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(a) quadratic (b) 1-norm (c) quantile, t = 0.3

(d) huber, k = 1 (e) quantile huber (f) vapnik, e = 0.5

(g) huber ins. loss (h) quadratic ins. loss (i) elastic net, a = 0.5

Fig. 3.1: Important piecewise linear-quadratic (PLQ) losses.

This allows us to represent prior knowledge about the signal, including domain information
(e.g. lower and upper limits), as well as monotonicity or unimodality properties.
We consider generalizations of (3.2) that use any PLQ penalty:

min
y2Y

V (z�FLy)+ gW (y) , (3.4)

where V and W are piecewise linear quadratic functions introduced below, and Y is as in (3.3).
Nine important examples of these penalties appear in Figures 3.1a-3.1i.

DEFINITION 3.1 (PLQ functions and penalties). A piecewise linear quadratic (PLQ)
function is any function r(c,C,b,B,M; ·) : Rn ! R admitting representation

r(c,C,b,B,M;y) = sup
u2U

⇢
hu,b+Byi� 1

2
hu,Mui

�
, (3.5)

where U is the polyhedral set specified by C 2 Rk⇥` and c 2 R` as follows

U = {u : CT u  c} , (3.6)

M 2S k
+ is the set of real symmetric positive semidefinite matrices, b+By is an injective affine

transformation in y, with B 2Rk⇥n, so, in particular, n  k and null(B) = {0}. If 0 2U, then
the PLQ is necessarily non-negative and hence represents a penalty.
Below we show that the nine loss functions illustrated in Figures 3.1a-3.1i are members of the
PLQ class. In the following section, it is shown how this dual, or conjugate, representation


