Effects of Moisture Diffusion in Sandwich Composite Structures

2018 Technical Review
Hrishikesh (Rishi) Pathak and Mark Tuttle
Department of Mechanical Engineering
University of Washington
Effects of Moisture Diffusion in Sandwich Composite Structures

Motivation and Key Issues:

In-service bond failures between composite facesheets and honeycomb cores have been reported (photos courtesy of Ronald Krueger, National Institute of Aerospace)

Boeing 747 upper skin disbonds

Airbus A-310 Rudder Failure

approx. 24" x 60" upper skin disbond
Effects of Moisture Diffusion in Sandwich Composite Structures

Motivation and Key Issues:

• Core-to-skin disbond initiation and growth are thought to occur due to combination of factors:

 • Water ingestion into core volume, followed by freeze-thaw cycles....water ingestion may occur due to:
 • Wicking of liquidous water through facesheet microcracks, along fiber/matrix interfaces, and/or through improper design of edge closeouts
 • Diffusion of water molecules through (otherwise undamaged) facesheets, resulting in increased core humidity levels

 • Pressure differences between inside and outside of unvented honeycomb cores (Ground-Air-Ground or ‘GAG’ pressure cycles)
Effects of Moisture Diffusion in Sandwich Composite Structures

Pressure differences between inside and outside of unvented honeycomb structures (Ground-Air-Ground or ‘GAG’ pressure cycles)

Configuration at ground level
\[P_0 = 100 \text{ kPa} = 14.7 \text{ psi} \]

Configuration at 35,000 ft
\[P_0 = 24 \text{ kPa} = 3.5 \text{ psi} \]
Motivation and Key Issues:

• Core-to-skin disbond initiation and growth are thought to occur due to combination of factors:

 • Water ingestion into core volume, followed by freeze-thaw cycles. Water ingestion may occur due to:
 • Wicking of liquidous water through facesheet microcracks, along fiber/matrix interfaces, and/or through improper design of edge closeouts
 • Diffusion of water *molecules* through (otherwise undamaged) facesheets, resulting in increased core humidity levels

 • Pressure differences between inside and outside of unvented honeycomb cores (Ground-Air-Ground or ‘GAG’ pressure cycles)
Effects of Moisture Diffusion in Sandwich Composite Structures

Objective of Study:
To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.
Effects of Moisture Diffusion in Sandwich Composite Structures

Objective of Study:
To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.

Technical Approach:
- The critical strain energy release rate associated with sandwich facesheet/core debonding (G_c) was measured before & after environmental exposure, to evaluate whether environment humidity & freeze-thaw cycles have an effect.
Effects of Moisture Diffusion in Sandwich Composite Structures

Objective of Study:
To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.

Technical Approach:
- The critical strain energy release rate associated with sandwich facesheet/core debonding (G_c) was measured before & after environmental exposure, to evaluate whether environment humidity & freeze-thaw cycles have an effect.

- G_c was measured using the Single Cantilever Beam (SCB) geometry
Effects of Moisture Diffusion in Sandwich Composite Structures

Objective of Study:
To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.

Technical Approach:
- The critical strain energy release rate associated with sandwich facesheet/core debonding (G_c) was measured before & after environmental exposure, to evaluate whether environment humidity & freeze-thaw cycles have an effect.

- G_c was measured using the Single Cantilever Beam (SCB) geometry

- SCB specimens with 3-, 4-, and 8-ply woven fabric facesheets and four different honeycomb cores types were tested
Effects of Moisture Diffusion in Sandwich Composite Structures

Objective of Study:
To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.

Technical Approach:
- The critical strain energy release rate associated with sandwich facesheet/core debonding (G_c) was measured before & after environmental exposure, to evaluate whether environment humidity & freeze-thaw cycles have an effect.

- G_c was measured using the Single Cantilever Beam (SCB) geometry

- SCB specimens with 3-, 4-, and 8-ply woven fabric facesheets and four different honeycomb cores types were tested

- Environmental conditioning consisted of:
 - Constant exposure to 65°C and 90%RH until humidity within the core volume reached ~70%RH (required ~0.7, 2, and 4 months for 3- 4- and 8-ply facesheets, respectively)
 - 150, one-hour thermal cycles from 30°C to -50°C (required ~6 days)
Effects of Moisture Diffusion in Sandwich Composite Structures

Objective of Study:
To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.

