from
the photoacoustic BC instrument. The final LUR-K BC model
resulted in a 10-fold cross-validation R2 of 0.43 and NRMSE of
0.60 (Table S1).
3.2. Monte Carlo Subsampling Analysis. 3.2.1. Reduced

Drive Days for LUR-K Models. Figure 2 shows example maps
and residuals for reduced data approaches. The residuals of the
data-only approach appear more randomly distributed than the
LUR-K model residuals. We observe similar predictions and
residuals for the LUR-K models in Figure 2b-c, an illustration
of a key result: the amount of road coverage used for model
training does not strongly affect modeled predictions. The
LUR-K models based on 4 days of training data at all road
segments (Figure 2d, all roads and Figure 2e, 30% of roads)
produce comparable predictions to the full data set models,
although with a slightly larger error and lower R2.
Figure 3 shows the R2 and NRMSE for the MC analyses as a

function of reduced drive days and road coverage for log-NO

(see Figure S8 for scatter plots and S10 for BC). Figure 3a-b
shows the direct comparison of a LUR-K approach versus a
data-only approach as drive days are reduced. The R2 of the
LUR-K models for log-NO was remarkably consistent as drive
days were reduced toward a single drive day. For example, the
median R2 was above 0.50 for cases with four or more drives

per road segment. Even with 2 drive days per road segment,
the median R2 (0.52) was within 15% of models developed on
45+ drive days. The prediction bias (NRMSE) for log-NO was
also generally consistent as the number of drive days per road
segment was reduced, although a small increase in bias was
observed below 6 days. In general, BC models followed similar
trends, although the upper-bound prediction performance for
BC was somewhat inferior to NO. Results were stable among
repeated MC iterations, as evidenced by the small interquartile
range in predictions. Overall, these results suggest that the
sampling error introduced by a low repetition frequency at
each road segment does not strongly degrade the ability of a
LUR model to make out-of-sample predictions of long-term
average concentrations. There are many training road segments
representing each part of our prediction variable space, which
perhaps allows for an “averaging out” of the sampling error or
temporal variability at each location.

3.2.2. Reduced Drive Days for Data-Only Maps. We find
that data-only mapping is extremely variable and poorly
replicates long-term concentrations with ≤2 drive days per
road segment, but each subsequent repeat visit results in
significant improvements of prediction accuracy and bias. With
only a small number of drive days (log-NO: 4−6 days, BC:
6−8 days), the data-only approach consistently outperforms
the best LUR-K models, with R2 > 0.7. Moreover, the data-
only approach continues to improve until about 25 drive days
and approaches the full 2-year data set results (R2 > 0.9),
whereas the LUR-K models rapidly approach a ceiling of
moderate performance (R2 ∼ 0.6 for log-NO).

3.2.3. Reduced Road Coverage for LUR-K Models. A key
efficiency advantage of predictive modeling approaches is the
ability to make wide-area exposure estimates on the basis of
spatially limited training measurements. Figures 3c-d show the
log-NO R2 and NRMSE for the MC analyses as a function of
reduced road coverage. An important finding here is that LUR-K
prediction performance is only weakly dependent on the amount
of road coverage, especially for >10% road coverage. For exam-
ple, NO models trained on a random 10% and 20% sample of
the roads in our domain performed nearly as well (R2 = 0.51,
0.56) as a model trained on 90% of the domain roads (R2 =
0.61), despite the nearly order-of-magnitude difference in the
size of the training data set. Our assessment of the joint sub-
sampling of road coverage and repetition frequency suggests that
there is little interaction between these two variables. In gen-
eral, the LUR-K models based on 1-drive day performed worse
than the other LUR-K models (mean R2 = 0.43−0.47 for
10−90% road coverage), while our road coverage subsampling
for the 4, 14, and all-day models had similar results.
Our results were largely consistent with Hatzopoulou et al.44

and Minet et al.45 in which they found a consistent mean with
increasing variability in R2 as the number of road segments in
the domain decreased. This finding also implies that the com-
mon practice of training mobile monitoring LUR models on a
subset of a domain’s roads does not impose a meaningful
prediction bias. An important qualification is that for out-of-
sample predictions to be successful, the training data set must
be representative of the full range of conditions for the predic-
tion domain. To test this point, we conducted a sensitivity
analysis where we restricted the road subsampling to include
only arterial roads and highways and found substantially
diminished model performance (R2 ∼ 0.35−0.5).

