DAMAGE TOLERANCE & NOTCH SENSITIVITY OF COMPOSITE SANDWICH STRUCTURES

Dan Adams Martin Raming Marcus Stanfield Brad Kuramoto

Department of Mechanical Engineering University of Utah Salt Lake City, UT

AMTAS Autumn 2019 Meeting

Seattle, WA

A Center of Excellence A Center of Excellence Advanced Materials in Transport Aircraft Structures A part of the EAA Joint Advanced Materials & Structures November 5, 2019

FAA Sponsored Project Information

- Principal Investigators: Dr. Dan Adams Dr. Mike Czabaj
- Graduate Student Researchers:

Martin Raming

Marcus Stanfield

Brad Kuramoto

• FAA Technical Monitor: Dave Stanley

Primary Collaborators:

- Boeing (Charles Park)
- Hexcel (Lance Smith)
- ASTM Committee D30 on Composites

Project Overview: Primary Research Emphases

Sandwich Fracture Mechanics

- Development of standardized test methods for facesheet/core disbond growth
- Building block approach for assessment of disbond growth in sandwich structures

Sandwich Damage Tolerance

- Assessment of predictive capabilities for damage formation and growth
- Development of standardized test methods for damage tolerance

Sandwich Notch Sensitivity

- Assessment of predictive capabilities for sandwich composite notch sensitivity
- Development of standardized test methods for notch sensitivity

THE

UNIVERSITY

OF UTAH

Status Update:

Mode I Sandwich Fracture Mechanics Test Method

Standardization of Single Cantilever Beam (SCB) Test

- Completed three rounds of ASTM balloting; fourth upcoming
- Recent changes:
 - Mode mixity: "Mode I dominant"
 - Acceptable disbond location: within top one-fourth of core
 - Discussion of possible failure modes and their acceptability added

(1) Disbonding at face sheet/core interface

(3) Kinking of disbonding into the core

Failure modes 1 and 2 are acceptable Failure mode 3 is not acceptable

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Current SCB Discussion Item: Pausing Test for Crack Tip Measurement

- **Current procedure leads to long tests**
 - 5-30 minutes without initiation toughness measurements
 - 10-60 minutes with initiation toughness measurements
- **Accelerated loading rate requires** ulletpausing for crack length measurement
- Minimal effect on measured G_c ullet
- Minimal crack growth observed while • paused under load
- Modified procedure under review by ullet**Sandwich Disbond Task Group**

Recent Focus: Single Cantilever Beam (SCB) Fatigue Test

- Follow-on *Standard Practice* to existing SCB test
- Several previous individual efforts within CMH-17 Sandwich Disbond Task Group
- Draft test procedure identified for upcoming round robin testing

• Sandwich specimens to be fabricated at University of Utah and distributed to round robin participants

6

- IM7/8552 woven fabric prepreg facesheets
- Nomex honeycomb core
- Metlbond 1515-4 film adhesive

Recent Focus: Sandwich Mixed Mode Bend (MMB) Test

- Enlarged/simplified version of test fixture used for composite laminates (ASTM D6671)
- High percentage Mode II possible (up to ~80%)
- Round-robin testing exercise planned
- Draft ASTM standard in progress
- Collaboration with Technical University of Denmark (DTU, Dr. Christian Berggreen))

Prototype Test Fixture: Sandwich Mixed Mode Bend Test

- Accommodates 50 mm x 300 mm specimens used in SCB testing
- Adjustable loading span lengths
- Specimen connections at disbond using bonded hinge halves
- Adjustable position of loading yoke to produce desired mixedmode loading condition

High % Mode II

8

UNIVERSIT

OF UTAH

Status Update:

Mode II Separated End-Notched Flexure (S-ENF) Test

9

- Modified three-point flexure test
- Use of tensioned wire to achieve facesheet/core separation
- No core removal required
- Adjustable wire height and span
- High % Mode II (>80%) for all sandwich configurations studied
- Cell buckling at crack tip with no crack growth for some honeycomb core configurations
- Under further investigation with FAU collaborators (Dr. Leif Carlsson)