Technical Approach:
- The critical strain energy release rate associated with sandwich facesheet/core debonding (G_c) was measured before & after environmental exposure, to evaluate whether environment humidity & freeze-thaw cycles have an effect.
- G_c was measured using the Single Cantilever Beam (SCB) geometry
- SCB specimens with 3-, 4-, and 8-ply woven fabric facesheets and four different honeycomb cores types were tested
- Environmental conditioning consisted of:
 - Constant exposure to 65°C and 90%RH until humidity within the core volume reached ~70%RH (required ~0.7, 2, and 4 months for 3- 4- and 8-ply facesheets, respectively)
 - 150, one-hour thermal cycles from 30°C to -50°C (required ~6 days))
- (Added in 2017): Develop an experimental setup to simulate ground-air-ground (GAG) pressure cycles and study delamination growth in both as-produced and env conditioned panels
The Single-Cantilever Beam (SCB) Test Geometry*

Summary of test procedure:

(a) Sawcut used to produce starter crack
(b) Crack propagated in the ribbon (L) direction of honeycomb core
(c) Crack tip location monitored using two optical microscopes
(d) Initial natural crack created by causing the crosshead to move upward at a rate of 0.5 mm/min, until a ~5 mm crack had formed; the specimen was then unloaded
(e) The crosshead was then moved upward at a rate of 30 mm/min until the crack has grown by ~10 mm; the specimen was then unloaded at 30 mm/min (“Load Cycle 1”)
(f) Step (f) was repeated once (“Load Cycle 2”)
(g) The critical strain energy release rate G_c was determined using the “area method”, based on load-displacement curves measured during Load Cycles 1 and 2

The Single-Cantilever Beam (SCB) Test Geometry
Typical Single-Cantilever Beam (SCB) Test Data

- Typical load-displacement curves measured during a SCB test

- The critical strain energy release rate was calculated using the so-called area method:

\[G_c = \frac{\Delta U}{B\Delta a} \]

where:

- \(\Delta U \) = area defined by the load-displacement envelope
- \(B \) = specimen width
- \(\Delta a \) = crack extension
The Single-Cantilever Beam (SCB) Test Specimens

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Product Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facesheet panels</td>
<td>Carbon/Epoxy plane weave prepreg:</td>
<td>Cytec (Solvay) T300/970 3k PW</td>
</tr>
<tr>
<td></td>
<td>Three-ply: [0/45/0]_T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Four ply: [0/90]_s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eight ply: [0/45/90/45]_s</td>
<td></td>
</tr>
<tr>
<td>Core Materials</td>
<td>Nomex 48 kg/m³ honeycomb core, 12.7 mm thick</td>
<td>Hexcel HRH-10-1/8-3</td>
</tr>
<tr>
<td></td>
<td>12.7 mm thick (3 lb/ft³; 0.5 in)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nomex 48 kg/m³ honeycomb core, 25.4 mm thick</td>
<td>Hexcel HRH-10-1/8-3</td>
</tr>
<tr>
<td></td>
<td>25.4 mm thick (3 lb/ft³; 1.0 in)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nomex 128 kg/m³ honeycomb core, 12.7 mm thick</td>
<td>Hexcel HRH-10-1/8-8</td>
</tr>
<tr>
<td></td>
<td>12.7 mm thick (8 lb/ft³; 0.5 in)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kevlar 48 kg/m³ honeycomb core, 12.7 mm thick</td>
<td>Hexcel HRH-36-1/8-3</td>
</tr>
<tr>
<td></td>
<td>12.7 mm thick (3 lb/ft³, 0.5 in)</td>
<td></td>
</tr>
<tr>
<td>Adhesive</td>
<td>Thin film adhesive</td>
<td>3M Scotch-Weld AF 163-2k</td>
</tr>
</tbody>
</table>
Producing Sandwich Test Panels

Facesheets were cured in an autoclave. Facesheets and core materials were machined to size and stored for 1 month at 50°C (122°F) at 8% RH in a humidity chamber, to insure components were as “dry” as possible.
Producing Sandwich Test Panels

Parent panels were then produced by bonding the facesheets to honeycomb cores using thin film adhesive and a hot press. SCB specimens were machined from the “parent” panels.
Raw Data Collected for As-Produced $[0/90/0]_T$ Specimens
(Superimposed data from four individual tests for each type)

(a) Measurements for as-produced specimens with Nomex 48 kg/m3 honeycomb core, 12.7 mm thick
(b) Measurements for as-produced specimens with Nomex 48 kg/m3 honeycomb core, 25 mm thick
(c) Measurements for as-produced specimens with Nomex 128 kg/m3 honeycomb core, 12.7 mm thick
(d) Measurements for as-produced specimens with Kevlar 48 kg/m3 honeycomb core, 12.7 mm thick

- Facesheet delamination & tearing during load loop 2
Raw Data Collected for As-Produced [0/90]_s Specimens
(Superimposed data from four individual tests for each type)

- Facesheet bending failure during load loop 2, specimen 3
Raw Data Collected for As-Produced [0/45/90/45]s Specimens
(Superimposed data from four individual tests for each type)

(a) Measurements for 8-ply as-produced specs with Nomex 48 kg/m³ honeycomb core, 12.7 mm thick

