The Projection Method

A High Performance Algorithm for Numerically Solving Stokes Flow
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Fluid Dynamics of Red Blood Cells

* Organisms that can fill their cells
with a sugar, increasing viscosity to
stop cell metabolism (hibernation).

* Can this method be applied to red
blood cells to replace
cryopreservation?

* Biologists will greatly benefit from
having a model to simulate the fluid
dynamics.




Assumptions for Regime Selection

* The fluid is Newtonian and incompressible.
* Red blood cells are modeled as vesicles (cell wall only).
* Modeled in two dimensions.




Incompressible Navier Stokes Equation

* Non-dimensionalize the full Incompressible Navier Stokes Equation:

Re(u; +Vu-u) = —Vp+ V- (u(Vu+vVul)) +f

V-u=0
- Re is the Reynolds Number.

- p is the density, u is the viscosity coefficient, u is
the flow velocity, p is the pressure, and f is the
body force.



Reynolds Number

* The Reynolds Number is the ratio of the inertial forces to the viscous
forces:
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- 1 18 velocity of the blood flow
- 1 18 the viscosity of the blood
. L is the radius of the blood cell

+ Thus, L << 1= £ = Re 0
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Stokes Equation
Re(u; +Vu-u) = -Vp+ V- (u(Vu+vVu')) +f

V-u=90

Becomes:

0=—-Vp+V-:(uwVu+vu)) +f

V-u=290



Decoupling Method

 |f W is spatially constant, solve for p, u, and v by decoupling the variables into
separate vectors.

* Take the divergence of both sides of the Stokes Equation.
* Rearrange the mixed partial derivatives and group the terms.
» Apply the divergence-free condition.

0=V (-=Vp+ pAu+f)
. | _|P= Ugr + U fl
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0= _(pxa: +pyy) + N(u:wza: + Uyyr + Vagy T Uyyy) + f1z + f2y
Ap=V - f



Decoupling Method (Continued)

* The addition of this independent equation for p makes the other two
equations for u and v fully determined, allowing them all to be solved
independently using the following system:

1.
2.

,u(uacac + uyy) — Pz — fl
3.

:u(va:a: T Uyy) — Py — f2



Decoupling Method (Continued)

* Descretize p, u, and v each into P11
grids of size M x M, P21 Pu | Po | Ps | Pu
e Stack the M? discretized points O I R
into a column vector for each X = | Pm1 oo o
variable. D12
Py Py P y2m
PM M |




Decoupling Method (Continued)

e Construct an M? x M* matrix A and a right hand side vector b that
consists of the normal second order finite difference approximations.

* Solve Ax = b once for each variable for three total solves, using the
Matlab “\” operator.

* This algorithm is only possible if it is spatially constant, otherwise the
divergence operator will generate extra terms and the pressure will
not be successfully decoupled.



Saddle-Point Method

* Traditional way of solving the
system when K is spatially
variant.

 Discretize u, v, and p into a
grid of size M x M.

e Stack u, v, and p into a single
column vector.




Saddle-Point Method (Continued)

e If 1t is spatially constant,V - (u(Vu+ Vu’)) = pAu, and the system

becomes:
0=—-Vp+ pAu+f.

V-u=0

* Construct the system Ax = b and use the Matlab “\” operator to
solve: Ax — b

R



Fluid in a Pipe

* As a demonstration of concept, the
Saddle-Point Method is applied to a
fluid in a pipe problem.

* No-Slip top and bottom for u.

* Dirichlet conditions on the left and »
right to create a pressure gradient.

* Neumann for u on the left and right
sides.

* Neumann for p on the top and
bottom.
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Fluid in a Pipe (continued)

* Incorrect solution:
“Checkerboard” Pattern. e

e Caused by the first derivative
finite difference formula for p.

e Uses the two neighboring
pressure cells, but not the actual
pressure cell being described.

* Information ends up skipping
every other cell.




Fluid in a Pipe (continued)

 To address this issue, create a
staggered grid.

* In the staggered grid, The p
nodes are a distance of &%
and 2% away from the u and
v nodes.
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Fluid in a Pipe (continued)

e A consists of the normal second order finite difference
approximations, with the exception of Vp .

* Creating a Taylor Expansion about the u and v nodes yields a modified
second order difference formula for Pz andPy :

__ Di+1,5 — Di,j
Dz =
Ax
_ bij+1 —Piy




Fluid in a Pipe (continued)

* Pressure and horizontal velocity solution with the staggered grid:

pressure Horizontal Velocity

200 4
180"
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140"
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O<y< 0 0

O<x<1



Time Analysis

* As a worst-case scenario, assume the “\” operator will use Gaussian
Elimination to solve Ax = b.

