

Development of Environmental Durability Test Methods for Composite Bonded Joints

Dan Adams,
Heather McCartin, Zachary Sievert
University of Utah

FAA AMTAS Autumn 2018 Meeting November 7, 2018

FAA Sponsored Project Information

Principal Investigators:

Dr. Dan Adams

Graduate Student Researchers:

Heather McCartin Zach Sievert

FAA Technical Monitor:

Ahmet Oztekin

Collaborators:

Boeing: Kay Blohowiak, Will Grace, Charles Park

Air Force Research Laboratory: Jim Mazza

3M Corp: Maha DeSilva

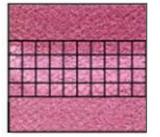
Outline

- Updates:
 - Revision of metal wedge test method (ASTM D3762)
 - ASTM Adhesive Bonding Task Group D14.80.01
- Primary focus: Environmental durability test methods for composite bonded joints
 - Composite wedge test development
 - Comparison of results with other test methods
 - "Smart Wedge" traveling wedge test concept

Background: The Metal Wedge Test

ASTM D3762: "Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test)"

- Bonded aluminum double cantilever beam loaded by forcing a wedge between adherends
- Assembly placed into test environment (ex: 50° C, 95% RH)
- Crack growth ∆a due to environmental exposure measured following prescribed time
- Able to asses bond quality quickly by causing rapid hydration of oxide layers

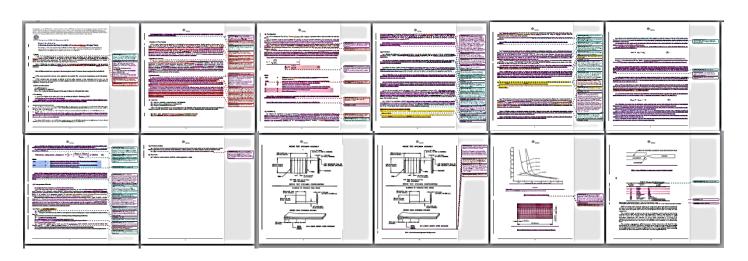

Revision of ASTM D3762:

Summary of Proposed Revisions

- Correction of existing errors in standard
- Broadening of scope to include metals other than aluminum as adherends
- Provided additional guidance in specimen manufacturing
- Provided additional detail in test procedure
- Addition of requirement to estimate % cohesion failure in region of environmental crack growth

Percent cohesion failure:

$$\left[1-\left(\frac{A_{nc1}+A_{nc2}}{A_{ext}}\right)\right] \times 100\%$$



Revision of ASTM D3762: Current Status

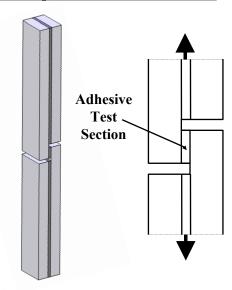
- Completed extensive revision of standard
- Initial D14.80 subcommittee balloting April 2018
- Addressed concerns: negative votes and comments
- Currently reballoting at concurrent D14.80 subcommittee and D30 main committee levels

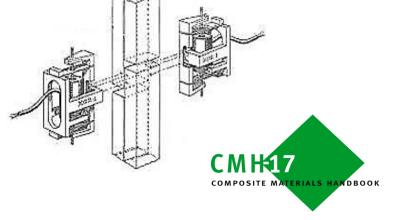
Collaborations with ASTM D14 (Adhesives): D14.80.01 Task Group

- Includes ASTM D14 (Adhesives) and ASTM D30 (Composites) committee members
- Meets concurrently with ASTM D30 to allow for greater participation
- Balloting through D14.80 subcommittee and D14 main committee
- Technical contact(s) from D30 to attend D14 meetings and provide TG status reports