(b) Measurements for 8-ply as-produced specs with Nomex 48 kg/m³ honeycomb core, 25 mm thick

(c) Measurements for 8-ply as-produced specs with Nomex 128 kg/m³ honeycomb core, 12.7 mm thick

(d) Measurements for 8-ply as-produced specs with Kevlar 48 kg/m³ honeycomb core, 12.7 mm thick
G_c Measured for As-Produced Specimens
Average and std deviation, based on 4 replicate tests

- As-Produced; Nomex 48 kg core, 12.7 mm thick
- As-Produced; Nomex 48 kg core, 25 mm thick
- As-Produced; Nomex 128 kg core, 25 mm thick
- As-Produced; Kevlar 48 kg core, 12.7 mm thick
Discussion
As-produced specimens

Measured trends:

If facesheet failure is avoided, then G_c is nearly independent of core and facesheet thickness:

- For 48 kg/m3 Nomex core: average G_c (24 specimens) = 1208 \pm 43.7 J/m2
- For 128 kg/m3 Nomex core: average G_c (12 specimens) = 2021 \pm 150 J/m2

G_c increases with an increase in core density:

- Average G_c measured for 128 kg/m3 Nomex core was 67% higher than that measured for 48 kg/m3 Nomex core

G_c is significantly lower for Kevlar vs Nomex core:
For 48 kg/m3 cores the average G_c measured for Nomex and Kevlar cores was 1208 J/m2 and 661 J/m2, respectively, a decrease of 45%
Environmental Conditioning
Producing “Witness” Test Panels

- Witness panels were used to measure changes in core humidity levels due to diffusion of water molecules through the facesheets
- Ohmic Instr Model HC-610 humidity sensors (now marketed as Honeywell Model HIH-4010-003 sensors), were embedded within the core volume
- Outer aluminum frames were used to insure diffusion was 1-D
- Eight witness panels were produced using the various facesheet-core combinations considered
Environmental Conditioning

Exposure to elevated temperature and humidity

• A total of 48 SCB specimens, 8 witness panels*, and a separate “free standing” HC-610 humidity sensor were placed in a humidity chamber and exposed to 65°C (149 °F) and 90%RH until core humidity levels were about 70%RH.

• Humidity levels within the cores of the witness panels and the corresponding SCB specimens was assumed to be identical.

* the humidity sensor in one witness panel failed after about 550 hrs.
Environmental Conditioning

Measurements during first 1440 hrs of exposure to 65°C and 90% RH

<table>
<thead>
<tr>
<th>Relative Humidity (%)</th>
<th>Exposure time (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>240</td>
</tr>
<tr>
<td>20</td>
<td>480</td>
</tr>
<tr>
<td>30</td>
<td>720</td>
</tr>
<tr>
<td>40</td>
<td>960</td>
</tr>
<tr>
<td>50</td>
<td>1200</td>
</tr>
<tr>
<td>60</td>
<td>1440</td>
</tr>
</tbody>
</table>

Legend:
- 3-ply facesheet 48 kg Kevlar core 12.7 mm thick
- 3-ply facesheet, 48 kg Nomex core, 12.7 mm thick (sensor failed)
- 4-ply facesheet 48 kg Kevlar core 12.7 mm thick
- 4-ply facesheet 48 kg Nomex core 12.7 mm thick
- 4-ply facesheet 48 kg Nomex core 25.4 mm thick
- 8-ply facesheet 48 kg Nomex core 25.4 mm thick
- 4-ply facesheet 48 kg Nomex core 12.7 mm thick
- 8-ply facesheet 48 kg Nomex core 12.7 mm thick
Discussion
Exposure to elevated humidity

Measured results show that rate of core humidity level buildup is decreased with:

- an increase in facesheet thickness, and/or
- an increase in core thickness, and/or
- an increase in core density
Environmental Conditioning

Exposure to thermal cycles

After witness panel core humidity reached ~70%RH the corresponding SCB specimens were sealed in metal-coated bags (to maintain internal core humidity), placed within a temperature chamber, and subjected to 150 one-hour temperature cycles from +30°C to -50°C...thermal cycling required 6.25 days.
Raw Data for Conditioned [0/90/0]ᵀ Specimens
(Superimposed data from four individual tests for each type)

- Facesheet delamination & tearing during load loop 2

(a) Measurements for env-conditioned specimens with Nomex 48 kg/m³ honeycomb core, 12.7 mm thick
(b) Measurements for env-conditioned specs with Nomex 48 kg/m³ honeycomb core, 25 mm thick
(c) Measurements for env-conditioned specimens with Nomex 128 kg/m³ honeycomb core, 12.7 mm thick
(d) Measurements for env-conditioned specs with Kevlar 48 kg/m³ honeycomb core, 12.7 mm thick
Raw Data for Conditioned [0/90]s Specimens
(Superimposed data from 3 or 4 individual tests for each type)

