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ABSTRACT

To unmask the anthropogenic global warming trend imbedded in the climate data, multiple linear re-

gression analysis is often employed to filter out short-term fluctuations caused by El Niño–Southern Oscil-

lation (ENSO), volcano aerosols, and solar forcing. These fluctuations are unimportant as far as their impact

on the deduced multidecadal anthropogenic trends is concerned: ENSO and volcano aerosols have very little

multidecadal trend. Solar variations do have a secular trend, but it is very small and uncertain. What is

important, but is left out of all multiple regression analysis of global warming so far, is a long-period oscillation

called the Atlantic multidecadal oscillation (AMO). When the AMO index is included as a regressor (i.e.,

explanatory variable), the deduced multidecadal anthropogenic global warming trend is so impacted that

previously deduced anthropogenic warming rates need to be substantially revised. The deduced net an-

thropogenic global warming trend has been remarkably steady and statistically significant for the past 100 yr.

1. Introduction

The observed global warming rate is nonuniform.

After a period of cooling in the 1960s and 1970s, global

warming accelerated until 2005 (Solomon et al. 2007).

The most recent speculation concerns the possible

‘‘stalling’’ of the rate of warming of the global-mean

surface temperature. As shown in Fig. 1 in Foster and

Rahmstorf (2011), 1998 was the warmest year in some

datasets [such as the Climatic Research Unit (CRU)],

while in others it was 2005 or 2010 [theNational Climatic

Data Center (NCDC) or the Goddard Institute for

Space Studies (GISS)]. Undoubtedly, short-term natural

climate fluctuations play a role: The ‘‘super’’ El Niño in

1998 made that year either the warmest or close to the

warmest on record, and the La Niña in 2008 contributed

to that year being not as warm. It is understood that

these, and possibly other, natural fluctuations should be

filtered out to reveal the underlying anthropogenic

warming. Multiple linear regression (MLR) analysis is

often employed for this purpose. Typical regressors

(also called explanatory or predictor variables) are El

Niño–Southern Oscillation (ENSO), volcano aerosol

optical depth, total solar irradiance (TSI) (11-yr solar

cycle plus the secular solar forcing trend), and the an-

thropogenic warming trend. These are specified as

a function of time. MLR is used to fit the observed

temperature time series using these regressors, with the

residual assumed to be a white or red noise. When the

residual is tested to be a noise, the MLR provides an

explanation of the observed time series as being com-

posed of these known variations plus climate noise.

The response to anthropogenic forcing should include

that because of the increase in carbon dioxide and other

greenhouse gases as well as anthropogenic tropospheric

aerosol (‘‘pollution’’), which tends to cool to yield a net

warming smaller than that produced by greenhouse

gases alone. There are two approaches to constructing

the net anthropogenic warming regressor. One ap-

proach, typified by the work of Lean and Rind (2008),

constructs the time series of anthropogenic regressor

from an inventory of greenhouse gas concentrations, tro-

pospheric aerosols, and land surface plus snow albedo

changes, and was the same as that used in the GISS

model for simulating twentieth-century climate (Hansen

et al. 2007). This approach predetermines the time be-

havior of the anthropogenic warming, even though the

uncertainty in the tropospheric aerosol is high. This

construction yields a strong anthropogenic warming rate
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after 1978 from a much slower pace before that. Their

conclusion that the anthropogenic warming rate has

accelerated, from the 50-yr trend of 0.1368 6 0.0038C
decade21 to the 25-yr trend of 0.1998 6 0.0058Cdecade21,

is a direct consequence of the shape in time of the an-

thropogenic regressor used. To answer specifically

whether the anthropogenic warming has slowed in recent

years, Foster and Rahmstorf (2011) take a second ap-

proach. They replaced the anthropogenic time series by

a linear function of time. The linear trend is determined

by the MLR process. Then, the regressed linear trend is

added back to the residual and the sum is displayed.

They called this sum the ‘‘adjusted data.’’ If the an-

thropogenic warming rate is nonuniform, then it should

show up as such in the sum. Nevertheless, they found that

the anthropogenic warming rate has been ‘‘remarkably

steady’’ for the period analyzed, 1979–2010. We shall

first use this second approach and reexamine the de-

duced anthropogenic warming rate. This approach has

the advantage of not predetermining the answer, al-

lowing for the possibility that we may not know how to

construct the anthropogenic forcing index precisely.

