

Durability of adhesive bonded joints in aerospace structures

Lloyd V Smith Washington State University

Annual Meeting November 7, 2018

Durability of adhesive bonded joints in aerospace structures

- Principal Investigators & Researchers
 - Lloyd Smith
 - Preetam Mohapatra, Yi Chen, Michael Krause
- FAA Technical Monitor

– Ahmet Oztekin

Other FAA Personnel Involved

– Larry Ilcewicz

- Industry Participation
 - The Boeing Company: Will Grace, Peter VanVoast, Kay Blohowiak

Durability of bonded aircraft structure

- Motivation and Key Issues
 - Adhesive bonding is a key path towards reduced weight in aerospace structures.
 - Certification requirements for bonded structures are not well defined.
- Objective
 - Describe plastic adhesive response.
 - Develop time-dependent adhesive models.
- Approach
 - Experiments designed to clarify constitutive relations.
 - Develop FEA Models of adhesive bonds.
 - Compare models with experiments that are unlike constitutive tests.

Durability of adhesive bonded joints in aerospace structures

Plasticity : Hardening Rule: Challenges

Plasticity : Hardening Rule: in Shear

- Initial size : $\mathbf{M}_{o} = 2\tau_{A}$
- Kinematic: $\mathbf{V}_{\mathbf{k}} = \tau_B \tau_C = 2\tau_A$
- Isotropic: $\mathbf{Y}_{i} = \tau_{B} \tau_{E} = 2\tau_{B}$
- Combined: $2\tau_A < \mathbf{V}_c = (\tau_B \tau_D) < 2\tau_B$
- $\mathbf{k} = \frac{\tau_B + \tau_D}{2(\tau_B \tau_A)}$

Schematic presentation of cyclic shear loading

- tensile yield (n_{TY})
- tensile peak (n_{TP})
- compressive yield (n_{CY})
- compressive peak (n_{CP})

Size of yield surface at Nth cycle: $n_{TP} - n_{CY}$

Plasticity : Hardening Rule: Testing

Cyclic testing of scarf joint on an Instron to quantify adhesive hardening

Schematic locations of points tracked to calculate strain

$$\tau_{avg} = \frac{F\cos\theta}{A}$$

$$\gamma_{12} = \frac{dV'_{1-2} - \left(\frac{\tau_{avg}(D-t)}{G}\right)}{t}$$

Scarf fixture for tensioncompression testing and assembly

Plasticity : Hardening Rule: Quantification

What we found: kinematic behavior dominated hardening mechanism of tough adhesive.

Plasticity : Hardening Rule: Quantification

0.2% offset criterion used to determine yield point 80 ksi (isotropic) > 60 ksi (actual size) > 58 ksi (kinematic)

k = 91%

(91% kinematic & 9% isotropic)

What we found:

Standard adhesive demonstrated combined hardening

Plasticity: Yield Criterion: Challenges

Schematic yield surface in normal-normal stress state: Solid line = von Mises (typically used for metals) Dotted line = Drucker-Prager (typically used for rocks, concrete, soil) .

- Adhesive joints don't soften at yield in compression.
 - Consider normal-shear

Plasticity: Yield Criterion: Test Results

Plasticity: Yield Criterion: Test Results

What we found:

von Mises: generally best fit

Plasticity: Numerical Modeling: Tensile Input Properties

60

50

40

30

20

10

0

0

 $\sigma \left[MPa
ight]$

Schematic butt joint with dimensions, load applied in the X direction

Butt joint being tested on an Instron load frame

0.1

3

• Thin film Tension: Tough Adhesive

▲ Thin film Tension: Standard Adhesive

0.2

0.3

Plasticity: Numerical Modeling: Tensile Input Properties

Plasticity: Numerical Modeling: Shear Joints

Testing on Instron Standard

Standard To adhesive adl

Tough adhesive

FEA

FEA

Plasticity: Validation of Yield Criterion (lap shear coupon)

What we found: use of mixed mode lap-shear joint

- von Mises criterion better explains adhesive yielding
- Adhesive yielding is not sensitive to hydrostatic pressure.

