Non-destructive Evaluation Methods for Detecting Major Damage in Internal Composite Structures

Francesco Lanza di Scalea
Professor, Dept. of Structural Engineering
University of California San Diego

2018 JAMS Technical Review
May 23-24, 2018

Long Beach Convention Center, Long Beach, CA
Participants

• Principal Investigators & Researchers
 – PI: Prof. Hyonny Kim, UCSD
 – Co-PI: Prof. Francesco Lanza di Scalea
 – Graduate Students
 ▪ PhD: Eric Hyungsuk Kim, Margherita Capriotti, Ranting Cui
 ▪ MS: none

• FAA Technical Monitors
 – Lynn Pham, Ahmet Oztekin

• Other FAA Personnel Involved
 – Larry Ilcewicz

• Industry Participation
 – Boeing, Bombardier, UAL, Delta, DuPont, JC Halpin
Motivation

- High energy *blunt impact damage* (**BID**) of main interest
 - involves large contact area, multiple structural elements
 - GSE, FOD, railings/corners, hail ice, bird
 - internal damage (cracked shear tie, frame, stringer heel crack) can exist with *little/no exterior visibility*
- Damage to internal members not visible by typical one-sided NDE (e.g., UT scan)
- External-only NDE needed to find such damage
Ultrasonic Guided Waves: structure is a natural “waveguide”

Wave excitation

FEA wave propagation video (top view) – click to play

FEA wave propagation video (sectional view) – click to play
Non-Contact NDE Scanning Prototype

- Line scan approach with non-contact sensors on moving carriage
- Air-coupled piezocomposite transducers (170 kHz)
Non-Contact NDE Scanning Prototype

• Typical Signal:
 • Multi-mode: A0 & S0 in Skin/Stringer
 • Time of Arrival computed from Group Velocity obtained from analysis

Gating in 6 different exploitable packets to isolate different modes

Statistical (Outlier) Analysis
Non-Contact NDE Scanning Prototype

Statistical Analysis Results:

(Skin modes only)

Cracked skin
Disbonded stringer
Detached/cracked stringer

Excellent detection: 90% POD with 0% PFA
Excellent detection: 93% POD with 0% PFA
Ok detection: 90% POD with 20% PFA
Non-Contact NDE Scanning Prototype

Outlier Analysis Results:
(Skin + Stringer modes)

ROC curves for performance assessment

- Cracked Skin
- Detached/Cracked Stringer
- Disbonded Stringer

Perfect detection
Mini-Impactor (probes interior + portable)

- Frequency range up to 500 kHz and peak intensity at 42 kHz

Aluminum Tip – 0.56 mm thick
Uni-directional Carbon/Epoxy [0]_8 Layup; 0.56 mm thick

Impact Tip 5.1 mg FFT Plot

Amplitude (V)

Frequency (Hz) × 10^5

6.35 mm

102 mm
Mini Impactor on Built-up Panel

- Excitation and measurement (R15 contact transducer) on exterior skin-side
- S0 waves through skin path move faster (~150 kHz);
- A0 waves through C-frame path move slower (~50 kHz);
- Specimen with C-frame removed has only skin modes content
Mini Impactor on Built-up Panel

- Internal shear tie damage detection using mini-impactor excitation
GUIDED WAVE MODELING: S.A.F.E.

\[u^{(c)}(x, y, z, t) = \sum_{j=1}^{n} N_j(y, z)U_{x_j} \]

Forced solution

\[\mathbf{u}^{(c)}(x, y, z) = N(y, z)\mathbf{q}^{(c)}e^{i(\xi-x\omega t)} \]

Unforced solution

\[\mathbf{A} - \xi \mathbf{B} \mathbf{Q} = 0, \]

Dispersion curves & mode shapes

Forced solution

\[U(x_R) = -\frac{1}{2\pi} \sum_{m=1}^{2M} \left(\xi^m U_L^m \right)^T \frac{F_n U_R^m}{D_m} \int_{-\infty}^{\infty} \frac{1}{(\xi - \xi^m)} e^{i\xi(x_R-x_S)} d\xi \]
S.A.F.E. Results: CFRP skin + stringer

Stiffened Panel: Stringer Disbond Damage

- Wave propagation direction: 90° (across the stringer)
- Layup: 33 plies (Skin & Stringer)
- Lamina Properties: T800/3900-2 Unidirectional Tape

Dispersion Curve: New Panel, 33 layers, x=90°

 Laminate Properties: C reduced to 0.1 C for Plies 16, 17, 18
S.A.F.E. Results: CFRP skin+stringer

Stiffened Panel: Stringer Disbond Damage
- Wave propagation direction: 90° (across the stringer)
- Layup: 33 plies (Skin & Stringer)
- Lamina Properties: T800/3900-2 Unidirectional Tape

Laminate Properties: C reduced to 0.1 C for Ply 16, 17, 18

- S0 modeshape
- A0 modeshape
Residual Strength Estimation: Wave Scattering

- Simple beam with through holes from 0.05 mm to 50 mm dia
- Mesh size = 1mm, Time step = 5e-8 sec, Exc = 2.5 cycle toneburst at 150 kHz
Empirically determine the exponential value e, and relate values to estimate residual strength

$$\text{Wave Amplitude} = (\text{Dam Size})^e \quad \Rightarrow \quad \frac{\sigma_{\text{crack}}}{\sigma_{\text{pristine}}} = \left(\frac{L_0}{\text{Dam Size}}\right)^m \quad \text{[Caprino]}$$