Current Activities

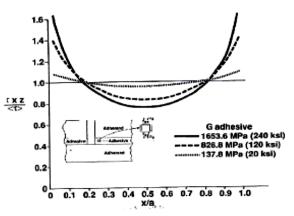
- ASTM D3762 Metal Wedge Test revision
- ASTM D5656 Thick Adherend Lap Shear Test revision
- Bonded composite fracture mechanics test evaluation
- Composite Wedge Test development/standardization



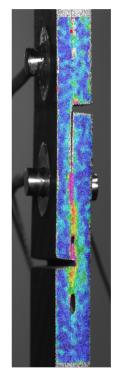

Current Activities: ASTM D14.80.01 Task Group

Improvements to ASTM D5656-Thick Adherend Lap Shear Test

- Best practices for shear strain measurement
 - Identify suitable replacement(s) for obsolete
 KGR-1 extensometer
 - Optimal attachment points for shear strain measurement
- Initial round-robin investigation completed
 - Two paste adhesives
 - Four adhesive thicknesses
 - Three labs/measurement methods
- In conjunction with CMH-17 Testing Working Group



Current Activities: ASTM D14.80.01 Task Group



Improvements to ASTM D5656-Thick Adherend Lap Shear Test (Con'd)

- Follow-on round-robin investigation in planning stage
 - AFRL specimens, single film adhesive
- Evaluation of candidate shear strain measurement methods
 - Epsilon extensometer
 - NIAR extensometer attachment
 - Digital Image Correlation (DIC)
 - Others
- Update ASTM D5656 Standard
- Balloting through ASTM D14.80

Kassapoglou C. and Adelmann, J. SAMPE Quarterly, October 1992.

R. Cole, NRC Canada

Collaborations with ASTM D14 (Adhesives): D14.80.01 Task Group

- Includes ASTM D14 (Adhesives) and ASTM D30 (Composites) committee members
- Meets concurrently with ASTM D30 to allow for greater participation
- Balloting through D14.80 subcommittee and D14 main committee
- Technical contact(s) from D30 to attend D14 meetings and provide TG status reports

Current Activities

- ASTM D3762 Metal Wedge Test revision
- ASTM D5656 Thick Adherend Lap Shear Test revision
- Bonded composite fracture mechanics test evaluation
- Composite Wedge Test development/standardization

Outline

Updates:

- Revision of metal wedge test method (ASTM D3762)
- ASTM Adhesive Bonding Task Group D14.80.01
- Primary focus: Environmental durability test methods for composite bonded joints
 - Composite wedge test development
 - Comparison of results with other test methods
 - "Smart Wedge" traveling wedge test concept

Overview: Development of a Composite Wedge Test:

Additional Complexities:

- Variable flexural rigidity (E_f I) of composite adherends
- Environmental crack growth dependent on adherend flexural rigidity
 - Flexural rigidity must be within an acceptable range or...
 - Must tailor wedge thickness for composite adherends or...
 - Must use another quantity to assess durability

Use of Fracture Toughness, G_c To Assess Environmental Durability

Consider composite adherends as cantilever beams

- · Measured values of crack length, a
- Known value of beam deflection, δ

 $\delta = t/2$ (half of wedge thickness)

Tip deflection of a cantilever beam:

