NOTCH SENSITIVITY OF COMPOSITE SANDWICH STRUCTURES

Dan Adams Marcus Stanfield Brad Kuramoto Martin Raming Department of Mechanical Engineering University of Utah Salt Lake City, UT

AMTAS Autumn 2018 Meeting VA November 7, 2018

UNIVERSI

OF UTAH

Seattle, WA

A Center of Excellence Advanced Materials in Transport Aircraft Structures

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

FAA Sponsored Project Information

- Principal Investigators: Dr. Dan Adams
 Dr. Mike Czabaj
- Graduate Student Researchers:

Marcus Stanfield

Brad Kuramoto

Martin Raming

- FAA Technical Monitor: Zhi-Ming Chen
- Collaborators:

Materials Sciences Corporation Boeing (Charles Park)

ASTM D30 (Composites)

Status Update:

Mode I Sandwich Fracture Mechanics Test Method

- Recently completed second round of ASTM balloting (September 2018) at D30.09 (sandwich) and D30 (main) levels
- Ballot negatives and comments currently being addressed
- Will reballot in January 2019 prior to next ASTM D30 meeting in March 2019 (SLC, UT)

Status Update:

Additional Sandwich Disbond Related Activities

- Mode I Single Cantilever Beam Fatigue Test
 - New initiative for 2019
 - Focus on development of ASTM standard practice
- Mode II Separated End Notched Flexure Test
 - Evaluation by working group members
- Sandwich Mixed Mode Bend (MMB) Test
 - Evaluation by working group members
- Sandwich Disbond Building Block Approach and Numerical Analysis Round Robin
 - Working group focus for 2019

Status Update: Sandwich Damage Tolerance

- Draft standard of Sandwich composite Compression After Impact (SCAI) competed
 - Balloted Spring 2018 ASTM D30 meeting
 - Updates to address negative votes in work
- Draft practice of 4-Point Flexure After Impact (4-FAI) in progress

5

Research Objectives: Notch Sensitivity of Sandwich Composites

- Initial development of notched test methods and associated analysis methodologies for composite sandwich panels
- Documentation notched testing and analysis protocols in Composites Materials Handbook (CMH-17)
- Explore development of new ASTM standards for notch sensitivity of sandwich composites

Sandwich Open Hole A Center of Excellence Compression Advanced Materials in Transport Aircraft Structures

Sandwich Open Hole Flexure

6

Sandwich Open Hole Shear

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Testing Considerations: Sandwich Open Hole Compression

- Test fixture/Specimen support
 - End supports
 - Clamping top and bottom
 - Potting
 - Side supports
 - Knife edge
- Specimen size
 - Separation of central hole and boundary effects
 - Production of acceptable strength reductions
- Strain measurement
- Specimen alignment

Open hole compression fixture for monolithic composites

Previous Work: Specimen Size

8

- Hole Diameter (W/D)
 - Legacy: W/D = 6
 - Acceptable strength reduction
 - Minimal finite width effects
- Aspect Ratio (H/W)
 - H/W = 2
 - Acceptable strength reduction
- Standard Configuration
 - Width: 4 in.
 - Height: 8 in.
 - Hole Diameter: 0.67 in.

THE

UNIVERSITY

OF UTAH

Testing Considerations: Sandwich Open Hole Flexure

9

- Test fixture/specimen support
 - Inner span
 - Separation of notch and loading boundary effects
 - Outer span
 - Develop sufficient bending moment
 - Ensure failure in inner span
- Required specimen width
 - Separation of central hole and specimen edges
 - Production of acceptable strength reduction

Previous Work: Specimen Size

- Standard configuration
 - Specimen width W = 3 in.
 - Hole diameter D = 0.5 in.
 - Inner span L = 4 in.
 - Outer span sized to ensure inner span failure
- No inner span aspect ratio sensitivity (L/W)
 - Inner span can be increased for measurement purposes

Testing Considerations: Sandwich Open Hole Shear

11

- Test fixture/specimen support
 - Span
 - Locate notch to ensure shear failure in core at notch
- Required specimen width
 - Separation of central hole and specimen edges
 - Production of acceptable strength reduction

Previous Work: Specimen Size

- Standard configuration
 - Specimen width W = 3 in.
 - Hole diameter D = 0.5 in.
 - Span L = 6 in.
 - Notch located at quarter points
- No significant notch effect
- Net section failure
- Similar behavior between ribbon and transverse directions

Analysis of Notched Sandwich Specimens ABAQUS with NDBILIN:

- User-defined nonlinear material model (UMAT) for ABAQUS
- Developed by Materials Sciences Corp.
- Stiffness degradation based progressive damage model
 - Bilinear stiffness response used to model material damaged state
 - "Built in" laminated plate theory for elements
 - Lamina level stiffness degradation
 - Max. stress, max. strain or Hashin failure criteria for damage onset

Analysis of Notched Sandwich Specimens B-Spline Method (BSAM):