Residual Strength Estimation: Validation

- Three new stringer panels fabricated
 - T800/3900-2 uni-directional tape plies. Skin thickness = 3.175mm
 - Panel dimensions: 1m x 1.3m
 - Five stringers with 0.26m spacing
 - Various impact energy levels

Impact Locations

A (stringer flange)

B (stringer cap)
Thermography for Independent Damage Survey

Thermography (TSR): ground truth of damage for quantitative damage survey

Dent 1:
Energy Level = 30 J

Dent 2:
Energy Level = 50 J
Ongoing/Future Work

• Package mini-impactor into scanning system to probe interior structure for damage (shear ties and C-frames)

• Continue S.A.F.E. modeling of guided waves to select specific mode-frequency combinations highly sensitive to specific damage

• Conduct additional FE analyses of wave scattering through relevant damage types/severity for residual strength estimation from the guided wave measurements

• Validate residual strength predictions from wave measurements through failure tests of impacted panels
EXTRA SLIDES
Statistical Analysis

- Outlier Analysis:
- Multivariate
- Multi-mode

Super-Vector for mode compounding

Baseline Signal
(six possible time gates)

Test Signal
(six possible time gates)

Feature Super-Vector

\[\chi = \left\{ \begin{array}{l}
\text{Max Ampl} \\
\text{Max Ind} \\
\text{Variance} \\
\text{Kurtosis} \\
\vdots \\
\text{Max Ampl} \\
\text{Max Ind} \\
\text{Variance} \\
\text{Kurtosis} \\
\vdots \\
\text{Max Ampl} \\
\text{Max Ind} \\
\text{Variance} \\
\text{Kurtosis} \\
\end{array} \right\}_{m_1}
\]

Baseline Vector
Average, Covariance
\[\bar{x}, C \]

Known Undamaged Region:
Any Location

Test Vector
\[\chi \]
Any Location

Damage Index (DI) :
(Mahalanobis Squared Distance)

\[(x - \bar{x}) + C^{-1} + (x - \bar{x})^T \]

threshold

Sample number

If DI > threshold \(\Rightarrow \) DEFECT
New Stringer Panel Response Study

- Green’s Function Approach
 - To extract structural behavior/response
 - To apply inversion methods for damage and structure characterization
 - residual strength estimation
 - Semi Analytical Finite Element (SAFE) Method
 - FE discretization and problem formulation (material & geometry)
 - Normal mode decomposition of guided waves (eigenvalue problem)
 - Analytical solution of wave propagation in space and time

Forced Solution: arbitrary force (in space and time)

\[
\hat{F} = \int_{-\infty}^{\infty} F(x) e^{-i\xi x} dx, \quad \hat{U} = \int_{-\infty}^{\infty} U(x) e^{-i\xi x} dx
\]

\[
U(x_R) = -\frac{1}{2\pi} \sum_{m=1}^{2^M} \left(\xi^m L_u^m \right)^T F_n U_R^m \int_{-\infty}^{\infty} \frac{1}{D_0} \int_{-\infty}^{\infty} \frac{1}{(\xi - \xi^m)} e^{i\xi(x_R-x_s)} d\xi
\]

\[
U(x_R, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} U(x_R) e^{i\omega t} d\omega
\]

Panel Complexity Testing: External v. Internal UGW Transmission

- Wave transmission energy comparison between internal path (shear tie & C-frame) vs skin path shows 50 kHz wave energy is better transmitted internally compared to the exterior skin transmitted wave energy relative to 150 kHz.
Mini Impactor on Composite Panel

- Gating of time signal important for capturing different modes of interest – specifically those passing through frame.
- FFT shows clear sensitivity to disrupted path (C-frame detached at bolts to represent being fully cut)

Panel Exterior View

Skin Path

Skin + Stringer Path

Shear Tie + C-Frame Path

Panel Underside View

Disrupted path through C-Frame shows clearly in ~50 kHz range.
SAFE Results: CFRP skin

Stiffened Panel: Skin Surface Damage
- Wave propagation direction: 90° (across the stringer)
- Layup: 16 plies (Skin only)
- Lamina Properties: T800/3900-2 Unidirectional Tape

Dispersion Curves: New Panel, 16 plies, x=90°
Laminate Properties: C reduced to 0.1 C for Plies 1,2,3
SAFE Results: CFRP skin+stringer

Stiffened Panel: Stringer Disbond Damage
- Wave propagation direction: 90° (across the stringer)
- Layup: 33 plies (Skin & Stringer)
- Lamina Properties: T800/3900-2 Unidirectional Tape

Laminate Properties: C reduced to 0.1 C for Ply 16, 17, 18
SAFE Results: CFRP skin

Stiffened Panel: Skin Surface Damage
- Wave propagation direction: 90° (across the stringer)
- Layup: 16 plies (Skin only)
- Lamina Properties: T800/3900-2 Unidirectional Tape
SAFE Results: CFRP skin

Stiffened Panel: Skin Surface Damage
- Wave propagation direction: 90° (across the stringer)
- Layup: 16 plies (Skin only)
- Lamina Properties: T800/3900-2 Unidirectional Tape

Laminate Properties: C reduced to 0.1 C for Ply 1,2,3

A0 modeshape

S0 modeshape
Residual Strength Estimation: Wave Attenuation Based

- Amplified out-of-plane displacement to observe A0 wave mode propagation around the hole notch
- Notch diameter = 30 mm
Flat Stringer Panel Impact Plan

- Stringer cap impacted portion will be trimmed into 0.3m specimens for compression w/o buckling
- Stringer flange impacted portion will be trimmed into 0.48m specimens for compression w/ buckling