2. The residual in the multiple regression analysis

Foster and Rahmstorf (2011) studied five datasets:

three surface temperature records and two satellite re-

cords. The anthropogenic warming rates are found to be

consistent with each other. The 32-yr trend for the ad-

justed global-mean surface temperature from the Hadley

Centre and Climate Research Unit surface temperature,

version 3, (HadCRUT3v) is 0.1708C decade21. The re-

sults are approximately the same using other surface

temperature records: GISS at 0.1718C decade21 and

NCDC at 0.1758C decade21. We have repeated their

analysis for the short period of 1979–2010 and found

very similar results. The results shown here are for the

longer period of 1856–2010 using the latest global-mean

data HadCRUT4 (Morce et al. 2012).

The explanatory variables used in our analysis include

the TSI, volcano aerosol optical depth (Sato et al. 1993),

cold tongue index (CTI) for the ENSO effect (available

at http://jisao.washington.edu/data/cti/), and a linear

trend. Since we do not know the shape of the anthro-

pogenic response, a linear trend of warming is used as an

initial guess. It will be added back to the residual to

determine the final response. TheMLR analysis can also

be done without an anthropogenic regressor. Then the

anthropogenic warming rates determined from the re-

sidual will be about 10%higher. Themultivariate ENSO

index (MEI) that Foster and Rahmstorf (2011) used is

available only for the recent decades, and so we used the

cold tongue index instead, which is available for the

longer record that we will be examining. We charac-

terize the solar variability by the TSI reconstruction up

to 2009 based onWang et al. (2005). Its recent values are

filled in using the daily measurements from the Total

Irradiance Monitor (TIM) on the National Aeronautics

and Space Administration’s (NASA’s) Solar Radiation

and Climate Experiment (SORCE) (available from

http://lasp.colorado.edu/sorce/data/tsi_data.htm; Kopp

and Lean 2011).We do not use a sinusoid with an annual

period as a regressor as in Foster and Rahmstorf (2011).

The noise model is adaptive autoregressive (AR) noise

of order p [AR(p)] fvs their autoregressive moving-

average [ARMA(1, 1)] modelg.
Figure 1a shows the adjusted data (with ENSO, vol-

cano aerosols, and solar influence removed) for the

longer period of 1856–2010, following the analysis of

Foster and Rahmstorf (2011). The recent 32-yr trend is

found to be 0.1698 6 0.0198Cdecade21, very close to that

found by Foster and Rahmstorf (2011). It also seems to

be remarkably steady, with no acceleration or stalling of

the global warming trends. However, over the extended

160-yr period, one can clearly see that there is a long-

period oscillation still present in the residual. The

running-time mean (blue) reveals a 70-yr oscillation in

the global-mean temperature of a significant structured

variation of 0.38C that has not been ‘‘explained’’ by the

MLR analysis. This oscillation happens to be in a posi-

tive half cycle during the 32 yr analyzed by Foster and

Rahmstorf (2011). Possibility exists that the oscillation

was treated as a trend in the shorter record.

Folland et al. (1984) and Schlesinger and Ramankutty

(1994) were the first to point out that there is a multi-

decadal oscillation in the global-mean-temperature re-

cord. Wu et al. (2011), using the method of empirical

mode decomposition (Wu andHuang 2009; Huang et al.

1998), found that this mode has a period of 65 yr in the

150-yr global-mean temperature. They called this mode

the Atlantic multidecadal oscillation (AMO), following

the previous work of Delworth and Mann (2000) that

this global-mean oscillation has its origin in the North

Atlantic. They further showed the impact that this mode

has on the perceived global warming trend: when the

AMO is removed as an oscillatory mode, the remaining

trend is smaller, at 0.088C decade21 since 1980.

3. A new multiple regression analysis

The inset of Fig. 1a shows the detrended running-time

mean in the adjusted data from Fig. 1a (blue) against the

AMO index (Enfield et al. 2001), which is defined as

the detrended sea surface temperature averaged over

the North Atlantic. We see that the two follow each

other closely. Fig. 1b shows the result when we repeat
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the MLR analysis, but it now includes the smoothed

AMO index as an additional regressor (http://www.esrl.

noaa.gov/psd/data/timeseries/AMO/). The global-mean

temperature adjusted this way shows mostly a mono-

tonic trend with some scatter. This anthropogenic

warming has been remarkably steady since 1910. The

100-yr trend is 0.0688 6 0.0138C decade21, the 75-yr

trend is 0.0808 6 0.0158C decade21, and the 50-yr is

0.0838 6 0.0118C decade21. The 32-yr trend now is

0.0708 6 0.0198C decade21, which is less than one-half

the value found by Foster and Rahmstorf (2011) and

almost one-third the value found by Lean and Rind

(2008). It is consistent with the findings of Wu et al.

