

(A portion of the study titled "Effects of Moisture Diffusion in Sandwich Composites")

> Hrishikesh ('Rishi') Pathak and Mark Tuttle Department of Mechanical Engineering University of Washington

2018 Fall AMTAS Meeting UW Center for Urban Horticulture

Motivation and Key Issues:

In-service bond failures between composite facesheets and honeycomb cores in sandwich structures have been reported:

Boeing 747 upper skin disbonds

approx. 24" x 60" upper skin disbond Airbus A-310 Rudder Failure

Motivation and Key Issues:

- Core-to-skin disbond initiation and growth are thought to occur due to combination of factors:
 - Water ingression into core volume, followed by freezethaw cycles....water ingression may occur due to:
 - Wicking of liquidous water through facesheet microcracks, along fiber/matrix interfaces, and/or through improper design of edge closeouts
 - Diffusion of water *molecules* through (otherwise undamaged) facesheets, resulting in increased core humidity levels
 - Pressure differences between inside and outside of unvented honeycomb cores (Ground-Air-Ground or 'GAG' pressure cycles)

Motivation and Key Issues:

- Core-to-skin disbond initiation and growth are thought to occur due to combination of factors:
 - Water ingression into core volume, followed by freezethaw cycles....water ingression may occur due to:
 - Wicking of liquidous water through facesheet microcracks, along fiber/matrix interfaces, and/or through improper design of edge closeouts
 - Diffusion of water *molecules* through (otherwise undamaged) facesheets, resulting in increased core humidity levels
 - Pressure differences between inside and outside of unvented honeycomb cores (Ground-Air-Ground or 'GAG' pressure cycles)

- Principal Investigator
 - Mark Tuttle
- Students
 - <u>Current</u>: Rohith Jayaram
 - <u>Past Participants</u>: Hrishikesh ("Rishi") Pathak, Anirudh Ashok, Andrew King, Ritika Singh, Karen Harban, Balakumaran ("Bala") Gopalarethinam, Will Smoot, Sun Lin "Jason" Tien, Shuyu "Frank" Xia
- FAA Technical Monitor
 - Lynn Pham, Zhi-Ming Chen
- Industry Participation
 - Bill Avery, Hamid Razi, and Adam Sawicki/The Boeing Company
 - Dan Holley and Chris Praggastis/3M
 - Bob Fagerlund/Bell Helicopter
 - Kevin Marshall/Hexcel Corporation
 - Shreeram Raj/Solvay Composites
- Study Initiated in September 2015

• Task 1: Measure humidity increase in sandwich core volume due to diffusion and compare with FE predictions

Increase in RH% for panel with 8-ply facesheet caused by exposure to 65°C and 90%RH (B. Gopalarethinam and M. Tuttle, ASC Conf, Seattle, Sept 2018)

• Task 2: Measure critical strain energy release rate (*G_c*) using SCB specimens subjected to elevated humidity and thermal cycling

96 SCB tests performed using various facesheet/core combinations, all at room temperature (Rishi Pathak, Anirudh Ashok, Andrew King, Ritika Singh, Karen Harban, Shuyu "Frank" Xia)

 Task 3: Develop an experimental setup to simulate ground-air-ground (GAG) pressure cycles, which can be used to study delamination growth due to pressure cycles in the lab

- External Pressure decreases from 14.7 psi at ground level to 2 psi at cruise altitude (~36000ft)
- External Pressure increases from 2 psi to 14.7 psi during descent of aircraft.
- Pressure difference between inside and outside of unvented sandwich structures
 - Caused by alternating changes in external pressure and temperature
 - Results in significant deformations and core volume increase

Initial configuration at ground elevation

Deformed configuration at cruising altitude

Chen, Z. M., R. Krueger, and M. Rinker. 2015. "Face Sheet/Core Disbond Growth in Honeycomb Sandwich Panels Subjected to Ground-Air-Ground Pressurization and In-Plane Loading," presented at the National Agency for Finite Element Methods and Standards World Congress 2015, June 21-June 24, 2015.