- Operator error during test of specimen 4
- Equipment malfunction during test of specimen 2
- Facesheet failure during load loop 2, specimen 3
Raw Data for Conditioned [0/45/90/45]_s Specimens
(Superimposed data from four individual tests for each type)

(a) Measurements for env-conditioned specimens with Nomex 48 kg/m^3 honeycomb core, 12.7 mm thick
(b) Measurements for env-conditioned specs with Nomex 48 kg/m^3 honeycomb core, 25 mm thick
(c) Measurements for env-conditioned specimens with Nomex 128 kg/m^3 honeycomb core, 12.7 mm thick
(d) Measurements for env-conditioned specs with Kevlar 48 kg/m^3 honeycomb core, 12.7 mm thick
G_c Measured for Conditioned Specimens

- Conditioned; Nomex 48 kg core, 12.7 mm thick
- Conditioned; Nomex 48 kg core, 25 mm thick
- Conditioned; Nomex 128 kg core, 25 mm thick
- Conditioned; Kevlar 48 kg core, 12.7 mm thick
Discussion

Environmentally-conditioned specimens

- Confounding trends...for some facesheet/core combinations environmental conditioning led to erratic and inconsistent behaviors, but for others conditioning had little or no effect

- Going forward, will conduct SCB tests at -50°C, using both as-produced and environmentally-conditioned specimens

- Prior to SCB tests will perform NDI of as-produced and conditioned specimens using CT Scan
Ground-Air-Ground (GAG) Specimen and Test Setup
Preliminary Results

GAG Specimen:

- Facesheet
- Teflon insert and pressure sensor embedded in core

1-in Core
Ground-Air-Ground (GAG) Specimen and Test Setup

Preliminary Results

GAG Specimen:
Ground-Air-Ground (GAG) Specimen and Test Setup

Preliminary Results

Monitor Surface Using DIC

Transparent Plexiglass

Vacuum Box

CECAM

JAMS

AMTAS
Ground-Air-Ground (GAG) Specimen and Test Setup

Preliminary Results
Preliminary Ground-Air-Ground Test

$[0/45/0]_T$ w/1.0 Nomex core

External pressure = 14.7 psi
Core pressure = 14.8 psi
Preliminary Ground-Air-Ground Test

$[0/45/0]^T\text{ w/1.0 Nomex core}$

External pressure = 14.7 psi
Core pressure = 14.8 psi

External pressure = 12.4 psi
Core pressure = 14.3 psi
Preliminary Ground-Air-Ground Test

\([0/45/0]^t\) w/1.0 Nomex core

External pressure = 14.7 psi
Core pressure = 14.8 psi

External pressure = 12.4 psi
Core pressure = 14.3 psi

External pressure = 9.6 psi
Core pressure = 13.4 psi
Preliminary Ground-Air-Ground Test

\([0/45/0]_T \text{ w/1.0 Nomex core}\)

- **External pressure = 14.7 psi**
 - Core pressure = 14.8 psi

- **External pressure = 12.4 psi**
 - Core pressure = 14.3 psi

- **External pressure = 9.6 psi**
 - Core pressure = 13.4 psi

- **External pressure = 6.7 psi**
 - Core pressure = 12.2 psi
Preliminary Ground-Air-Ground Test

$[0/45/0]^T$ w/1.0 Nomex core

- External pressure = 14.7 psi
 Core pressure = 14.8 psi

- External pressure = 12.4 psi
 Core pressure = 14.3 psi

- External pressure = 9.6 psi
 Core pressure = 13.4 psi

- External pressure = 6.7 psi
 Core pressure = 12.2 psi

- External pressure = 2.9 psi
 Core pressure = 9.7 psi
Preliminary Ground-Air-Ground Test

[0/45/0]τ w/1.0 Nomex core

External pressure = 14.7 psi
Core pressure = 14.8 psi

External pressure = 12.4 psi
Core pressure = 14.3 psi

External pressure = 9.6 psi
Core pressure = 13.4 psi

External pressure = 6.7 psi
Core pressure = 12.2 psi

External pressure = 2.9 psi
Core pressure = 9.7 psi

External pressure = 0.96 psi
Core pressure = 8.2 psi
Discussion

- Going forward, will conduct static and fatigue GAG tests at -50°C, using both as-produced and environmentally-conditioned panels.
Effects of Moisture Diffusion in Sandwich Composite Structures

Benefit to Aviation:

• Will help to clarify mechanism(s) leading to initiation and growth of skin-core disbond in sandwich structures

• Will contribute to efforts to establish standard test protocols and data reduction practices for SCB testing of sandwich specimens
Effects of Moisture Diffusion in Sandwich Composite Structures

Thank You!

Questions, Comments, Suggestions?
End of Presentation.

Thank you.