(2011). Our linear trends are found to be statistically

significant and deterministic according to theWoodward

and Gray (1995) test.

FIG. 1. (a) Adjusted global-mean annual-mean temperature for the period 1856–2010, after

ENSO, volcano aerosol, and solar influences have been removed by regression. The order of the

noise is found to be p5 4. The 20-yr moving average is shown in blue, and the linear trend is fitted

to the period 1979–2010 in red. The inset shows the detrended running-time mean of the adjusted

data in Fig. 1a in blue. TheAMOindex to be used later in theMLR is in red. The thin line is the raw

monthly AMO index from http://www.esrl.noaa.gov/psd/data/timeseries/AMO/. The red curve is

a smoothed version of it using a modified running-time mean, called locally weighted scatterplot

smoothing (LOWESS), that allows themean index to be extended to the beginning and end of the

record of themonthly data.Quadratic fitting over a 25-yr period is used. Time lags are found to be 5

months for volcano and ENSO responses. (b) Adjusted global-mean annual-mean temperature,

after ENSO, volcano, solar, and AMO influences have been removed by regression; p 5 2.
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We do not wish to conclude that the anthropogenic

warming rate has slowed, from the 50-yr trend of 0.0838C
decade21 to the 32-yr trend of 0.0708C decade21. When

the error bars are taken into account, there is no basis for

that conclusion. The conclusion that we can draw is that

for the past 100 yr, the net anthropogenic trend has been

steady at approximately 0.088C decade21.

4. Justification for including the AMO as
a regressor

The remaining question is whether the AMO is a

natural oscillation or the response to a time-varying

anthropogenic forcing. Recently Booth et al. (2012)

simulated 76% of the two cycles of the AMO in the

industrial era using the Earth system model version

of the Hadley Centre Global Environmental Model

(HadGEM2-ES) and attributed the North Atlantic

variability to the indirect effect of anthropogenic aerosol’s

time-varying forcing. However, Zhang et al. (2013)

pointed out that the indirect aerosol effects in Booth

et al. (2012) are probably overestimated, and the time

and spatial signatures in the model’s upper ocean are

contrary to the observed.

Using 330 yr of multiproxy data of near-global cover-

age, Delworth and Mann (2000) found almost 4.5 cycles

of the AMO, with 2 cycles in the preindustrial era. Tung

and Zhou (2012, manuscript submitted to Proc. Natl.

Acad. Sci. USA) found 5 cycles of 70-yr oscillation in the

world’s longest instrumental temperature record from

central England. These long records argue in favor of

the natural and recurrent nature of the AMO. The

variability appears to be caused by fluctuations in the

thermohaline circulation (Dima and Lohmann 2007;

Delworth and Mann 2000; Enfield et al. 2001; Knight

et al. 2005; Schlesinger and Ramankutty 1994; Wei and

Lohmann 2012; Semenov et al. 2010).

There are a couple realizations of a coupled atmosphere–

ocean general circulation model calculation containing

an AMO of the right phase as the observed (Delworth

and Knutson 2000; Delworth andMann 2000), but many

other realizations that do not. So when ensemble aver-

aged, this internal variability is much reduced. Never-

theless, it shows that some models can produce such

a multidecadal oscillation without anthropogenic forc-

ing. To circumvent the known difficulty of model in-

ternal variability not always of the right phase and

amplitude as the one realization that is our observed

world, DelSol et al. (2011) analyzed the control runs

of the coupled atmosphere–ocean general circulation

models in phase 3 of theCoupledModel Intercomparison

Project (CMIP3) archive (Meehl et al. 2007). They found,

by maximizing the average predictability time, a dominant

spatial pattern that they called the internal multidecadal

pattern, which is centered at the North Atlantic but also

extends to the Pacific. When the global temperature

data are projected onto this spatial pattern, they obtain

2.5 cycles of amultidecadal oscillation very similar to the

AMO index. Their result suggests that the oscillation is

not anthropogenically forced.

