

Environmental Durability Test Method Development for Composite Bonded Joints

Dan Adams Zachary Sievert Heather McCartin University of Utah

AMTAS Autumn 2019 Meeting November 5, 2019

FAA Sponsored Project Information

- Principal Investigators:
 Dr. Dan Adams
- Graduate Student Researchers: Zachary Sievert Heather McCartin
- FAA Technical Monitor:
 Ahmet Oztekin
- Collaborators:

Boeing, Hexcel, 3M Corp, AFRL ASTM Committees D30 and D14 Composite Materials Handbook, CMH-17

Outline

- Updates:
 - ASTM Adhesive Bonding Task Group D14.80.01
 - New adhesives testing content in CMH-17 Handbook
- Primary focus: Environmental durability test methods for composite bonded joints
 - Composite wedge test development
 - "Smart Wedge" traveling wedge test concept

Collaborations with ASTM D14 (Adhesives): D14.80.01 Task Group

- Includes ASTM D14 (Adhesives) and ASTM D30 (Composites) committee members
- Meets concurrently with ASTM D30 to allow for greater participation
- Balloting through D14.80 subcommittee and D14 main committee
- Technical contact(s) from D30 to attend D14 meetings and provide TG status reports

Current Activities

- ASTM D3762 Metal Wedge Test revision
- ASTM D5656 Thick Adherend Lap Shear Test revision
- Bonded composite fracture mechanics test evaluation
- Composite Wedge Test development/standardization

Update of Composite Materials Handbook, CMH-17: Inclusion of Adhesive Test Methods

- Update of (limited) existing content
- Tests used in NIAR Adhesive Characterization Project
 - Thin Metal Adherend Lap Shear
 - Thick Metal Adherend Lap Shear
 - Composite Adherend Lap Shear
 - Floating Roller Peel

- Mode I Fracture Toughness
- Mode II Fracture Toughness
- Metal Adherend Tension
- Fluid Sensitivity
- Other adhesion characterization tests
- Bonded joint characterization tests

Overview:

Development of a Composite Wedge Test:

Additional Complexities:

- Variable flexural rigidity (E_f I) of composite adherends
- Environmental crack growth dependent on adherend flexural rigidity
 - Flexural rigidity must be within an acceptable range or...
 - Must tailor wedge thickness for composite adherends or...
 - Must use another quantity to assess durability

Use of Fracture Toughness To Assess Environmental Durability

 G_{c} written in terms of flexural modulus, E_{f}

$$G_c = \frac{3 \, E_f \, t^2 \, h^3}{16 \, a^4}$$

- Requires a measurement of flexural modulus *E_f*
 - Can obtain from three-point flexure testing of adherend material

 G_c = fracture toughness E_f = flexural modulus t = wedge thickness h = adherend thickness a = crack length

- Requires a measurement of adherend thickness, h
- Requires a correction factor for crack tip rotation

$$G_{c} = \frac{3E_{f} t^{2} h^{3}}{16 a^{4}} \left[\frac{1}{(1+0.64 \frac{h}{a})^{4}} \right]$$

Correction factor for crack tip rotation

Wedge Testing of Multidirectional Laminates: Fracture Toughness Values

- Apparent facture toughness values remain relatively constant
- Provides estimate of fracture toughness at ambient conditions
- G_c values from quasi-isotropic and crossply laminates consistent with previous unidrectional laminates

Use of In-Situ Flexural Rigidity From Composite Wedge Test Specimen

 Measure *E_f I* directly using post-tested wedge specimen under DCB type loading:

 $9(E_f I)$

4*b* a^4

$$\boldsymbol{E_f} \ \boldsymbol{I} = \frac{2a^3}{3} \left(\frac{\Delta P}{\Delta \delta} \right)$$

- Correction for crack tip rotation
 "built-in" to *E_f I* measurement
- Express fracture toughness in terms of *E_f I*:

