FEA of Composites: The Fundamentals and Beyond…

Paul E. Labossiere
Role of FEA in Design

• Gain understanding
• Explore feasibility
• Optimize a particular solution
• Evaluate safety and efficacy

“The purpose of computing is insight, not numbers”
R. W. Hamming
List of Proposed Topics

1 Review of FEA Principles and Practices
 Governing Equations
 1-D-to 3-D elements
 Plate and Shell Formulations

2 Modeling Techniques
 Mesh Refinement
 Submodeling
 Boundary Condition Interpretation

3 Sources of Nonlinear Behaviour
 Plasticity
 Large Deformations
 Finite Strains
 Buckling

\[D_{ep} = D - \frac{1}{H_p + n : D : m} (D : m \otimes n : D) \]

\[K_L = \iiint_V \left(B^T_O DB_L + B^T_L DB_L + B^T_L DB_O \right) dV \]
4 Convergence Criteria
 Tolerances and Residual Forces
 Restarts
5 Composites
 Anisotropic Materials
 Layered Elements
 Ply Drop-Offs
 Cores
6 User Subroutines
 Constitutive models
 Field Variables
7 Reliability
 Damage and Delaminations
 Fatigue Performance Evaluation
Goals

• Provide the composite specialists with the basic understanding of FEA methodology and solution interpretation

• Provide the FEA jockey with the basic understanding of additional complexities associated with modeling composites
Proposed Format

Day 1
4-hour class (topics 1, 2, 3)
1 hour class (topics 4, 5)
2 hour computer lab (review topics 1-5)
1 hour class (good fea practices)

Day 2
4-hour class (topics 5-7)
2-hour computer lab (composites applications)
1 hour class (good fea practices)
1 hour round table???
Feedback Needed

Additional topics and format
- Define audience and select instructors/lab assistants

Appropriate platform (ABAQUS, Ansys, other??)

Workshop format (computer laboratory setting??)
- demonstrate key concepts through selected examples

Contact: Paul Labossiere
labossie@u.washington.edu