

A Building Block Approach for Crashworthiness Testing of Composites

Dan Adams Erin Blessing Dalton Ostler Mark Perl University of Utah AMTAS Autumn 2019 Meeting November 5, 2019

FAA Sponsored Project Information

• Principal Investigator:

Dr. Dan Adams

• Graduate Student Researchers:

- Erin Blessing Dalton Ostler Mark Perl
- FAA Technical Monitor:

Allan Abramowitz

• Collaborators:

Boeing: Kevin Davis Engenuity, LTD: Graham Barnes Hexcel: Audrey Medford

Current CMH-17 Challenge Problem: Composite Cargo Floor Stanchion

- Central assembly consisting of four primary members
 - Stanchion #3 (primary crush member)
 - Floor beam
 - Frame
 - Skin
- Initial sizing based on 6g vertical loading condition (Altair Engineering)
 - Cross section geometry
 - Laminate ply orientations
 - Laminate thickness

Primary Crush Member: C-Channel Stanchion

Initial Testing Activities: Laminate Design for Crashworthiness

- Flat-coupon crush testing
- Tailor laminate to achieve stable crush, high energy absorption
- Mini round-robin to evaluate proposed crush test fixtures and draft standard

Flat Coupon Crush Testing: Unsupported and Pin-Supported

Previous Research Results: Crush Modes Affect Energy Absorption

Fragmentation

- Short axial cracks
- Shear failure from compressive stresses
- Extensive fiber fracture

Brittle Fracture

- Intermediate axial cracks
- Combines characteristics
 from other failure modes

Fiber Splaying

- Long axial cracks
- Frond formation
- Delamination dominated

Flat Coupon Crush Test Results: Hard Laminates

All laminates produced good energy absorption

- 50% 0°, 25% ±45°, 25% 90°
- No significant difference due to fabric layers in Hybrid laminates
- Minimal variation between laminates investigated
- Two laminates selected for further investigation

C-Channel Stanchion Crush Testing: Specimen Manufacturing

- IM7/8552 carbon/epoxy unitape prepreg, 190 gsm
- "Hard" laminates
- 0.25 in. corner radius,
 0.114 in. average thickness
- Layup and cure in accordance with NCAMP specifications
- ~1.5% thickness difference between flat and corner sections (corner thickness slightly lower)

C-Channel Crush Testing: Crush Test Parameters

5-11-16 4

- University of Utah instrumented drop-weight impact tower
- $[90_2/0_2/\pm45/0_2]_s$ and $[90/+45/0_2/90/-45/0_2]_s$ "hard" laminates
- Three crush velocities
 - 300 in/sec (~10 ft. drop height)
 - 150 in/sec (~2.5 ft. drop height)
 - Quasi-static
- High-speed video of crush process
- Results used to assess numerical modeling capabilities

C-Channel Crush Testing: High-Speed Video of Crush Process

Current Focus:

Crush Testing of Single Stanchion Assembly

Additional considerations include:

- Bolted attachments (top and bottom)
 - Design of bolted connections
 - Design of laminate in bolted regions
- Crush initiator
 - Localized stress concentration
 - Reduced cross-sectional area
 - Produced failure at prescribed location, load level, and failure mode
- Subsequent stable crush of stanchion

Design of Bolted Attachments: Dynamic Bearing Testing

- Stanchion bolted to the upper floor and lower frame
- Bearing failure possible at bolted connections
- Investigate dynamic bearing strength and bearing crush behavior
 - Single fastener tests to establish dynamic bearing strength
 - Bolted C-channel tests to establish joint load capacity

Dynamic Bearing Testing: Single Fastener/Single Shear Testing

- Compression loaded
 - Quasi-static: 0.4 in/min
 - Dynamic: 144 in/sec (drop-weight impact)
- Failure of single fastener
 - Quasi-static: 3.5 kip
 - Dynamic: 4.1 kip

Stanchion will consist of six fasteners. Therefore, the desired dynamic peak load would be 24.6 kip

