Improving Adhesive Bonding of Composites Through Surface Characterization

> **Brian Flinn**, PI Ryan Toivola, Austin Zukaitis, University of Washington

AMTAS Autumn 2018 review meeting 11/7/18

FAA Sponsored Project Information

- Principal Investigator:
- Post-Doc Researcher:
- Graduate Students:

- FAA Technical Monitor:
- Collaborators:

Brian Flinn

Ryan Toivola

Austin Zukaitis

Rita Johnston

Ahmet Oztekin

The Boeing Co. Henkel Epic Aircraft Textron

Detection & effect of amine blush

- Motivation and Key Issues
 - Bond failures have been attributed to amine blush
- Objective
 - What are the conditions for amine blush and how to measure blush?
 - What are the effects on bond quality?
 - Prevention & Mitigation
- Approach
 - Previous work:

Cured "traveler" coupons

T-peel testing

- Current work:

Bondline microscopy

T-peel testing

Nano indentation

Source: AMT composites, amtcomposites.co.za

% RELATIVE HUMIDITY Environmental Bonding Requirements per Cirrus SR22T SRM

- Amine blush is a surface phenomenon in amine cured epoxy systems
- "Whitish, hazy, waxy, oily, soft, sweaty" surface coating
- Problematic in RT cure systems processed in high humidity environments

Primary amine in mixed paste adhesive can:

Diffuse to surface (Δ SE) •

React with epoxide (reactivity) ullet

- Foister (J. Coll. Interf. Sci. 1984)
- Observed surface concentration of amines in a curing epoxy mixture
- Damkohler number λ: ratio of reactivity to diffusivity of primary amine. Low: amines stay at surface. High: amines cure with epoxy

- Gaps in knowledge & understanding of amine blush:
- 1) How fast does amine blush form on adhesive surface?
 Effect of temperature, humidity, adhesive formulation
- 2) Relationship between surface blush and blush layer thickness in adhesive bondlines
- 3) Relationship between blush layer thickness and bond strength

Outline

• Methods

- FTIR
- Traditional and Fluorescence Microscopy
- T-peel bond strength test
- Model compound studies
 - Effect of stoichiometry
 - Effect of thickener concentration
- Commercial system studies
 - T-peel bondline analysis
- Preliminary results
 - Blush Mitigation
 - Nano-indentation

Methods

- Bonding using paste adhesives
- We study the time period between spreading and close-out
- All samples made in lab conditions: 68 °F, 40% RH

Methods - FTIR

- Attenuated Total Reflectance (ATR) FTIR is ideal for analyzing surface effects
- IR beam penetrates ~0.5 -3 µm of sample depth

Methods – FTIR – Wet adhesive study

- Apply .18 mm (7 mil) adhesive layer to microscope slide
- Collect IR spectra from surface using ATR, after varying exposure time

Methods – FTIR – Wet adhesive study

Carbamate peaks (1564 & 1478 cm⁻¹) increase as exposure time increases

• Use epoxide as reference peak

blush ratio =

A1564

A₁₅₀₈

Methods – Visual analysis techniques

- Blush is hazy white layer, can be visually distinguished from epoxy
- Epoxy emits blue fluorescence under UV light is fluorescent signature of blush different?
- Need observations from bondline itself rather than representative samples

Methods - Microscopy

- Manufacturing process for microscopy samples
- Dual .18 mm layers squeezed to single .18mm layer
- Sectioned with wafering saw and polished

Methods – Fluorescence Microscopy

Dye	Excitation (nm)	Emission (nm)
DAPI	357	447
GFP	470	510
Texas Red	585	624

- Thermo EVOS FI Microscope
- Blue, green, red wavelengths & filters, designed for biological dyes
- Overlay single-color images to highlight subtle features
- Is blush more obvious with other wavelengths of light?

Methods – FTIR Microscopy

Infinity-corrected design and TruView optics allow sharp visible images to be seen while collecting IR data.

- Nicolet Continuum IR microscope
- Collect FTIR spectra from different sample locations
- 50 μ m² areal resolution

Methods – T-peel bond strength testing

- T-peel measures bond strength (ASTM D 1876)
- Schematic of T-peel specimens
- Photo: Specimen during testing

Methods – T peel bond strength testing

- T-peel sample manufacturing
- Dual .25 mm (10 mil) layers squeezed to single .25 mm (10 mil) layer
- Cut into 300 mm long T-peel specimens with 75 mm unbonded length

Outline

• Methods

- FTIR
- Traditional and Fluorescence Microscopy
- T-peel bond strength test
- Model compound studies
 - Effect of stoichiometry
 - Effect of thickener concentration
- Commercial system studies
 - T-peel bondline analysis
- Preliminary results
 - Blush Mitigation
 - Nano-indentation