 $\frac{3 E_f t^2 h^3}{16 a^4}$

- G_c = fracture toughness
- E_f = flexural modulus
- I = area moment of inertia
- t = wedge thickness
- b = specimen width
- a = crack length

 G_c

Comparison of Wedge Test and DCB Test Results: 50°C, 95% RH, 5 days

Best agreement with DCB testing using measured E_f I approach

Evaluation of G_{Ic} Calculation Methods Using Finite Element Analysis

- ABAQUS 3D finite element analysis
- Crack at center of adhesive bondline
- Highly refined mesh near crack tip
- Displacement loading to simulate wedge
- Investigation of candidate methods for G_c calculation
- Reference G_c value using VCCT

Numerical Analysis of Composite Wedge Test: Comparison with Test Results

- 19 ply IM7/8552 adherends, AF-163 2K adhesive
- Non-dimensionalized using VCCT & DCB results
- Similar trends from both analysis and testing
- Use of measured E_f*I method appears best suited

Evaluation of Composite Wedge Test: Identification of Contaminated Bond Surfaces

Specimens with 23% and 44% contamination treated at Florida International University

Evaluation of Composite Wedge Test: Identification of Porosity in Bondline

Creation of Bondline Porosity

- Frozen film adhesive exposed to ambient conditions prior to thawing
- Termination of vacuum during adhesive cure

Crack growth region during wedge testing

Evaluation of Composite Wedge Test: Identification of Porosity in Bondline

- % cohesion failure estimated in crack growth area
- General agreement between percent cohesion failure and measured G_c values

Summary:

Status of Composite Wedge Test

- Appears to be well suited for evaluating environmental durability of composite bonds
- Can be used for wide variety of composite laminates and a range of flexural rigidities (E_f*I)
- Provides an estimate of the fracture toughness G_{1C} at both ambient and other environmental conditions (hot, hot/wet, cold, fluid exposure, etc)
- To be proposed for ASTM standardization
 - Draft standard under development (Heather McCartin)
 - To be presented discussed at upcoming ASTM D14.80 Task Group
- FAA report and journal paper underway

What if the Wedge Could Measure Opening Force During Wedge Testing?

- Opening force measured continuously as wedge driven through specimen
 - Adherends supported by roller bars
 - Use of dual compression load cells
- Monitor for drop in measured force
 - Longer crack lengths
 - Reduced fracture toughness
- Similar to traveling wedge test, but measures the opening force rather than driving force
 - Allows for determination of fracture toughness, G_c
- Can retain wedge in specimen for environmental durability test

Smart Wedge Testing: Envisioned "Hybrid" Procedure

Operation of Current Prototype

"Smart Wedge" Concept: Fracture Toughness Measurement

- G_c written in terms of E_f I: $G_c = \frac{9(E_f I) t^2}{4 b a^4}$
- From beam theory, solving for crack length, $m{a}$

$$G_c = \left[\frac{9 P^4 t^2}{4 b^3 (E_f I)}\right]^{1/3}$$

- Can calculate G_c knowing:
 - P (measured force)
 - b (measured specimen width)
 - t (opening displacement)
 - Flexural rigidity, E_f I (measured/calculated)

Do not need crack length measurement!

 $3 (E_f I) t$

3

Smart Wedge Testing:

Identification of Contaminated Bond Regions

- Different levels of grit blasting performed on strips across one adherend
 - Full grit blast duration
 - Half grit blast duration
 - No grit blasting
- Other adherend prepared in standard manner

Smart Wedge Testing: Identification of Contaminated Bond Regions

General agreement level of grit blasting, % cohesion failure and measured G_c values

Smart Wedge Testing: Identification of Bonds with Porosity

Reductions in G_{1C} correspond to increasing porosity

Summary:

Status of Composite "Smart Wedge" Test

- Useful for assessing larger bond areas
- Able to detect regions of high porosity and reducedstrength bonds
- May be used to estimate fracture toughness
- Follow-on composite wedge testing to investigate environmental durability

Thank you for your attention!

Questions?