* The number of multiplications and additions to convert A to Reduced
Row Echelon form will be a sum of squares.

e This will require O(n°) Floating Point Operations (FLOPS), where n is
the number of rows in A.



Time Analysis (Continued)

* Decoupling Method

* For each solve, A has M? rows, because x is a column vector containing each
value for u, v, or pon the M X M discretized grid.

e The number of FLOPS is 3 - O(n3) = 3 - O(M®)  wheren = M?
e Saddle-Point Method

A has 3M? rows because x is a stacked vector containing u, v, and p for each
value on the M x M discretized grid.

* Since nis three times as large as it is in the Decoupling Method, this will
require O(n?) = O(27M?°) FLOPS.



The Need for a New Algorithm

* The Saddle-Point Method is slow, scaling very badly as M increases.

* The Decoupling Method can only be used when pt is spatially
constant.

* Construct a new method that decouples u, v, and p yet can still solve
a system with spatially varying viscosity.
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Projection Method

* Helmholtz-Hodge Decomposition Theorem:

A vector field W defined on a simply connected do-
main can be uniquely decomposed into a divergence-tfree
component, I', and a curl-free component, Vo:

v=I+Vo

* Align the Navier Stokes Equation:
V- (u(Vu+vVul)) — Re(Vu-u) +f = Re(uy) + Vp



Projection Method (Continued)

* General Strategy:

* Advance u” forward in time using an iterative
approximation.

* The errors in this approximation will take u"t!
off of the divergence-free solution space where it

Surface of
Divergence-Free
Vector Fields

belongs Reu; = RIS
1
* Assign this solution to a temporary vector u*. u" —u” "y n
> Re ~ RHS
* Project " back onto the divergence-free o At
. . mn
solution space to find the correct value of "' . a" ! o~ u” L ERHSWJ
Re
At

u u’ + T



Projection Method (Continued)

* Define the projection operator, P(a) as the projection of vector a onto
the divergence-free solution space:
<a, Vp >

Pla) =a —
(a) =a < Vp,Vp >

Vp.

* It can be shown that the Dirichlet boundary conditions u-n =0 are
sufficient to cause the following properties to hold:



Projection Method (Continued)

* Apply the P operator to both sides of the Navier Stokes Equation.
e Use the properties of the P operator to eliminate Vp .

* For reasons that will become clear later, Add and subtract z;u; on the
inside and the outside of the P operator.

* These steps result in:

1 1
Re(uy) = P (—Re(Vu cu) 4+ V- (w(Vu+vVul)) +f + Eu) A



Projection Method (Continued)

* Integrate both sides with respect to t.

* Apply a left hand rectangular approximation to the first integral, and
a right hand approximation to the second integral to create a
relationship between u™ and u"*!:

tnt1 1 1 tnt1
Re(u" —u"t!) = / P (—Re(Vu u) + V- (u(Vu+vVul)) +f + —u) — — / u
i At At f,

1 1
Re(u" —u"tH) =P (—Re(Vu” u) + V- (u(Va" + V(u™)h)) + " + A—tu”) At — A—tu”“At.



Projection Method (Continued)

* Apply the small Reynolds Number, Re — 0, and solve for u"**:

u"t = P(V - (p(Vu™ + V(u™)!))At + Atf™ + u™)
* It is now apparent how to define u™:

ut =u" + ALV - (p(Vu" + V(™)) + )
* This simplifies the equation to:

u”tl = P(u™)

* Expanding the projection operator:
ntl _ x < u*, Vp" >
< Vp", Vp™ >

n




Projection Method (Continued)

<u*,Vp" >
P~ _ At
< Vpn, Vp™ >

e It can be shown that:

e Thus, u"™' =u* — AtVp",

* To find an equation for p, rearrange the above equation and take the
divergence of both sides:

N u>|< L un—l—l
VP =T
1
Ap" = EV (u* —u™t
1
Ap" = —V - -u”



Projection Method (Continued)

* The algorithm is complete:
1.

ut =u" + ALV - (p(Vu" + V(™)) + ")

u"t = u* — AtVp”



Projection Method (Continued)

* This system is decoupled and can still be solved with a spatially
varying viscosity.

* The Saddle-Point Method can solve with spatially varying viscosity,
but it is slow.

* The Decoupling Method is faster, but it cannot solve with spatially
varying viscosity.

* The Projection Method gets the best of both worlds: It is decoupled
and fast, and can solve a system with spatially varying viscosity.

