### FAA Composite Research Overview

Presented to: AMTAS By: Larry Ilcewicz and Cindy Ashforth Date: November 7, 2018



### **Composite Research Topics**

- Under Structural Integrity of Composites, we create top-level research requirements by subject
- For FY2019, the subjects are:
  - SIC.1: Damage Tolerance of Composite Structures
  - SIC.2: Composite Maintenance Practices
  - SIC.3: Crashworthiness Issues Unique to Composite Materials
  - SIC.5: Structural Integrity of Adhesive Joints
  - SIC.12: Continued Operational Safety (COS) and Certification Efficiency (CE) for Emerging Composite Technologies
- For FY16-FY18, we also had congressionally-mandated additional research funds, and we created a new research line item to manage them, which is also expected to be in the FY19 budget:
  - SIC.13: Advanced Materials Standardization Development



### **FAA Composite Research**

### • All of our JAMS research projects are funded through one of those line items

| F&DT     | Development and Evaluation of Fracture Mechanics Test Methods<br>for Sandwich Composites - Damage Tolerance Test Method<br>Development | D. Adams      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|---------------|
| F&DT     | Evaluation of Parameters Used in Progressive Damage Models                                                                             | J. Parmigiani |
| F&DT     | Moisture Diffusion in Sandwich Composites                                                                                              | M. Tuttle     |
| Crash    | Development of a Building Block Approach for Crashworthiness<br>Testing                                                                | D. Adams      |
| Adhesive | Improving Adhesive Bonding of Composites Through Surface<br>Characterization                                                           | B. Flinn      |
| Adhesive | Durability of Adhesively Bonded Joints for Aircraft Structures Project                                                                 | D. Adams      |
| Adhesive | Effect of Surface Contamination on Composite Bond Integrity and Durability Project                                                     | D. McDaniel   |
| Adhesive | Durability of Bonded Aerospace Structures                                                                                              | L. Smith      |
| Maint.   | AMTAS Admin Grant                                                                                                                      | M. Tuttle     |
|          |                                                                                                                                        |               |



#### **Research Goals**

- Why are we doing research in various subjects?
- What are the top-level goals?
- Do our current projects adequately support those goals?

- What are the limits to FAA sponsored research?

• What can we do differently to better support the goals?



### Damage Tolerance of Composite Structures

- Goals for Industry as a whole: (What knowledge do we want to promote and have available in publications such as CMH-17?)
  - 1. Methods to predict if and how a specific damage will grow, for both laminate and sandwich structures
  - 2. Design and substantiation protocol for impact damage that requires maintenance inspection
  - 3. Design and substantiation protocol for the residual strength of critical damage states
  - 4. Document mitigating methodologies for damage not detectable by maintenance procedures



## Damage Tolerance of Composite Structures

- What can we do with FAA research?
  - 1. Study critical damage types and potential growth mechanisms
  - 2. Evaluate the variables from a given impact event that affect damage criticality and detectability
  - 3. Evaluate analysis methods used in predicting damage growth and residual strength
  - 4. Document fatigue and damage tolerance certification protocol, including mitigating methodologies for non-detectable damage



#### **Continued Operational Safety (COS) and Certification Efficiency (CE) for Emerging Composite Technologies**

- This is a series of focused independent projects with separate goals:
  - Lightning Protection
    - 1. Understand the physical mechanism of lightning strike on composite structure and develop test methods to lead to better designs and certification procedures
  - Forensic Investigation
    - 1. Develop protocol to determine whether or not there was a composite structural failure (particularly from a contaminated bondline) after the structure is subjected to a post-impact fire
    - 2. General update to the composite failure analysis handbook
  - Fiber Quality Control
    - 1. Better understand the physical behavior of composite materials, and improve testing and certification procedures for the fibers
  - Advanced Fuels
    - 1. Ensure that the safety of composite structure is not compromised by the introduction of the new fuels



# Crashworthiness Issues Unique to Composite Materials

- This subject not sponsored in FY20 or FY21
- Closing out projects already begun, which had goals to:
  - 1. Investigate Unique Reactions of Composite Structures in Crash Events leading to test standards, analysis protocol, industry guidelines and documented best practices to support composite development, certification and substantiation practices



## Structural Integrity of Adhesive Joints

- Goals:
  - 1. Define protocols for certifying bonded structural joints and bonded repairs
  - 2. Define protocols for certifying sandwich structure
  - 3. Document lessons learned



### **Composite Maintenance Practices**

- This subject is a catch-all for safety management (including workforce education) in addition to actual maintenance practices
- Goals:
  - Workforce Education
    - 1. Educate FAA certification engineers, manufacturing inspectors and maintenance inspectors to Level 2 "safety awareness"
    - 2. Expand Level 2 education around the industry
    - 3. Promote standardized Level 1 training in colleges and universities
  - General
    - 1. Understand latest technologies and best practices for publication in industry document and FAA guidance



### Advanced Materials Standardization Development

- Overall goal per congressional mandate is advanced materials and structures standardization
- Have sponsored these projects:
  - Process Definition and Quality Control for CMCs, Polymer AM, Thermoplastic Composite, Repair Materials and Adhesives
    - 1. Document Kp and Kcc for new materials and processes
    - 2. Provide guidelines for material and process control of new material forms and processes
  - Engines
    - 1. Document means of compliance for certifying composite parts (PMC and CMC) in engine applications



### Advanced Materials Standardization Development

- Have sponsored these projects (continued):
  - Workforce Education
    - Update technical content and delivery methods for FAA courses
- Future efforts will include establishing standards for developing design data and associated limitations – possibly leading to a material TSO



#### **Research Goals**

- For each of these goals, the FAA is developing detailed plans to help generate desired knowledge and document best practices
  - Research will compliment industry standards organizations' activities
- Future projects will be selected to support these goals



### **Moving Forward**

- Currently around 30 open projects
- We expect FY19 dollars to be about the same as FY18, with congress continuing the plus-up process
  - A sizeable portion of funds will go to AM both metallic and non-metallic
- We cannot effectively manage so many small projects
  - Our plan is to have a fewer number of projects, with higher dollar amounts on each one
  - Projects will directly support a defined research need
  - Grant recipients will be asked to coordinate with other parties, as necessary – including creating research sub-contracts – to reach project goals (this could include AMTAS/CECAM links)

