Ceramic Matrix Composite Materials Guidelines for Aircraft Design and Certification

John Tomblin, Wichita State University
Rachael Andrulonis, Wichita State University
Matt Opliger, Wichita State State University

JAMS 2018 Technical Review
May 23-24, 2018
Ceramic Matrix Composite Materials
Guidelines for Aircraft Design and Certification

• Motivation and Key Issues
 – Expanded use of CMCs in engine and other hot section applications
 – CMCs require their own set of rules separate from more established PMCs
 – No “fully approved” data in CMH-17
 – Similar complexity to PMCs in terms of anisotropy, fiber architecture, high strength/stiffness fibers, and production process sensitivity and variability, they are also different in many ways such as:
 ▪ Composite constituents
 ▪ Degradation, damage, and failure mechanisms
 ▪ High temperature life predictions
 ▪ High temperature bonding challenges
 ▪ NDI challenges
 ▪ Repairability
Development of Qualification Program

• **Technical Monitor**: Ahmet Oztekin

• **NIAR Contacts**: John Tomblin, Rachael Andrulonis, Matt Opliger

• **Industry Partners**: Axiom Materials (prepreg), AC&A (panel), 3M (fiber and fabric), several steering committee members

• **Overall Goals**
 – Primary goal: To develop a framework for the qualification of new and innovative composite material systems including guidelines and recommendations for their characterization, testing, design and utilization.
 – Secondary goal: To transition the test data and guidelines generated in this program into shared databases, such as CMH-17.
Technical Approach

- Develop a framework to advance CMC materials into the aerospace industry.
- Utilize the experience and framework of the NCAMP composite program as an example of process sensitive material characterization.
- Assess the validity with equivalency testing.

TASK 1: Establish Steering Committee

TASK 2: Develop Qualification Framework

TASK 3: Validate framework with selected CMC material

TASK 4: Establish statistical guidelines

TASK 5: Transition
 - Material property data
 - Guidelines

Surveys:
- December 2016
- February 2019
Task 1: Steering Committee

- Steering committee formed with interested individuals
- Kick-off meeting was held in December 2016, Monthly meetings
- Collaboration with CMH-17
- Includes participants from industry (Pratt & Whitney, Free Form Fibers, Honeywell, Rolls Royce, Boeing, GE, 3M) and government (NASA, AFRL, FAA)
- Review and provide feedback on qualification plan, documents and resulting data
 - Overall test plan
 - Material specification
 - Process specification
 - Pedigree/documentation
 - Data
 - Statistical analyses
NCAMP Portal

- All members of the Steering Committee have access
- Monthly meeting charts
- Documents for review
- Related research

http://www.niar.wichita.edu/ncampportal/CMC/tabid/177/Default.aspx
Task 2: Development of Qualification Program

GOAL: Generate the framework for a qualification test program including material and process specifications, test matrices, and documentation requirements.

Objectives:
• Select an established CMC material and process to initially develop this framework. The material will be selected with input from the steering committee.
• Determine the critical process parameters and how they affect material properties.
• Address quality aspects of the selected CMC process and the framework for a quality assurance program.
• Draft material and process specifications for selected CMC material. These will be very specific – material, material supplier, processing.
• Develop CMC test matrix including required physical and mechanical data.
• Generate substantial mechanical property test data necessary for development of statistical guidelines using accepted test standards for CMC materials.
Material Selection and Process

- Fiber Source: 3M Nextel 610 Fibers (Alumina)
- Weaver: Textile Products Inc (TPI)
- Prepreg Supplier: Axiom
- Panel Fabricator: AC&A

- Prepreg production and panel fabrication is ongoing
- Screening tests are concluding at NIAR
- Site visit/audit at Axiom took place in November 2017 – PCD has been signed
NCAMP Material Specification

NCAMP Process Specification

NCAMP Test Plan

NCAMP Data Analysis

STATUS
- Material selection complete
- Material Spec – complete
- Process Spec – complete
- Test Matrix – complete
- Test Plan – released
Qualification Program

QUALIFICATION

- **Axiom Ox/Ox Prepreg Qualification**
 - 3 Batches
 - Panel Fab at AC&A

- **Qualification Testing at NIAR**

TEST

- **Baseline Qualification Database**

BUILD

EQUIVALENCY

- **EQUIV. #1**
 - TBD

- **EQUIV. #2**
 - TBD

ANALYZE/PUBLISH

Equivalency/Additional Testing

* Outside of current project scope, but NIAR project deliverable will allow for equivalency process and additional testing for future use by any party with the appropriate equipment and process.