14

- Stand-alone software
- Developed by AFRL, UDRI, UTA
- Discrete damage modeled using Regularized Extended Finite Element Method (Rx-FEM)
 - Matrix Cracking
 - Multiple failure criteria for damage onset
 - Damage propagation using cohesive zone method
 - Delamination using cohesive zone method
 - Fiber failure using Critical Failure
 Volume or CDM

Failure Analysis of Notched Sandwich Specimens Development of Modeling Approach

15

- Modeling of damage progression in facesheets
 - Interlaminar disbond (Mode I and II)
 - Laminate tension (+/-45 layup)
 - Open-hole tension
 - Open-hole compression
- Modeling of damage progression in core
 - Flatwise compression
 - Flatwise shear
- Modeling of damage progression in sandwich composites
 - Sandwich interface disbond (Mode I and II)
 - Sandwich open-hole shear
 - Sandwich open-hole flexure
 - Sandwich open-hole compression

THE

UNIVERSITY

OF UTAH

Damage Progression in Facesheets: Analysis of Delamination

Damage Progression in Facesheets: Analysis of +/-45 Laminates

- Simulation of un-notched and open-hole tension testing
- IM7/8552 carbon/epoxy, [45/-45]₂₈ laminates

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

• Matrix shear modulus, strength and damage parameters calibrated using measured stress-strain behavior

Damage Progression in Facesheets: Laminate +/-45 layup Open-Hole Tension

- NDBILIN does not predict when failure occurs
- BSAM failure strain is sensitive to intralaminar shear strain energy release rate (GIIc)

Damage Progression in Facesheets: BSAM +/-45 Open-Hole Tension

Damage Progression in Facesheets: Cross ply Open-Hole Tension

- Facesheet layup orientation
 - $[0/90/0]_{T}$
- NDBILIN predicts notch sensitivity
- BSAM predicts notch insensitive (<4% difference)
- BSAM requires fine mesh for a close to converged solution

Damage Progression in Facesheets: Open-Hole Compression

- Scaled facesheet layup orientation
 - $[0_5/90_5/0_5]_T$
 - $[0/90/0]_{5T}$

Normalized Strength

1.4 1.2 1

0.8 0.6 0.4 0.2 0

 NDBILIN predicts similar damage progression and failure loads

Open Hole Compression

Stacking Sequence

FEM

[0/90/0]5T

Experiment

Ι

[05/905/05]T

Damage Progression in Core: Flatwise Compression/Shear

- Honeycomb core loaded until total core collapse in both compression and shear
- NDBILIN parameters fit to material curves

Flatwise Shear Test

0.25

TΗ

UNIVERSITY

OF UTAH

Damage Progression in Sandwich Composites: Analysis of Interfacial Disbond

- Calibration of interfacial cohesive zone
 - Mode I Sandwich SCB

Single Cantilever Beam Test

Single Cantilever Model Displacements

Load vs Displacement Data

Damage Progression in Sandwich Composites: Mode II and Mixed-Mode

- Calibration of interfacial cohesive elements
 - New failure mode: core cell walls buckle at crack tip, no crack growth
 - Analytical and numerical models do not account for constraint effect on honeycomb core

Mode II Sandwich ENF Test

Sandwich Mixed Mode Bend Test

Core Constraint Effect: Discrete Core Model in Flexure

Homogeneous Core: Current Focus

- Discretized Homogeneous Core
 - Thickness and free-edge effects
 - Discretize and apply unique material properties and failure parameters
 - Incorporate into sandwich disbond models

Damage Progression in Sandwich Composites: Analysis of Sandwich Open-Hole Shear Tests

- Core modeled with NDBILIN
- Slight over prediction of max load
- Reload Captured

Sandwich Open-Hole Shear Failure

Advanced Materials in

Transport Aircraft Structures

Damage Progression in Sandwich Composites: Analysis of Sandwich Open-Hole Flexure Tests

- 90% load X-ray CT shows minimal damage progression
- Model over predicting damage and under predicting failure load

Compression Strength Comparison

DIC Strain

28

X-Ray CT (Courtesy of Southwest Research Institute)

NDBILIN Damage Prediction

A Center of Excellence

Damage Progression in Sandwich Composites: Analysis of Sandwich Open-Hole Compression Tests

- Out-of-plane displacements observed in DIC measurements
- First mode facesheet buckling observed
- Global buckling due to failure on Non-DIC facesheet
- Deformation caused by post failure eccentric loading

Upcoming Work:

Notch Sensitivity of Composite Sandwich Structures

- Develop sizing guidelines for proposed notch sensitivity testing methods
- Assess discrete damage models for remainder of calibration/validation building block approach
- Continue working toward homogeneous core for incorporation into Sandwich Mode II & MMB
- Incorporate initial damage from hole drill process on Sandwich Open-hole Compression

Thank you for your attention!

Questions?