Dynamic Bearing Testing: Bolted C-Channel Test

- Single-shear testing of bolted joint design
- Six 0.25 in. diameter bolts, three rows two columns
- Top of channel potted to prevent end crushing

- Establishment of dynamic and quasi-static joint performance
 - Initial failure load
 - Failure mode and location
- Testing of selected "hard" laminate
- Of use for assessing numerical modeling methods

Bolted Joint Testing: High Speed Video of Dynamic Bearing Test

• Similar failure modes in all tests

Current Focus: Bolted Joint Design

- Laminate transition for improved bolted joint strength
 - Additional ±45° layers for increased bearing strength
 - Maintain 0 ° plies to maintain laminate axial strength
 - Replace all 90° plies with ±45° plies

C Channel Ply Stacking Sequence															
	Hard Laminate							Bolted Region							
	90	90	90	90	90	90	90	90	-45	-45	-45	-45	-45	-45	-45
	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	90	90	90	90	90	90	90	90	90	45	45	45	45	45	45
	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45
	90	90	90	90	90	90	90	45	45	45	45	45	45	45	45
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45
	90	90	90	90	90	90	90	90	90	90	-45	-45	-45	-45	-45
-	Tool Side Tool Side	Tool Side Tool Side	Tool : Tool :	Side Too Side Tool	l Side Side	Tool Side Tool Side	Tool Side Tool Side	Tool Side Tool Side	Tool Tool	Side Side	Tool Side Tool Side	Tool Side Tool Side	Tool Side Tool Side	Tool S Tool	Side Side

Current Focus:

Crush Testing of Single Stanchion Assembly

Additional considerations include:

- Bolted attachments (top and bottom)
 - Design of bolted connections
 - Design of laminate in bolted regions
- Crush initiator
 - Localized stress concentration
 - Reduced cross-sectional area
 - Produce failure at prescribed location, load level, and failure mode
- Subsequent stable crush of stanchion

C-Channel Stanchion Crush Initiator: Use of Laminate Ply-Drops & Machined Holes

- Two crush initiators investigated
 - Ply drops
 - Machined holes
- Laminate failure in desired region under dynamic compression loading
- Fracture surface serves as crush front for further stanchion crushing
- Machined holes selected for use

Upcoming Testing: C-Channel with Reduced Cross-Section

- Quasi-isotropic "like" laminate in joint regions through ply substitution
- Use of machined holes in web for crush initiator
- Tapered flange height to promote stable crush behavior
- Test results to be used to assess numerical modeling capabilities

University of Utah Modeling Approach: ABAQUS Explicit with CZone

- CZone: Crush Modeling
 - An Abaqus Explicit Add-on
 - Developed by Engenuity LTD
 - Developed to model crush in composites
 - Uses measured crush stress of laminate as an input property
- Abaqus Explicit
 - Runs simultaneously
 - Allows failure away from the crush front

Primary CMH-17 Emphasis: Numerical Prediction of Crush Behavior

- Total of 14 analysis teams
- Different codes, approaches, and material models
- Common set of material properties
- Provided with crush test results from flat coupon tests
- Blind predictions to be submitted
 - C-channel crush tests
 - Stanchion crush tests

CZone Numerical Approach: How Crush Stress is Applied as a Laminate Material Property

1) Crushing stress applied at Master/ Slave Contact

- Master Surface (red plate)
- Slave Surface (crushing element)
- 2) Crushing force is calculated and distributed to nodes
- 3) Crushing elements move through rigid surface
- 4) Elements delete past the rigid surface

CZone Modeling: Model of Base C-Channel

- Two Parts Modeled
 - Discrete Rigid Plate
 - Crushing Specimen (C-Channel)
- Crush stress applied at contact interface

BENEFITS TO AVIATION

- Building block approach for developing composite crush structures for crashworthiness
- Coupon-level test methods for use in initial crashworthiness assessment of candidate composite materials and laminates
- Documentation of building block approach for crashworthiness design and experimental validation in CMH-17
- Dissemination of research results through FAA technical reports and conference/journal publications