NOTES

- **Additional Builds**
 - Phase 1 = Equivalency: Standard equivalency matrix, 1 batch only.
 - Phase 2 = Additional Testing: Tests not part of qualification database
Test Plan Overview

• Resources:
 ▪ Steering Committee
 ▪ PMC NCAMP test matrix
 ▪ CMH-17 Volume 1 and 5
 ▪ DOT/FAA/AR-03/19
 ▪ DOT/FAA/AR-06/10
 ▪ DOT/FAA/AR-02/110

• Selected property and/or conditions for preliminary studies
Process Definition

PER ENVIRONMENTAL CONDITION AND TEST METHOD

Material Batch

Panel Manufacturing & Independent Cure and Sintering Process

Number of Specimens Required per Test Method & Environment

Batch 1

Batch 2

Batch 3

Panel 1

Panel 2

Panel 3

Panel 4

Panel 3

Panel 4

3 spec.

3 spec.

3 spec.

3 spec.

3 spec.

3 spec.

18 Specimens Total
Lamina Level Mechanical Tests

<table>
<thead>
<tr>
<th>Layup</th>
<th>Test Type and Direction (See Note 9)</th>
<th>Property</th>
<th>Test Method</th>
<th>Number of Batches x No. of Panels x No. of Specimens</th>
<th>Test Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]_{SS}</td>
<td>Warp Tension (See Notes 1, 7, 8, and 10)</td>
<td>Strength, Modulus, and Poisson's Ratio (RTD Only)</td>
<td>ASTM C1275 (RTD) ASTM C1359 (ETD)</td>
<td>3x2x3</td>
<td>3x2x3</td>
</tr>
<tr>
<td>[90]_{SS}</td>
<td>Fill Tension (See Notes 1, 7, 8, and 10)</td>
<td>Strength and Modulus</td>
<td>ASTM C1275 (RTD) ASTM C1359 (ETD)</td>
<td>3x2x3</td>
<td>3x2x3</td>
</tr>
<tr>
<td>[0]_{6S}</td>
<td>Warp Compression (See Notes 2, 7, 8, and 10)</td>
<td>Strength and Modulus</td>
<td>ASTM C1358</td>
<td>3x2x3</td>
<td>3x2x3</td>
</tr>
<tr>
<td>[90]_{6S}</td>
<td>Fill Compression (See Notes 2, 7, 8, and 10)</td>
<td>Strength and Modulus</td>
<td>ASTM C1358</td>
<td>3x2x3</td>
<td>3x2x3</td>
</tr>
<tr>
<td>[45/-45]_{2S}</td>
<td>In-Plane Shear (45/-45 Tension) (See Notes 3 and 8)</td>
<td>Strength and Modulus (RTD Only)</td>
<td>ASTM D3518</td>
<td>3x2x3</td>
<td>3x2x3</td>
</tr>
<tr>
<td>[0]_{7S}</td>
<td>In-Plane Shear (V-Notch Shear) (See Notes 4 and 8)</td>
<td>Strength and Modulus</td>
<td>ASTM D5379</td>
<td>3x2x3</td>
<td></td>
</tr>
<tr>
<td>[0]_{7S}</td>
<td>Interlaminar Shear (Double-Notch Shear) (See Note 5)</td>
<td>Strength</td>
<td>ASTM C1292 (RTD) ASTM C1425 (ETD)</td>
<td>3x2x3</td>
<td>3x2x3</td>
</tr>
<tr>
<td>[0]_{28}</td>
<td>Interlaminar Shear (Short-Beam Strength) (See Note 6)</td>
<td>Strength</td>
<td>ASTM D2344</td>
<td>3x2x3</td>
<td></td>
</tr>
</tbody>
</table>
Laminate Level Mechanical Tests

