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Fig. 2. Same as Figure 1 but after removing 80% jittered sources. Our goal
is to recover fully sampled data as shown in Figure 1 from 80% subsampled
data.

(and larger singular values) than the subsampled dataset. We
therefore look for a transform domain where the fully sampled
data matrix exhibits low-rank structure, while subsampling by
P
⌦

increases the rank and/or negatively alters the fast decay
of singular values. In this context, we can expect low-rank
penalization to help. We use the rank-revealing transforms of
[1], [9], [19]. To motivate the use of these transforms, we
first explore the singular value decay of full and subsampled
volumes in the context of 3D seismic data acquisition. Note
that, monochromatic seismic data matrices are full rank even
in the transformed domain, but they have fast decay of the sin-
gular values in the transform domain, which means that these
matrices can be well approximated with low-rank matrices.
Therefore, we assume that the seismic data matrix exhibits
low-rank structure when it has fast-decay of singular values
and high-rank structure when it has slow-decay of singular
values. In case of 3D seismic data acquisition, matricization
rx, sx (Figure 4 (a)) yields fast decay of the singular values
(Figure 3a, blue curve) for the original fully sampled data
volume, while subsampling (Figure 4 (b)) causes the singular
values to decay at a slower rate (Figure 3b, blue curve).
Therefore, we select the latter matricization for 3D seismic
data acquisition. Note that, we are only showing the 4D slice
of a fully sampled and subsampled data volume for rx, sx
matricization in Figure 4. The representation of a common-
receiver for full and subsampled data is already shown in
Figure 1 (b,c).

Working under an appropriate rank-revealing transforma-
tion domain, the subsampling operator P

⌦

will also involve
a transformation operator represented by S : Cn⇥m 7!
Cp⇥q . This transformation operator projects the seismic data
from the source-receiver domain to the rank-revealing trans-
form domains and its adjoint reverse the operation. We call
this sampling-transformation operation A(·) = P

⌦

ST
(·) :

Cp⇥q 7! Cn⇥m, where T represents the adjoint, and mini-
mize (2) with P

⌦

replaced by A.

IV. METHODOLOGY

While several formulations are available to solve the equal-
ity constrained version of (2) (i.e. where ⌘ = 0), see [26],
and penalized formulations, e.g. [28], few focus on the case
where ⌘ is provided by the user. The level-set factorized
approach, which we call LR-BPDN following [1], solves (2)
for a prescribed ⌘ by defining the value function

v(⌧) = min

kLk2

F+kRk2

F2⌧
kA(LRH

)� bkF ,
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Fig. 3. Singular value decay of (s
x

, s
y

) matricization (red curve) and (r
x

, s
x

)
matricization (blue curve). (a) Fully sampled data and (b) subsampled data.
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Fig. 4. Same as Figure 1 but in (r
x

, s
x

) matricization. (a) Fully sampled and
(b) subsampled data after removing 80% jittered sources. We are only showing
the 4D-slice here because the representation of common-receiver gather will
remain same as shown in Figures 1,2.