$$T = \frac{E_f b h^3 t}{8 a^3}$$

Strain energy due to bending: $U = \frac{1}{2}T \delta$

Strain energy release rate: $G_c = \frac{dU}{dA}$

$$G_c = \frac{3E_f t^2 h^3}{16 a^4}$$

a = crack length

t = wedge thickness

h = adherend thickness

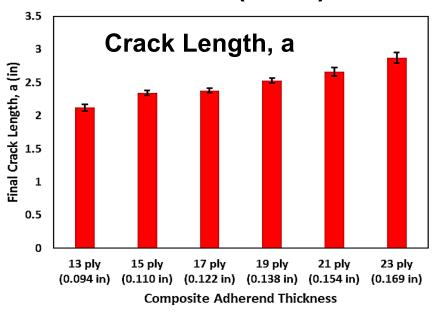
b = specimen width

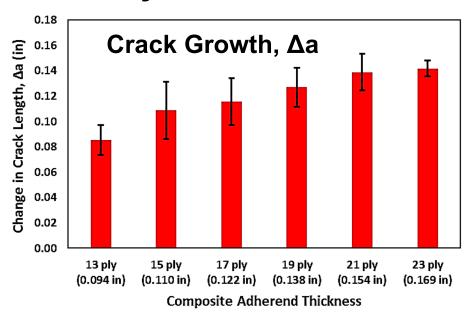
T = load to deflect tip of beam

 E_f = flexural modulus

 G_c = fracture toughness

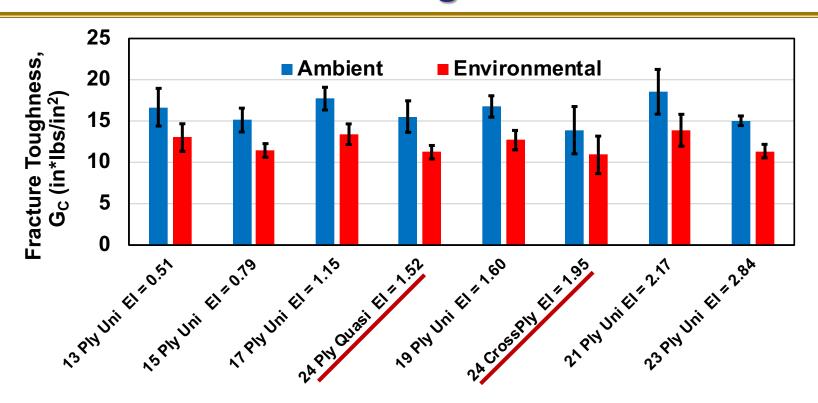
Experimental Investigation: Composite Wedge Test Development


- IM7/8552 carbon/epoxy adherends
- AF163-2K film adhesive
- "Ideal Bond": Grit-blast & acetone wipe bond surfaces
- Multiple adherend thicknesses to produce different flexural rigidities (E_f * I)
 - 13, 15, 17, 19, 21, 23 ply thicknesses
 - (0.10 to 0.17 in thick adherends)
- 122°F (50°C) and 95% humidity environment for 5 days

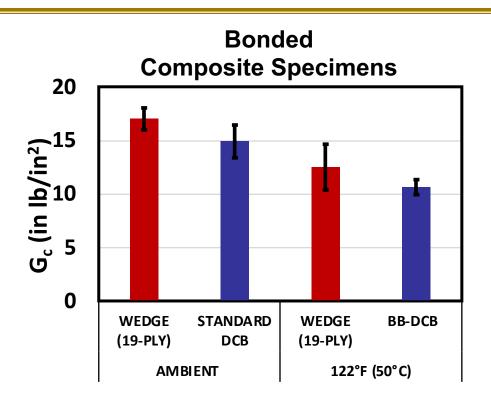


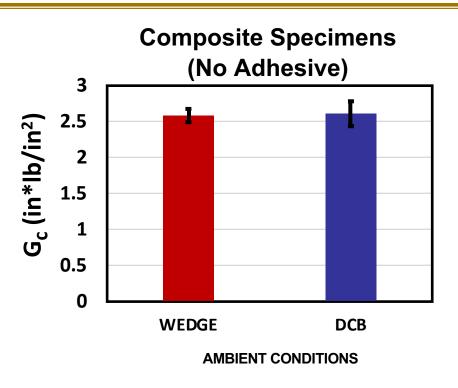
Effects of Composite Adherend Thickness: Crack Length and Growth Measurements

122°F (50°C) and 95% humidity environment


Increasing adherend thickness (and flexural stiffness)...

