Periodical Cicadas

Laura Zuchlewski May 15, 2008

Background: What is a cicada?

- An loud insect
- Periodic lifespan of 13 or 17 years
- Spends 17 years in immature stage
- Emerge synchronously (usually within 1 day, at night)
- Live as adults for 3-6 weeks to reproduce and die
- Density as high as 1 million insects/acre

Background: Definitions

- <u>Brood:</u> Populations that emerge in the same year and at the same location
- <u>Age Class</u>: Same species and location, but different ages
- Nymph: Immature form of cicada
- <u>Massopora</u>: Mold spores that create infertility in adult cicadas

Background: What is a cicada?

- Adults lay between 400-600 eggs
- Do not sting, bite or blend
- Eaten by birds
- Made infertile by Massospora
- A single male's courtship call can reach 90 dB - equivalent to a noisy truck on the road or a kitchen blender.

Background: What is a cicada?

- Nymphs eaten by moles, ants
- During first 2 years, settle at shallow roots then burrow deeper underground
- Competition for space and food most prominent during these first 2 years

Other Models

- Hoppensteadt-Keller (1976): First model but does allows for several age classes in a given region
- Bulmer (1977): Leslie Matrix Model. Not modeled for the particular biology of the cicada

Model Logic

- Nymphs settle on shallow roots during first
 2 year before moving deeper
- Capacity limitation only at shallow roots
- Survival probability after first 2 years ~1 (required if larger periods are desired)
- Predation on cicadas is approximately constant (predation independent of density, predator saturation)

Parameters

β-survival probability of years near deep roots
α-yearly survival rate near shallow roots
R-predator relaxation factor
f-number of viable eggs per adult
P-Predation intensity
K-Underground carrying capacity
A-predator growth due to cicadas
L-period

Number of nymphs in year *n* :

 $x_{n} = \min(f\alpha^{2}(\beta^{L-2}x_{n-L} - P - Ah(\beta^{L-2}x_{n-L}, M_{n-3}))_{+}, K_{n})$

Carrying capacity:

$$K_{n} = (K - \sum_{l=1}^{L-3} x_{n-l} \beta^{l})_{+}$$

Massospora density in year *n*: $M_{n} = RM_{n-1} + Bh(\beta^{L-3}x_{n-L+2}, M_{n-1})$ Cicada - Massospora interaction : $h(x, M) = \frac{xM}{1 + CM}$

Massospora density $M_n=0$ for the remainder of the talk

Number of nymphs in year *n*: $x_n = \min(f\alpha^2(\beta^{L-2}x_{n-L} - P)_+, K_n)$

Carrying capacity:

$$K_{n} = (K - \sum_{l=1}^{L-3} x_{n-l} \beta^{l})_{+}$$

Parameters

•β-survival probability of years near deep roots α-yearly survival rate near shallow roots R-predator relaxation factor •f-number of viable eggs per adult P-Predation intensity •K-Underground carrying capacity •A-predator growth due to cicadas •L-period

 $0.97 \le \beta \le 1$ $0.1 \le \alpha^2 \le 0.2$ $0.8 \le R < 1$ $30 \le f \le 40$ $0.05 \le \frac{P}{1.05} \le 0.25$ K $0 \le \frac{Ah}{K} \le 0.1$

$$P^* = \alpha^2 f P(f\alpha^2 \beta^{L-2} - 1)$$

- P* is an unstable fixed point (0<x_n<P* implies x_n _{+kL}=0 for k>k₀)
- For strictly larger than P*, solutions strictly grow until they are limited by the carrying capacity
- Need β close to 1
- K(1- β^{L/2}) < P*

Theorem

- In the basic deterministic model with constant predation P, $M_n=0$ and β approximately 1, any sequence (x_n) converges to a unique stable distribution $(\overline{x}_n)_{r=1}^{L}$. This is uniquely determined by limiting generation pattern $I=\{r_1,...,r_k\}$ with $1 \le r_1 < r_2 < ... < r_k \le L$.
- If $r_{i0+1}-r_{i0} \ge 3$ for some r_{i0} then $r_{i+1}-r_i \ge 3$
- If r_{i0+2} - r_{i0} =2 for some r_{i0} then I={1, 2, ...,L}

Theorem Conclusions

- Once a generation gap has evolved, more gaps will arise
- Long time before limiting generation pattern attained
- Approaches equilibrium quickly

$$\overline{P^*} = \underline{\alpha}^2 f \overline{P} / (f \underline{\alpha}^2 \beta^{L-2} - 1)$$

- Let predation P and yearly survival rate α² be stochastic, non-zero random variables.
- Then (x_n) converges to limiting sequence $(\overline{x_n})_{r=1}^L$, uniquely determined by limiting generation pattern, I. I must be feasible in $\overline{P^*}$, instead of P*. All solutions will be synchronous if $\overline{P^*} > K(\beta^{L/2} + 1)^{-1}$

Theorem Conclusion

- The stochastic model behaves just as the deterministic one
- Let's just use the deterministic one

Conclusions

- Let Q=|I| be the number of occupied age classes within each L-cycle.
- If P=.15, α^2 f=3.5, then Q is limited to 4
- If P=.2, α^2 f=3.5, then Q is limited to 2
- Weather and floods, which can eliminate age classes closer to the surface, can make Q smaller
- It is possible that smaller Q's increased length of L

Conclusions

- Large β, around .98, necessary for larger L and smaller Q values.
- H-K would not favor larger L
- Only possible with low mortality in later life
- Why are periods both prime numbers?

Fig. 1. Convergence in the cicada-Massospora model with constant predation and randomly chosen initial data. The parameters are L = 13, $\alpha^2 = .1$, $\beta = .98$, f = 40, K = 10,000, $P = .05 \cdot K$, A = .05, $\alpha = 4 \cdot 10^{-4}$, R = .95, $B = 10^{-4}$.

Fig. 2. The basic model with stochastically varying parameters. The solution eventually becomes synchronous. The parameters are L = 13, $\underline{\alpha}_1^2 = .08$, $\overline{\alpha}_1^2 = .2$, f = 40, $\underline{P} = 300$, $\overline{P} = 2000$, K = 10000.

Fig. 3. A logistic type model with randomly chosen initial data. The parameters are L = 13, $\alpha^2 = .1$, $\beta = .98$, f = 40, $P = .05 \cdot K$, $\gamma = .8$, $\delta_2 = 10^{-6}$

Fig. 4. Evolution in the two-species model, when one year class shifts its period

References

- Behncke, Horst. "Periodical Cicadas." JOURNAL OF MATHEMATICAL BIOLOGY. 40 (2007): 413-431. Web of Science
- Lake County Forest Preserves. "Cicada Mania." http://www.lcfpd.org/html_lc/cicadas/sounds.html