Model Formulations

Epoxy monomers		S.E.(dynes/cm)	comments
TGDDM MY720		~48 (high viscosity)	Tetrafunctional epoxy
DGEBA Epon 828		43.0	Bifunctional epoxy
Amine monomers			
DETA	H ₂ N NH	41.8-47.0	Pentafunctional short chain aliphatic
MMCA Laromin C260	H ₂ N CH ₃ CH ₃	35.2	Tetrafunctional, cyclic
POPDA Epikure 3274	H_2N CH_3 CH_3 CH_3 H_2 NH_2 CH_3 CH_3 H_2 CH_3 CH	~20-25	Tetrafunctional, long-chain aliphatic "blush resistant"

2 standard epoxies and 3 standard curing agents

Model formulations

- Fastest-forming, most extensive blush in TGDDM-DETA
- Little blush in other TGDDM-containing formulations
- No blush in DGEBA-containing formulations

Model formulations – TGDDM-DETA

- Downselect to TGDDM-DETA for extended study
- Blush formation visible on same timescale as FTIR

Model formulations – TGDDM-DETA FTIR

- Add fumed silica (Cab-o-sil) for closer approximation of paste adhesive
- Increasing wt% Cab-o-sil causes slower, less extensive blush
- Viscosity-based change to Damkohler number?

Model formulations – TGDDM-DETA microscopy

- Inclusions of amine blush visible at 7.5 min
- Full bondline presence at 10 min
- 20 min and 40 min extensive presence

Model formulations – TGDDM-DETA Fluorescence

- Overlay of DAPI and GFP images
- Blush inclusions visible at 7.5 minute exposure (increased intensity)
- Blush presence indicated at 10, 20, 40 min

Outline

• Methods

- FTIR
- Traditional and Fluorescence Microscopy
- T-peel bond strength test
- Model compound studies
 - Effect of stoichiometry
 - Effect of thickener concentration
- Commercial system studies – T-peel bondline analysis
- Preliminary results
 - Blush Mitigation
 - Nano-indentation

Commercial systems

Adhesive	Δ blush ratio (min ⁻¹⁾	RT Pot life (min)
Magnolia 56	.070	180
EA 9360	.055	50
ES 6292	.0082	40-50
EA 9394	.0046	90
MGS 418	0013	300-360

- 5 commercial paste adhesives studied
- Can be grouped by rate of blush formation:
- Fast: Magnolia 56, Hysol EA 9360
- Slow: PTM&W ES 6292, Hysol EA 9394
- None: Hexion MGS 418

- Blush formation is visible in bondline after 20 minutes post-spread exposure
- Ratio of blush to bondline thickness increases, plateaus over time

Commercial systems – EA 9360 Fluorescence

- Images using DAPI (blue) and GFP (green) filters
- Blush layer clearly visible

Commercial systems – EA 9360 FTIR microscopy

- FTIR microscopy samples 50 µm area
- Compare blush layer to epoxy layer
- Interior layer is carbamate formation

Commercial systems – microscopy of T-peel bonds

• Amine blush visible in 30 minute sample with fluorescence imaging

Commercial systems – EA 9360 T-peel strength

- 90 % reduction in T-peel strength as exposure time increases
- Failure modes change from cohesive to adhesive (interface)
- Caveat: working life 50 minutes

Commercial systems - Comparison of metrics

- As a predictor of T-peel strength loss, FTIR is conservative
- Bondline thickness ratio is more accurate
- Visible blush in bondline: indicator of bond strength problems

Outline

- Methods
 - FTIR
 - Traditional and Fluorescence Microscopy
 - T-peel bond strength test
- Model compound studies
 - Effect of stoichiometry
 - Effect of thickener concentration
- Commercial system studies
 - T-peel bondline analysis
- Preliminary results
 - Blush Mitigation
 - Nano-indentation

Amine Blush Mitigation

- Mylar and mesh placed on adhesive & removed before FTIR scan
- Plastic adhesive spreader used to rake over surface before FTIR scan
- All effective at reducing amine blush
- Highly dependent on operator use
- Thickness of bond line reduced due to adhesive removal

New UW capabilities for bonding research

The world's most comprehensive nanomechanical and nanotribological test system for all your material analysis needs

- Hysitron TI 180 Nanoindenter with nanoDMA and heated stage
- Capable of mapping E, T_g, hardness across a bondline at 3nm resolution
- Potential for quantifying blush via mechanical property change
- Other bonding research and micron scale mechanical measurements