Increases crack length, a
 Increases crack growth, Δa




Wedge Testing of Multidirectional Laminates: Fracture Toughness Values

- Apparent facture toughness values remain relatively constant
- Provides estimate of fracture toughness at ambient conditions
- G_c values from quasi-isotropic and crossply laminates consistent with previous unidrectional laminates

Composite Wedge Test Development: Comparisons With DCB Test

General agreement to date between double cantilever beam (DCB) and composite wedge test results

Calculation of G_c From Composite Wedge Test

G_{c} written in terms of flexural modulus, E_{f}

$$G_c = \frac{3 \, E_f \, t^2 \, h^3}{16 \, a^4}$$

- Requires a measurement of flexural modulus E_f
 - Can obtain from three-point flexure testing of adherend material
- Requires a measurement of adherend thickness, h
- Requires a correction factor for crack tip rotation

$$G_c = \frac{3E_f t^2 h^3}{16 a^4} \left[\frac{1}{(1+0.64 \frac{h}{a})^4} \right]$$

 G_c = fracture toughness E_f = flexural modulus t = wedge thickness h = adherend thickness a = crack length

Calculation of G_c : Why Not Measure $E_f * I$?

 G_{c} written in terms of flexural modulus, E_{f}

$$G_c = \frac{3 \, E_f \, t^2 \, h^3}{16 \, a^4}$$

 G_{c} written in terms of flexural rigidity, E_{f}

$$G_c = \frac{9 \left(\mathbf{E}_f \mathbf{I} \right) t^2}{4 h a^4}$$

G_c = fracture toughnessE_f = flexural modulusI = area moment of inertia

t = wedge thickness

b = specimen width

a = crack length

Measuring flexural rigidity $E_f I...$

- Allows for direct slope measurement from load/displacement curve (P/δ)
- Eliminates need for adherend thickness measurement
- Possible elimination of correction factor

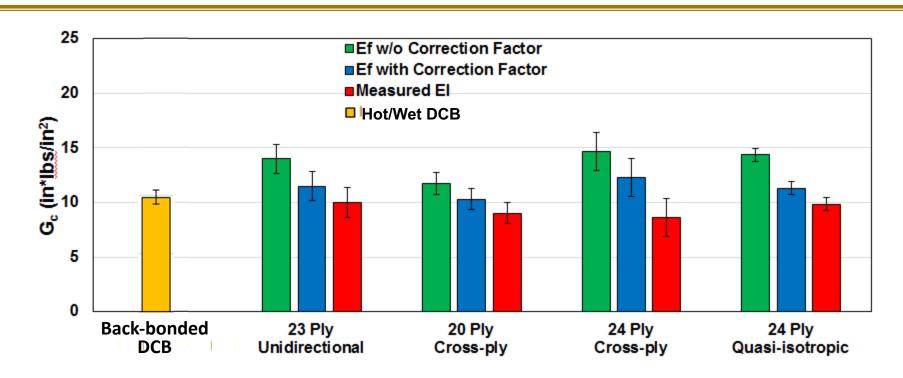
Use of In-Situ Flexural Rigidity From Composite Wedge Test Specimen

Measure E_f I directly using post-tested wedge specimen under DCB type loading:

$$\mathbf{E}_{f} I = \frac{2a^{3}}{3} \left(\frac{\Delta P}{\Delta \delta} \right)$$

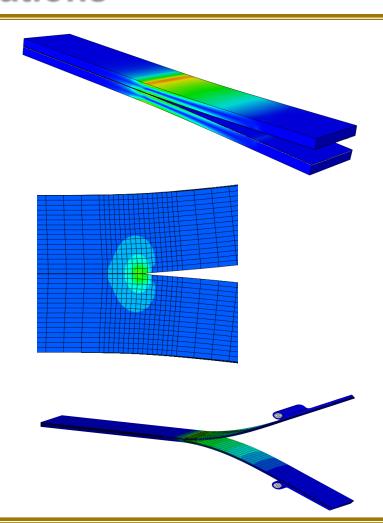
- Correction for crack tip rotation "built-in" to $E_f I$ measurement
- Express fracture toughness in terms of E_f I:

$$G_c = \frac{9(E_f I) t^2}{4b a^4}$$


G_c = fracture toughness
 E_f = flexural modulus
 I = area moment of inertia
 t = wedge thickness
 b = specimen width