UNIVERSIT

OF UTAH

Recent Results: Sandwich ENF Test Results

Mode II Disbond growth, no core crushing

- Facesheet thickness; $t_f = 0.045$ in.
- Nomex Honeycomb core
 - 0.5 *in*. thick
 - $8 \ln/ft^3$ density
- Pre-cracked with SCB test method
- Area method used for calculation

Mode I and Mode II Fracture Toughness

Damage Tolerance Test Methods For Sandwich Composites

Edgewise Compression After Impact (SCAI)

- Preferred damage tolerance test method for laminates
- High interest level for sandwich composites
- Second balloting completed this summer 2019
- Updates in progress

Four-Point Flexure After Impact (4-FAI)

- Constant bending moment and zero shear in damaged section
- Damaged facesheet can be loaded in compression or tension
- Initial draft practice completed
- Initial ASTM ballot submission pending

11

Notch Sensitivity Test Methods For Sandwich Composites

Sandwich Open Hole Flexure

- Initial draft practice completed
- Ready for ASTM ballot submission

Standard Configuration

- Width: 3 in.
- Hole diameter : 0.5 in.
- Span: 24 in.

Sandwich Open Hole Compression

Initial draft standard in progress

Standard Configuration

- Width: 4 in.
- Height: 8 in.
- Hole Diameter: 0.67 in.

Sandwich Fracture Mechanics: Mode II and Mixed-Mode Testing Challenges

For sandwich composites with Nomex Honeycomb Core...

- Cell buckling near crack tip with no disbond growth
- Analytical and numerical models don't account for core constraint
- Effective core stiffness increase due to constraint effect

Core buckling in ENF test

Sandwich Fracture Mechanics: Open-Face Sandwich Specimen

- Facesheet only on bottom of flexure specimen
- Investigate response of core in disbond region and near crack tip
- Investigate constraint effects
- Validation of numerical models

Tabbed open-face sandwich specimen

Sandwich Fracture Mechanics: Modeling and Analysis Approach

Sandwich Fracture Mechanics: Discrete Modeling of Honeycomb Core

- Investigate constraint effects observed in experiments
- Extract effective modulus increase due to constraint effects in honeycomb core
- Validate homogenized core model
- Determine stress levels at which core failure/buckling occurs
- Predict mode-mixity using VCCT
 - Single Cantilever Beam test
 - Mixed Mode Bend test
 - End Notched Flexure test

Cell measurement using digital microscope

Discrete Modeling of Honeycomb Core: Initial Model Development

- Initial "bare core" tension testing
- Tuning of material properties using flatwise compression and flatwise shear testing
 - Validation testing

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Discrete Modeling of Honeycomb Core: Validation in Flexural Loading

- "Open-face" four point flexure testing (no upper facesheet)
- Constrained and unconstrained regions of core
- Discreet core model matches initial portion of test
- Used to develop homogenized core model in disbond region

Discrete Modeling of Honeycomb Core: Facesheet Constraint Effects

- Four-point flexure loading
- Use of nodal forces and displacements
- ts
- Calculation of effective modulus thru core thickness
- Unconstrained region matches "bare core" modulus

Development of Homogeneous Honeycomb Core Model

- Simplified model incorporating constraint effects in disbond regions
- Investigate mode mixity for disbond growth in test methods using VCCT (SCB, MMB, ENF)
- Calibrate interfacial cohesive elements for higher building block analysis of sandwich disbond

MMB test simulation with homogenous core model

Development of Homogenous Core Model: Facesheet Constraint Effects

- Core moduli values obtained from discrete core modeling
- Partitions created, different properties applied in thru-thickness regions
- No constraint effects in region of sandwich disbond

Summary

• Several sandwich composite test methods currently in the ASTM standardization process

(Fracture mechanics, damage tolerance, and notch sensitivity)

- Round-robin testing activities initiated to investigate three sandwich disbond test methods
- Investigating proper honeycomb core modeling in vicinity of sandwich disbonds with focus on use in building block approach
- Wrapping up assessment of predictive capabilities for sandwich composite notch sensitivity & damage tolerance

Thank you for your attention!

Questions?

A part of the FAA Joint Advanced Materials & Structures Center of Excellence