* If the viscosity is spatially constant, the Projection Method can still be
used, and step 1 becomes:

u* =u" 4+ At(pAu” 4 )



The Vesicle Force Problem

* This model will be solved by all R
three algorithms to verify N
convergence and measure ot et b,
execution times. XN s

* Model the reactionary force of a i 2 R
vesicle membrane in non-moving B R

L VNS

incompressible fluid T L

* The cell wall resists bending and N l PR
compression from the fluid by 0 S —

X

applying an outward force

20



The Vesicle Force Problem (continued)

e Define z as the distance from the membrane.
* Implement a smoothed Dirac Delta function at the membrane:

14+cos(™2) .
< f —e<2z<
5(z) — { - i e<z<e

0 otherwise




The Vesicle Force Problem (continued)

* Define the force as follows:

1

1 .
* R isthe curvature.

* The more compressed the cell wall is, the harder it will push back
against the fluid.

 n jsthe outward pointing normal vector.



The Vesicle Force Problem (continued)

* The force is radially symmetric

* The analytic solution can be obtained by converting to polar
* Make the ansatz that u =0 and solve pu=0=Vp— f in polar.

e The result:

if —e<z<e¢
if z < —¢

if 2 > ¢



Convergence Testing

Error for P {Pressure)

Error for U (Horizontal Velocity)

* Projection Method solution 10" 7 0™
vs. the analytic solution to o | o P
the vesicle force problem, // //
one time step. L Z L :
10 10 107 10

° |_2 Norm Of the Error . Errorfor‘v‘(\/ertical\/elocity)ﬁ
graphed against varying
values of Az, log-log scale.

» Reference line of slope 2

* Note: The graph is the same
across indefinite time steps.
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Surface Plots

* The following plots are from the Projection Method solution:

P.t=1.000000
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Surface Plots (continued)

* The following plots are from the Projection Method solution:

U, t=1.000000 Y, t=1.000000
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Time Analysis of the Projection Method

e Step 1: O(n) assignments for each of the n = M? discretized points.
e Step 2: matrix solve for the M? values of p.

* The size of Ais M? x M?. Thus, step 2 requires O(n?) flops, where the
size of nis n = M?=.

* Step 3: Same as step 1.
* Neglecting the linear assighments, the total complexity is O(M°).

* This should result in an increase in performance over the Decoupling
Method, which is 3-O(M?°), and a substantial increase over the
Saddle-Point Method, which is O(27M°).



Execution Times (Decoupling Method

Execution Time (s)

14

Discretization Points (M)

Execution Time (s)

25 0.0184
50 0.1301
75 0.4659
100 1.2452
150 4.1129
200 12.0575

Table 1: Run Times for the Decoupling Method

Execution Time vs. Number of Discretization Points
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Execution Times (Saddle-Point Method

Discretization Points (M) | Execution Time (s)
25 0.0519
50 0.5195
75 2.6204
100 9.0459
150 40.9595
200 149.6981

Table 2: Run Times for the Saddle-Point Method

Execution Time vs. Number of Discretization Points
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Execution Times (Projection Method

Discretization Points (M) | Execution Time (s)
25 0.0124
50 0.0715
75 0.2266
100 0.5742
150 1.7194
200 4.7079

Table 3: Run Times for the Projection Method

Execution Time vs. Number of Discretization Points
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Excecution Times (All)
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Ratios of Execution Times

Ratio

Ratio of Projection Run Time vs. Decoupling Run Time

Ratio of Projection Run Time vs. Saddle Run Time
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Conclusions

* The Projection Method is much faster than the Saddle-Point Method.
* It is also faster than the Decoupling Method.
* The larger M is, the more of an advantage it gains.

* It is difficult to tell exactly how much faster
* Overhead from other operations in the code
» Matlab “\” operator is best case O(n) and worst case O(ng)

* Projection Method gains the best of both worlds: Decoupled and
fast, but can solve with spatially varying viscosity.

* Modeling of red blood cells will need to simulate the changing
VISCOSity.



Future Steps

* Add an initial fluid flow to the vesicle force problem
* Add a time dependent force
* Add a spatially varying viscosity



Bitbucket Repositories

e Saddle-Point Method Code:
 https://rhermle@bitbucket.org/rhermle/saddle-point-vesicle.git

* Decoupling Method Code:
 https://rhermle@bitbucket.org/rhermle/decouplingmethod.git
* Projection Method Code:

* https://rhermle@bitbucket.org/rhermle/2d-stokes-predictor-
corrector.git
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