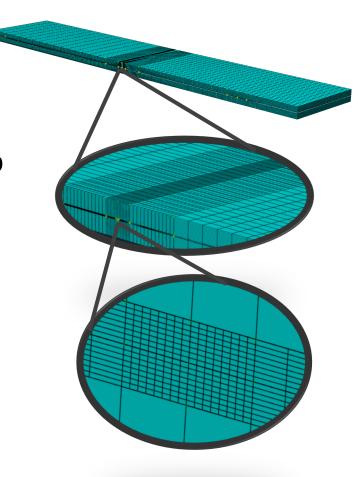
a = crack length

Comparison of Wedge Test and DCB Test Results: 50°C, 95% RH, 5 days

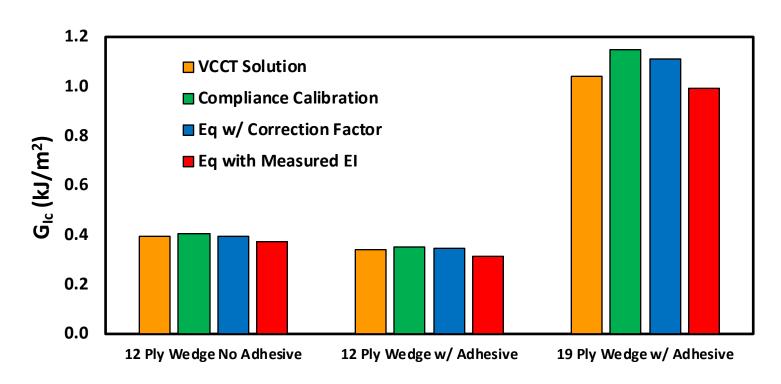

General agreement with both closed-form correction factor and measured E_f I approaches

Evaluation of G_c Calculation Methods: Numerical Simulations

- 3D finite element modeling of composite wedge test specimen
- Comparison with results for bonded composite DCB test methodology
- Evaluation of candidate G_c
 calculation methods for composite wedge test
- Determination of suitable range of adherend flexural rigidities (E_f * I)



Finite Element Modeling Methodology


- ABAQUS 3D finite element analysis
- Crack modeled at center of adhesive bondline (cohesion failure)
- Highly refined mesh in vicinity of crack tip
- Displacement loading to simulate wedge inserted in bondline
- Use of VCCT to calculate reference G_c
 values
- Parametric study to evaluate effects of adherend flexural rigidity and adhesive thickness

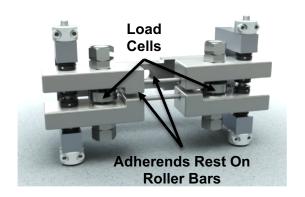
Preliminary Results: Comparison of Methods for G_c Determination:

$$G_c = \frac{3 Ef t^2 h^3}{16 a^4} \left[\frac{1}{(1+0.64 \frac{h}{a})^4} \right]$$

$$G_c = \frac{9(E_f I) t^2}{4b a^4}$$

Outline

- Updates:
 - Revision of metal wedge test method (ASTM D3762)
 - ASTM Adhesive Bonding Task Group D14.80.01
- Primary focus: Environmental durability test methods for composite bonded joints
 - Composite wedge test development
 - Comparison of results with other test methods
 - "Smart Wedge" traveling wedge test concept



What if the Wedge Could Measure Opening Force During Wedge Testing?