3.3. Consistency of Results. Correlations between the
reduced data set LUR-K predictions and the full model were

Figure 3. Performance evaluation for subsampled maps in terms of R2

(a,c) and NRMSE (b,d). (a,b) Subsampling schemes based on the
number of drive days per road segment. The black trace indicates the
data-only mapping scheme, and the red trace indicates a LUR-K
model trained with an equal number of measurements days on all
road segments in the domain. (c,d) LUR-K models trained on a
specified fraction of road segments on the domain for four alternative
levels of repetition frequency on each road segment. “Joint” models
refer to cases with jointly reduced road coverage and drive days per
road segment. Shaded area and solid lines represent, respectively, the
interquartile range and median model performance for 100 Monte
Carlo permutations of our full data set.
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generally high (R2 > 0.8−0.9). To explain why, we examined
the sensitivity of the LUR-K model structure (i.e., the selected
covariates) to reducing the size of training data sets. We found
that variables selected for the full 2-year data set model were
often selected in the cases with reduced data sets. In other
instances, highly correlated explanatory variables were selected
instead (e.g., mutually exclusive road classes), resulting in
similar predictions as the full model variables. We observed
that GIS covariates explaining the largest proportion of variance
were selected frequently and tended to be ubiquitous city-scale
features such as road class. In contrast, fine-scale features (e.g.,
NDVI within 50 m) were less reliably selected as the number
of the samples decreased. Much of the unexplained variance in
our best-case model appears attributable to very fine-scale
spatial variation (e.g., local hotspots) for which good predictor
variables are unavailable. We speculate that if future models
were to include more effective covariates for predicting the
residual fine-scale variation, LUR-K results might become
more sensitive to the amount of training data even as the best-
case performance of a model improves.
A unique feature of our analyses is that our subsampled

training data sets (e.g., N days per road segment) tend to have
relatively imprecise measurements at each location (owing to
temporal variability across drive days), while the 2-year median
concentrations that are used as a test set are far more precise
by virtue of the large number of repeated samples. In most
real-world cases, this type of test set is not available, and K-fold
cross-validation might instead be used to allow measurements
to serve as both training and test data. In a sensitivity analysis
we considered how our drive-day models would fare under
such an evaluation scheme. An intriguing result arises for cases
with a small number of drive days per road segment. Because
concentrations at each road segment are “noisy” (error from a
small sample size), our LUR-K models do not perform well at
predicting their own noisy training data sets, even though they
perform quite well in predicting long-term concentrations.
This result points to the interesting possibility that a model
trained on a small sample adequately predicts the (unknown)
true spatial pattern even as it struggles to predict its own train-
ing data set. Kerckhoffs et al. found a similar result in The
Netherlands: mobile monitoring LUR predictions based on
short-term monitoring had poor training R2 but predicted long-
term, independent test set observations with good fidelity.31

3.4. Implications for Mobile Monitoring Study
Design. 3.4.1. Comparing Results on a Common Scale.
To facilitate comparison among all mapping approaches tested
in the MC analyses, Figure 4 rescales the dependent axis (i.e.,
drive days and road coverage) to be a function of the total
number of 1-Hz samples for each of the NO approaches (see
Figures S10 and S11 for BC). This rescaling allows a direct
comparison of the trends in performance vs sampling effort for
the LUR-K drive day, LUR-K road coverage, and data-only
approaches. Absolute comparisons between requirements for
the various methods require particular care (see section 3.4.2).
Our LUR-K models approach their upper-bound perform-

ance quickly and then show little value from increasing sam-
pling. Over 2 orders of magnitude of sample size (∼3 × 104−
3.5 × 106 samples, ∼10−1000 h of sampling), LUR-K models
consistently have R2 ∼ 0.5−0.6. Figure 4 illustrates how for
LUR-K modeling, there is little benefit to sampling all road
segments: sampling a representative subset of roads produces
similar LUR model results with dramatically fewer 1-Hz sam-
ples. For a given training sample size, LUR-K performance

appears slightly more sensitive to repetition frequency than to
road coverage: models perform better with more repetition on
a smaller number of road segments. The rescaling also high-
lights how a moderately performing LUR-K model (R2 ∼ 0.45)
can be obtained with minimal sampling effort: for example,
driving 30% of roads only once would require ∼5 h of
sampling (0.5% of our data set).
Data-only maps considerably outperformed any of the LUR-K

models (R2 > 0.7, NRMSE < 1) once >10% of our measurement
data set (∼100 h, 3.6 M samples) was included in each road
segment. Unlike LUR-K models, data-only mapping benefits
strongly from additional repeat drives at each location, with
substantial improvement up to ∼15−20 repeated drives, and
diminishing returns beyond. For a small number of 1-Hz sam-
ples, data-only maps generally perform worse than a LUR-K
model trained on an equivalent number of 1-Hz samples,
because the sampling effort must be dispersed over the full
model domain.