Plasticity: Numerical Modeling: Validation of Hardening Rule

Plasticity: Numerical Modeling: Validation of Hardening Rule

Plasticity: Numerical Modeling: Validation of Hardening Rule

Plasticity : Summary

- Assuming plastic properties can lead to error in numerical modeling.
 - Little has been done to characterize adhesive plastic response
- Arcan fixture was effecting in creating uniform shear with minimal peel stress.
- Adhesives considered here followed von Mises yielding
 - > not influenced by hydrostatic pressure.
- Adhesives in this work tended to follow kinematic hardening
 - Isotropic hardening is commonly assumed
 - > Nonlinear kinematic hardening governed the tough adhesive behavior.
 - > Nonlinear combined hardening (90% kinematic) described standard adhesive.

Time dependence (viscoelasticity/viscoplasticity) Background

- The time-dependent behavior of adhesives is important for durability
- Little work has been done on adhesive ratcheting effects
- Shear response tends to be more important than normal stress
 Objectives

The final objective is to build a shear viscoelastic modeling on bonded joints for ratcheting

- FEA viscoelastic model of bulk adhesives under cyclic normal stress (07/31/2019)
- FEA viscoelastic model of <u>bonded joints</u> under shear (12/31/2020)

Measuring Adhesive Strain in Bonded Joints

Rosette Strain Gages

- Divide each strain component by 0.13
 - Fraction of the gage covering the adhesive
 - Strain in adherend was 2% of the adhesive and neglected

• $\gamma = 2\varepsilon_2 - \varepsilon_1 - \varepsilon_3$

Strain Gages Covering Adhesive

10000 Cycle Ratchet Test

EA9696 Scarf Joint

Approach: Time dependence (viscoelasticity/viscoplasticity)

Comparisons of viscoelastic analytical/ numerical models

	Model	Calibration	Disadvantages
Triple Integral Nonlinear (TIN)	Extended Boltzmann superposition integral, nonlinear	From creep tests under load of 20%, 50% and 80% UTS, general	Numerically unstable; Significant time cost.
Specific Linear Model (SLM)	Boltzmann Superposition integral, single term	From creep tests under load of 20%, 50% and 80% UTS, tailored	Linear.
Prony	Linear viscoelastic model in ABAQUS, summation	From creep tests under load of 20%, 50% and 80% UTS, tailored	Linear; No permanent strain for recovery stage.
Parallel Rheological Framework (PRF)	Nonlinear viscoelastic model in ABAQUS	From long term creep test data under load of 50% and 80% UTS, general	Cannot describe the response to different percent UTS simultaneously.

Approach: Time dependence (viscoelasticity/viscoplasticity)

Modeling on Bulk resin

EA9696 Creep

PRF

- The <u>viscous</u> part in PRF model: $\dot{\varepsilon}^{cr} = \{A\tilde{q}^n[(m+1)\varepsilon^{cr}]^m\}_{m+1}^{\frac{1}{m+1}}$
- Taking the log of both sides we have: $\ln \dot{\varepsilon}^{cr} = \ln a + \frac{m}{m+1} \ln \varepsilon^{cr}$,
- But, experiment is only linear at 80% UTS

- Log of *a* and \tilde{q} should also be linear
 - But they are not experimental
- Therefore, PRF is not well suited for EA9696

Approach: Time dependence (viscoelasticity/viscoplasticity)

Modeling on Bulk resin

Summary & Future Work

- 80% UTS has large experimental variation in creep and cyclic stress
- PRF FEA model cannot describe strain response from applied creep and cyclic stress
- Damage from cyclic stress appears to depend on both stress magnitude and rate, but could be due to batch differences

- Perform additional tests at 80% UTS
 - Creep, 1 ks and 10 ks
 - ➤ Cyclic tests, R=0.1, 0.025 5 Hz.

Summary & Future Work

> Another non linear model (NPL)

 $D(t) = D_0 e^{\left(\frac{t}{t_0}\right)^m}$, where $t_0 = A e^{-\alpha \sigma^2}$

Next step is to input it as a User Subroutine into ABAQUS PRF model.

Enable plasticity in PRF model