5. The shape of the anthropogenic regressor

We argue that the time shape of the anthropogenic

forcing used by Lean and Rind (2008) is not consistent

with the observed anthropogenic response (see Fig. 2a).

The evidence is in the residual of their MLR, which was

not shown by them. Compared to the almost linear be-

havior of the deduced anthropogenic trend in our Fig.

1b, their assumed trend accelerated after the 1970s. The

residual of the MLR analysis repeated by us using

monthly HadCRUT4 global-mean temperature is shown

in Fig. 2b [the result is similar using HadCRUT3v, ex-

cept for the much sharper data discontinuity in 1945 that

was not yet corrected in version 3 (Thompson et al.

2008)]. The residual, which should only consist of cli-

mate noise if the MLR is successful, shows a negative

trend after 1970 and a positive trend before that time,

suggesting that their regressor for anthropogenic forcing

is increasing too rapidly after 1970 and too slow before

that time. When the MLR analysis is repeated with

a consistent anthropogenic regressor, the warming rates

converge to those in Fig. 1b. Since the MLR analysis

depends critically on the time behavior of the regressors

assumed, the spatial pattern deduced could be wrong if

the real anthropogenic warming rate is not the same as

what was assumed. One of the highlighted results of

Lean and Rind’s MLR analysis is that the deduced

spatial patterns of anthropogenic warming and solar

forcing ‘‘differ distinctly’’ from those indicated by the

Intergovernmental Panel on Climate Change (IPCC). In

particular, instead of finding polar amplification of

warming, which is a robust feature across IPCC models,

their deduced warming pattern is more pronounced be-

tween 458S and 508N than at higher latitudes.

6. Conclusions

It is pointed out that the Atlantic multidecadal oscil-

lation, a likely natural and recurrent phenomenon, has

not been taken into account in any multiple linear re-

gression analysis of the global warming trends using

observational data in published literature. Yet, over any

multidecadal period, the AMO is the most important

factor affecting the deduced ‘‘anthropogenic trend,’’

since other, shorter-term internal variability, such as
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ENSO or volcano aerosols, usually do not contain any

multidecadal trend, and solar forcing’s secular trend is

small. When the AMO is included, in addition to the

other explanatory variables such as ENSO, volcano, and

solar influences commonly included in the multiple lin-

ear regression analysis, the recent 50- and 32-yr an-

thropogenic warming trends are reduced by a factor of at

least 2. There is no statistical evidence of a recent

slowdown of global warming, nor is there evidence of

accelerated warming since the mid-twentieth century.

The anomalous early twentieth-century warming is also

explained as being caused by theAMO’s upswing on top

of the same anthropogenic warming trend. This deduced

time behavior of anthropogenic warming is different

from that previously constructed by GISS and used by

Lean and Rind (2008) in deducing the latitudinal

structure of anthropogenic warming.

Tung et al. (2008) had previously suggested that the

transient climate sensitivity to increasing greenhouse

gases should be higher than in most CMIP3 models. The

lower net anthropogenic warming rate found here does

not necessarily contradict that result, since the obser-

vationally determined net warming includes tropo-

spheric aerosol cooling, which is uncertain but could be

FIG. 2.MLR analysis using the same regressors and time lags, and white-noise model as Lean

and Rind (2008), and monthly HadCRUT4 global-mean temperature. (a) The adjusted data

after removal of solar, ENSO, volcano, and AMO. It should contain the anthropogenic trend

and climate noise. Their prescribed anthropogenic forcing index is superimposed in green.

(b) The residual is what remains after removing the regressed effects of ENSO, solar, volcano,

AMO, and their prescribed anthropogenic forcing. It should contain only climate noise if the

MLR analysis is successful, but there is a negative trend remaining in recent decades (red).
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quite significant in the past decades from industrial

pollution.

It is known (Benestad and Schmidt 2009) that the

method ofMLRmay give erroneous attribution for small

forcing, and for collinear forcings. Secular solar forcing is

small and, with a positive trend, it may be collinear with

greenhouse forcing. So this method should not be relied

on for attribution of solar response. Fortunately, the solar

secular trend is so small that whether it is included in

MLR does not affect the other results. Furthermore,

MLR is used here only as a means to ‘‘adjust’’ the data,

following the approach of Foster and Rahmstorf (2011),

that is, to remove fluctuations to better reveal the un-

derlying trend. Whether this method is successful can be

judged by the reduced scatter in the adjusted data and

by the residual’s resemblance to random noise.
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