Nanoindentation

- Depth of penetration measured and area of contact is determined by indenter geometry (Berkovich tip)
- Hardness is found by dividing force by area of contact
- Reduced modulus is calculated based on slope of unloading curve

Load Control Mode

- Nanoindenter applies specified load and holds for several seconds, then releases load
- Force vs. Displacement curve generated
 - Viscoelastic behavior can be seen at the peak, as the material continues to deform while the 1000µN force is held for 5s

Acrylic adherend: 1000μ N force applied at 100μ N/s and held for 5s then removed

Displacement Control

- Nanoindenter indents samples to a specified depth, holds for several seconds, then withdraws from sample
- Force vs Displacement curve generated
 - Stress Relaxation
 - load drops while displacement held constant

Acrylic adherend: 1000 nm deep indent applied at 100 nm/s, held for 5s, then removed at 100 nm/s

AFM Imaging Mode

- Surface topography is measured and image generated
- AFM image to the right shows surface topography around an indent
- Scan Line Profile image shows surface roughness as the probe travels forward and reverse horizontally across sample
- 3D image of surface can be created using surface topography data

XPM (Accelerated Property Mapping)

- XPM modes allows for high speed nanoindentation of area up to 94µm x 94µm
- Fast, shallow indents are performed and Force vs Displacement curves generated
- Arrays of individual measurements can be plotted to generate maps of mechanical property gradients
 - Reduced modulus and hardness

$$\mathbf{E}_{\mathrm{r}} = \frac{\mathbf{S}\sqrt{\pi}}{\mathbf{2}\sqrt{\mathbf{A}}} \qquad \mathbf{H} = \frac{\mathbf{P}_{\mathrm{max}}}{\mathbf{A}}$$

XPM on Bond Interface

- Epoxy-Acrylic interface probed via 4x4 XPM array
- Each pixel correlates to a single indent
- Hardness and reduced modulus of epoxy about 1.3x higher than acrylic

Conclusions

- Blush formation rates can be observed with FTIR analysis
 - Model systems slowed by increasing filler concentration
 - Commercial paste adhesives can be categorized by formation rate
- Microscopy can identify blush layers in bondlines
 - Layer thickness grows over time
 - Fluorescence microscopy a valuable technique
- Blush layers reduce T-peel bond strength
 - How much? Unclear as yet
- As metric for T-peel strength loss:
 - FTIR peak blush ratio is conservative
 - Visible bondline blush layer is accurate within current data

Future work on amine blush

- Explore mitigation strategies
 - Protective disposable film layer
 - Disruptive disposable mesh layer
 - "Combing" to break up blush
 - Thick adhesive layers for aggressive, turbulent squeeze-out
- Explore humidity dependence
 - 10-60% RH environmental chamber
- Correlate blush layer thickness with bond strength
 - Decouple working life from blush formation rate
 - Study T-peel strengths in other adhesives

Looking forward

Benefit to Aviation

- Better assurance that paste adhesives and use conditions will result in good bonds
- Establish a correlation between blush detection methods and bond strength for industry use

• Future needs

- Further study on several adhesive systems
- Standardized optical microscopy techniques
- Correlation with Nano-indenter mechanical property measurements

Thank you! Questions? Suggestions?

Other work slides

- Amine blush in paste adhesives leads to lowered bond strength danger of kiss bonds & delaminations
- 2010 Wing disbond/fuel leak attributed to amine blush in bonded structure – FAA Airworthiness Directive issued

- Proposed reactions for amine blush
- Primary amine reacts with CO₂ to form carbamate (salt, network)
- Carbonates and bicarbonates also proposed

Methods - FTIR

- FTIR studies of amine blush indicate carbamates form $blush ratio = \frac{A_{1564}}{A_{1508}}$
- Epoxide aromatic 1508 cm⁻¹ as a reference; asymmetric carbamate ~1560 cm⁻¹ as blush indicator

Commercial systems – EA 9360

- EA 9360 paste adhesive hardener forms white crystals in air
- FTIR indicates carbamate formation
- Does using open-air exposed hardener affect blush formation rate?

Commercial systems – EA 9360 hardener open-ai

- Samples of hardener exposed to ambient for 0-40 days
- Mixed with epoxy, spread for blush formation rate study

Commercial systems – EA 9360 hardener open-ai

- As part B exposure increases, blush ratio formation appears to slow
- After 40 days, some induction period before blush formation onset

Outline

• Methods

- FTIR
- Traditional and Fluorescence Microscopy
- T-peel bond strength test
- Model compound studies
 - Effect of stoichiometry
 - Effect of thickener concentration
- Commercial system studies
 - T-peel bondline analysis
- Preliminary results
 - Blush Mitigation
 - Nano-indentation