GAG Specimens

• GAG Specimens

Vacuum Box

- Modifications of test setup as experience gained:
 - Increased thickness of transparent plexiglass plate from 0.5 in to 2 in, to minimize optical distortions due to plate deflection

- Modifications of test setup as experience gained:
 - Increased thickness of transparent plexiglass plate from 0.5 in to 2 in, to minimize optical distortions due to plate deflection
 - Added Nomex fitting to GAG specimen aluminum frame, to eliminate pressure loss from core volume

- Modifications of test setup as experience gained:
 - Increased thickness of transparent plexiglass plate from 0.5 in to 2 in, to minimize optical distortions due to plate deflection
 - Added Nomex fitting to GAG specimen aluminum frame, to eliminate pressure loss from core volume
 - Adjusted camera angles used in 3D DIC measurements to improve
 - accuracies

- Modifications of test setup as experience gained:
 - Increased thickness of transparent plexiglass plate from 0.5 in to 2 in, to minimize optical distortions due to plate deflection
 - Added Nomex fitting to GAG specimen aluminum frame, to eliminate pressure loss from core volume
 - Adjusted camera angles used in 3D DIC measurements to improve accuracies
 - Increased thickness of backside (non-delaminated) facesheet, such that distortions due to pressure differential occurs primarily on delaminated side

Facesheet/core combinations tested to date:

Component	Description	Product Designation
Facesheet Panels	Carbon/Epoxy plane woven prepreg	
	Three-ply: [0/45/0] _T	panels T300/970 3k PW
	Four-ply: [0/90] _S	
	Eight-ply: [0/45/90/45] _s	
Core Material	Nomex 48 kg/m ³ honeycomb core, 25.4 mm thick (3 lb/ft ³ ; 1.0 in thick)	Hexcel HRH-10-3-1inch
Adhesive	Thin film adhesive	3M Scotch-Weld AF 163- 2k

Typical Measurements for Panel w/3-ply facesheets

External pressure = 14.7 psi Core pressure = 14.7 psi

External pressure = 8.5 psi Core pressure = 14.56 psi

External pressure = 14 psi Core pressure = 14.65 psi

External pressure = 4.3 psi Core pressure = 14.50 psi

External pressure = 10.2 psi Core pressure = 14.61 psi

External pressure = 2 psi Core pressure = 14.45 psi

3 Plies Facesheet GAG Specimen – [0/45/0]_T: (1st Run)

Before starting the vacuum pump Pressure in Vacuum Box = 14.67 psi Pressure in specimen core = 14.68 psi After pressurization Pressure in Vacuum Box = 1.99 psi Pressure in specimen core = 14.44 psi Max W(mm) = 2.318mm After depressurization Pressure in Vacuum Box = 14.66 psi Pressure in specimen core = 14.65 psi

3 Plies Facesheet GAG Specimen – [0/45/0]_T: (1st Run to 50th Run)

4 Plies Facesheet GAG Specimen – [0/90]_s: (1st Run)

Before starting the vacuum pump Pressure in Vacuum Box = 14.67 psi Pressure in specimen core = 14.69 psi After pressurization Pressure in Vacuum Box = 2.01 psi Pressure in specimen core = 14.51 psi Max W(mm) = 1.402mm After depressurization Pressure in Vacuum Box = 14.66 psi Pressure in specimen core = 14.67 psi

4 Plies Facesheet GAG Specimen – [0/90]_s: (1st Run to 50th Run)

Cycle	Out-of-Plane	
	Displacement "W(mm)"	
1 st cycle	1.40211	
10 th cycle	1.40727	
20 th cycle	1.38378	
30 th cycle	1.3966	
40 th cycle	1.39539	
50 th cycle	1.41601	/
		_

8 Plies Facesheet GAG Specimen – [0/45/90/45]_s: (1st Run)

Before starting the vacuum pump Pressure in Vacuum Box = 14.68 psi Pressure in specimen core = 14.69 psi After pressurization Pressure in Vacuum Box = 1.98 psi Pressure in specimen core = 14.57 psi Max W(mm) = 0.427mm After depressurization

Pressure in Vacuum Box = 14.66 psi Pressure in specimen core = 14.68 psi

8 Plies Facesheet GAG Specimen – [0/45/90/45]_s: (1st Run to 50th Run)

Comparison of 3 plies, 4 plies and 8 plies facesheet

Laboratory Simulation of Ground-Air-Ground Pressurization of Sandwich Panels Summary of Current Status

- Ground-Air-Ground pressurization has been successfully replicated in the lab; specimens were subjected to external pressures decreasing from 14.7 psi to 2 psi and subsequently increased back to 14.7 psi.
- As expected, out-of-plane displacements due to pressure differentials decrease as facesheet thickness is increased
- Preliminary fatigue tests performed "manually" for 50 cycles...slight increases in displacement observed after ~ 40 cycles

Laboratory Simulation of Ground-Air-Ground Pressurization of Sandwich Panels Work Planned for 2018-19

- Modify pressure system to allow automated GAG cycles.
 - Conduct experiments for higher number of cycles/runs (e.g., 10k cycles)
 - Conduct experiments using different combinations of core densities and facesheet thickness.
- Introduce thermal chamber to allow tests at -50°C
- Perform FEA modeling

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Laboratory Simulation of Ground-Air-Ground Pressurization of Sandwich Panels

Thank You!

Questions, Comments, Suggestions?