- Continuous opening-force measurement as wedge driven through specimen
 - Two compression load cells to measure opening force
 - Adherends supported by roller bars
- Monitor for drop in measured force
 - Increased crack length ahead of wedge
 - Reduced fracture toughness
- Similar to traveling wedge test,
 but with force-sensing "smart" wedge
- Retain wedge in specimen for environmental durability test

"Smart Wedge" Concept:

Fracture Toughness Measurement

• G_c written in terms of E_f I: $G_c = \frac{9(E_f I) t^2}{4 b a^4}$

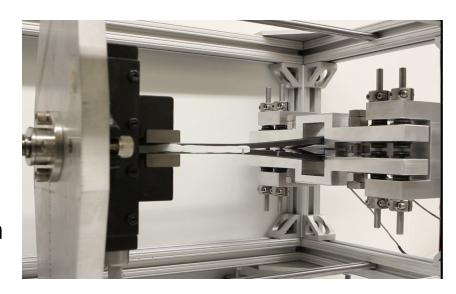
• From beam theory, solving for crack length,
$$oldsymbol{a}$$

$$G_c = \left[\frac{9 P^4 t^2}{4 b^3 (E_f I)}\right]^{1/3}$$

- Can calculate G_c knowing:
 - P (measured force)
 - t (wedge thickness)
 - Flexural rigidity, E_f I (measured)

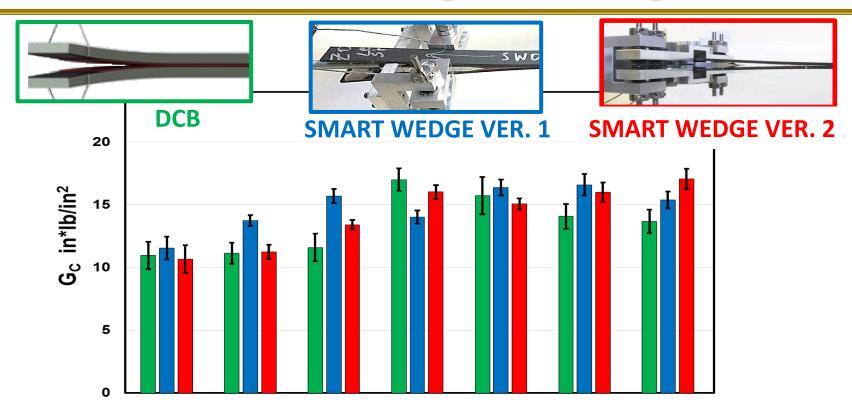
 $3 (E_f I) t$

Do not need crack length measurement!



Smart Wedge Testing: Envisioned "Hybrid" Procedure

- Install specimen into smart wedge, retract installation wedge
- Obtain initial force and crack length measurements, calculate flexural rigidity, E_f I
- Perform "traveling wedge" type testing, obtain real-time fracture toughness G_C estimates
- When desired, halt traveling wedge, reinsert wedge, and subject specimen to environmental exposure for durability assessment



Operation of Updated Prototype (6X Speed)

Preliminary Results: "Smart Wedge" Testing

- 3 tests performed on each bonded composite specimen
- Initial results appear promising

BENEFITS TO AVIATION

- Improved environmental durability test method for metal bonds (metal wedge test, ASTM D3762)
- Improved shear test method for adhesives (ASTM D5656)
- Composite wedge test for assessing the environmental durability of composite bonds and assessing surface preparations
- Hybrid traveling wedge/static wedge test for evaluation of larger bond areas
- Dissemination of research results through FAA technical reports and conference/journal publications

Thank you for your attention!

Questions?

Why Environmental Durability Tests of Composite Bonded Joints?

"There is currently no known mechanism similar to metal-bond hydration for composites"

- Ensure longer-term environmental durability of composite bonds
- Investigate effects of environmental exposure on performance of bonded composite joints
 - Failure mode: cohesion versus adhesion failure
 - Estimate fracture toughness reduction
- Evaluate effectiveness of surface preparation