3.4.2. Limitations and Generalizability. The findings pre-
sented here are particular to our Oakland measurement domain,
and so generalizations should be made with care. Notable aspects
of our domain include the following: a relatively dense and
homogeneous level of urbanization, consistent and steady

Figure 4. Rescaling data from Figure 3 on a common X-axis rep-
resenting the number of 1 Hz samples. (Top) R2 versus the number of
1-Hz samples. Lines represent the median value for all 100 MC
subsamples. Shaded area around line represents the observed IQR for
all 100 MC subsamples. (Bottom) NRMSE versus the number of
1-Hz samples. The line segments in the middle correspond in color to
lines in the figures. The line segments provide context to the number
of drive days or percentage of road segments for the corresponding
number of 1-Hz samples. The X-axis is on the log-scale.
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westerly winds, an absence of major upwind pollution sources,
and an absence of complex topography. Future studies could
usefully explore similar questions in a different locale with
more pronounced meteorological seasonal variability. Addi-
tional considerations for interpreting our results include our
sampling design, which required multiple calendar days to
completely cover the full domain; the choice of pollutants (NO
and BC are dominated by local traffic emissions); and our
instrumentation selection (lab-grade instruments, albeit with
only fair 1-Hz precision for BC).
Figure 4 in particular should be interpreted with care, since

the sampling requirements for each mapping approach may
scale differently with respect to the size of a domain. For
domains much larger than what we considered in Oakland,
diminishing returns for road coverage might arise after
sampling far less than 10−20% of the domain, which would
make predictive modeling comparatively more efficient.
An additional consideration for interpretation of our results

relates to the spatial scale of analysis. Because we were expressly
interested in the extent to which LUR-K models could reliably
predict fine-scale pollution patterns, our core analyses modeled
performance on the basis of predictions at individual 30-m
road segments. At coarser analysis scales (e.g., if LUR-K
predictions are smoothed over 100+ m), our LUR-K models
reproduce the underlying observed data with greater fidelity
(R2 > 0.7−0.8, see Figure S12). For epidemiological analyses, a
further issue for interpretation is the degree to which on-road
concentrations relate to true exposures at residential addresses.
Limited evidence from prior mobile monitoring studies sug-
gests that on-road concentrations are correlated with residen-
tial address levels and are associated with adverse health effects
of subjects at those locations.7,12,31

3.4.3. Implications for Efficient Mobile Monitoring
Strategies. Our results indicate that data-only mapping and
LUR-K modeling are viable strategies for developing high-
resolution air pollution maps that reproduce key patterns in
our data set. Relative strengths of the data-only mapping
approach include the following: (i) superior performance in
estimating long-term mean concentrations when multiple
repeated drives are possible, (ii) the simplicity of a model-
free approach, and (iii) estimation errors have little remaining
spatial structure. Relative strengths of the LUR-K approach
include (i) possibly large efficiency gains from very low mea-
surement data requirements and (ii) the ability to develop con-
centration estimates without making measurements at every
location. With limited monitoring funds or time, then the
LUR-K approach will provide exposure estimates that capture
general spatial trends. If identifying potential air pollution hot-
spots is the goal, then the data-only approach has more power
to do so. More research is needed to determine whether hyper-
local hot-spots are important in population exposure assess-
ment. Therefore, the LUR-K approach, which has less variable
estimates than the data-only approach, may be sufficient.
In previous work,7 we estimated that ∼400 mobile moni-

toring vehicles could make an annual data-only map (20 drives/
year) for all roads in the largest 25 US cities (111 M people, 50%
of US urban population). Model-based methods such as LUR-K
may be used for mapping a large area if every road cannot be
driven or budget limitations prevent the deployment of hun-
dreds of mobile monitoring vehicles. If our findings here can
be extrapolated, we speculate that ∼25 such vehicles might be
sufficient to develop moderately performing LUR-K models for
the same cities (e.g., by driving 25% of roads 5 times each).

There are numerous strategies for deploying air sensors on
vehicle fleets, each of which may lend themselves particularly
well to a specific data analysis approach. Here, vehicle sched-
uling was actively managed for the purpose of collecting air
pollution data. Despite using two cars full-time for 2 years, we
faced real constraints about how much we could sample,
forcing trade-offs between repetition frequency and domain
size. In many other applications of mobile monitoring, sensors
are deployed “passively” on vehicle fleets that operate for other
reasons. Using such fleets presents opportunities (e.g., scalability)
while also introducing constraints. In some cases, sampling
every road may not be feasible, for example in the case of buses
or trams that ply only along fixed routes.27,28 In other cases,
vehicles may routinely drive every road but only at specific
times at each location (e.g., garbage trucks). Our results
present a framework for considering the relative benefits of
alternative approaches for using mobile monitors to estimate
long-term spatial patterns of air pollution.
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