<table>
<thead>
<tr>
<th>Layup (See Note 12)</th>
<th>Test Type and Direction (See Note 10)</th>
<th>Property</th>
<th>Test Method</th>
<th>Number of Batches x No. of Panels x No. of Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]$_{7S}$</td>
<td>Flexure (See Notes 1, 9, and 11)</td>
<td>Strength and Modulus</td>
<td>ASTM C1341</td>
<td>3x2x3</td>
</tr>
<tr>
<td>[0]$_{10}$</td>
<td>Interlaminar Tension (Trans-Thickness/ Flatwise Tension) (See Note 2)</td>
<td>Strength</td>
<td>C1468</td>
<td>3x2x3</td>
</tr>
<tr>
<td>[0/90]$_{5}$</td>
<td>Interlaminar Tension (Trans-Thickness/ Flatwise Tension) (See Note 2)</td>
<td>Strength</td>
<td>C1468</td>
<td>1x1x6</td>
</tr>
<tr>
<td>[0/90]$_{14}$</td>
<td>Interlaminar Shear (Short-Beam Strength)</td>
<td>Strength</td>
<td>ASTM D2344</td>
<td>1x1x6</td>
</tr>
<tr>
<td>[45/0/-45/90/-45/90]$_{5}$</td>
<td>Unnotched Tension (See Notes 3, 9, and 11)</td>
<td>Strength and Modulus</td>
<td>ASTM C1275 (RTD) ASTM C1359 (ETD)</td>
<td>3x2x3 3x2x3</td>
</tr>
<tr>
<td>[45/0/-45/90/-45/90]$_{5}$</td>
<td>Unnotched Compression (See Notes 4, 9, and 11)</td>
<td>Strength and Modulus</td>
<td>ASTM C1358</td>
<td>3x2x3 3x2x3</td>
</tr>
<tr>
<td>[45/0/-45/90/-45/90]$_{2S}$</td>
<td>Open-Hole Compression (See Notes 5 and 11)</td>
<td>Strength</td>
<td>ASTM D6484</td>
<td>3x2x3 3x2x3</td>
</tr>
<tr>
<td>[45/0/-45/90/-45/90]$_{S}$</td>
<td>Open-Hole Tension (See Notes 6 and 11)</td>
<td>Strength</td>
<td>ASTM D5766</td>
<td>3x2x3 3x2x3</td>
</tr>
<tr>
<td>[45/0/-45/90/-45/90]$_{S}$</td>
<td>Filled-Hole Tension (See Notes 7 and 11)</td>
<td>Strength</td>
<td>ASTM D6742</td>
<td>3x2x3 3x2x3</td>
</tr>
<tr>
<td>[45/0/-45/90/-45/90]$_{S}$</td>
<td>Single Shear Bearing (See Note 11)</td>
<td>Strength</td>
<td>ASTM D5961 (Procedure C)</td>
<td>3x2x3 3x2x3</td>
</tr>
<tr>
<td>[45/0/-45/90/-45/90]$_{S}$</td>
<td>Tension After Impact (See Notes 8 and 11)</td>
<td>Strength</td>
<td>ASTM D7136 ASTM D5766</td>
<td>1x2x3 1x2x3</td>
</tr>
</tbody>
</table>
Other Test Types Included

- Uncured Physical Tests
- Cured and Sintered Physical and Thermal Tests
- Fluid Sensitivity Tests
 - Short beam strength on $[0]_{28}$
 - Includes extended contact, short duration and control tests
 - Post-immersion conditioning – require 60 minutes minimum at 1650°F
Task 4: Guidelines and Recommendations

GOAL: To provide guidelines to industry for the collection of statistically meaningful critical data that designers need to utilize CMC materials potentially including:

• Creation of a shared CMC database including test data, material and process specifications and statistical analysis methods.
• Development of handbook data and guidelines (i.e., CMH-17).
• Coordinate with other standards and specification organizations to develop specifications from this program.
Status – Based on FY2017 Deliverables

<table>
<thead>
<tr>
<th>Activity</th>
<th>Target Date</th>
<th>Milestone / Deliverable</th>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Industry Steering Committee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Establish group of participants</td>
<td>12/15/2016</td>
<td>Milestone</td>
<td>✓</td>
</tr>
<tr>
<td>- Create online portal for document sharing and data repository</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Preliminary drafts of qualification framework</td>
<td>6/30/2017</td>
<td>Deliverable</td>
<td>✓</td>
</tr>
<tr>
<td>- Material and process specifications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Test plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Conformity documentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 Qualification Audit</td>
<td>11/10/2017</td>
<td>Milestone</td>
<td>✓</td>
</tr>
</tbody>
</table>
Status – Based on FY2017 Deliverables

<table>
<thead>
<tr>
<th>Activity</th>
<th>Activity Description</th>
<th>Target Date</th>
<th>Milestone / Deliverable</th>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Trial / Screening Studies (ongoing)</td>
<td>1/15/2018</td>
<td>Milestone</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>- Perform physical and mechanical tests to assist in final test matrix development and selection of machining and NDI methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Present data to FAA, Industry Steering Committee, NCAMP Partners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Qualification Material</td>
<td>2/1/2018</td>
<td>Milestone</td>
<td>Panels in process</td>
</tr>
<tr>
<td></td>
<td>- Site audit complete (scheduled for 11/7-11/8/2017)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Panels built and delivered to NIAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Qualification Testing</td>
<td>8/31/2018</td>
<td>Milestone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Perform physical and mechanical testing on qualification panels.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Generate test data for qualification program.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Develop Statistical Guidelines based on qualification data</td>
<td>10/1/2018</td>
<td>Milestone</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>NCAMP Reports on Qualification Data</td>
<td>12/31/2018</td>
<td>Deliverable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Material technical report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Statistical analysis technical report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>CMH-17</td>
<td>2/28/2019</td>
<td>Deliverable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Submit content, data, and protocols to Composite Materials Handbook 17 (CMH-17)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>Final Report</td>
<td>2/28/2019</td>
<td>Deliverable</td>
<td></td>
</tr>
</tbody>
</table>
Looking forward

• Benefit to Aviation
 – Publically available CMC data linked to M&P specs
 – Addition to CMH-17 handbook
 – CMC – PCD and process spec guidelines

• Future needs
 – Validate qualification data with equivalencies
 – Trial studies needed:
 ▪ Processing effects on CMCs
 ▪ SiC/SiC or C/SiC composites
 ▪ Effects of thermal and environmental barrier coating