

Development of Environmental Durability Test Methods for Composite Bonded Joints

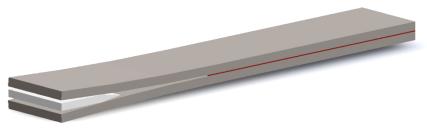
Heather McCartin Dan Adams University of Utah

AMTAS Autumn 2017 Meeting November 8, 2017

FAA Sponsored Project Information

- Principal Investigators:
 - Dr. Dan Adams
 - Graduate Student Researchers:
 - **Heather McCartin**
 - **Zachary Sievert**
- FAA Technical Monitor:
 - Ahmet Oztekin
- Collaborators:

Boeing: Kay Blohowiak, Will Grace, Charles Park Air Force Research Laboratory: Jim Mazza


Overview:

Development of a Composite Wedge Test

- Variable flexural rigidity (E_f*I) of composite adherends
- Environmental crack growth dependent on adherend flexural rigidity
 - Flexural rigidity must be within an acceptable range or...
 - Must tailor wedge thickness for composite adherends
 - or...

•

- Must use another quantity to assess durability
- Restrictions in fiber orientation adjacent to bonded interface
- Failure in the composite laminate prior to failure in the adhesive or at the bondline

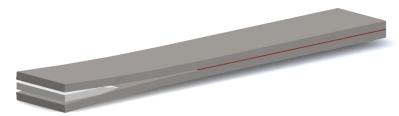
3

Use of Fracture Toughness, G_c To Assess Environmental Durability

Consider composite adherends as cantilever beams

- Measured values of crack length, a
- Known value of beam deflection, δ

 $\delta = t/2$ (half of wedge thickness)


Tip deflection of a cantilever beam:

$$\boldsymbol{P} = \frac{E_f b h^3 t}{8 a^3}$$

Strain energy due to bending: $U = \frac{1}{2}P \delta$

Strain energy release rate: $G_c = \frac{dU}{dA}$

$$G_{c} = \frac{3 E_{f} t^{2} h^{3}}{16 a^{4}} \left[\frac{1}{(1+0.64 \frac{h}{a})^{4}} \right]$$

$$\delta = \frac{t}{2} = \frac{P l^3}{3 E_f I}$$

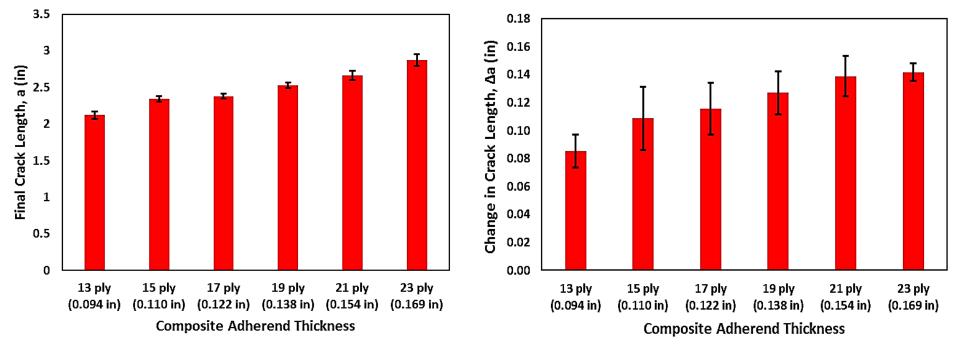
a = crack length

- t = wedge thickness
- h = adherend thickness
- b = specimen width
- T = load to deflect tip of beam
- E_f = flexural modulus

G_c = fracture toughness

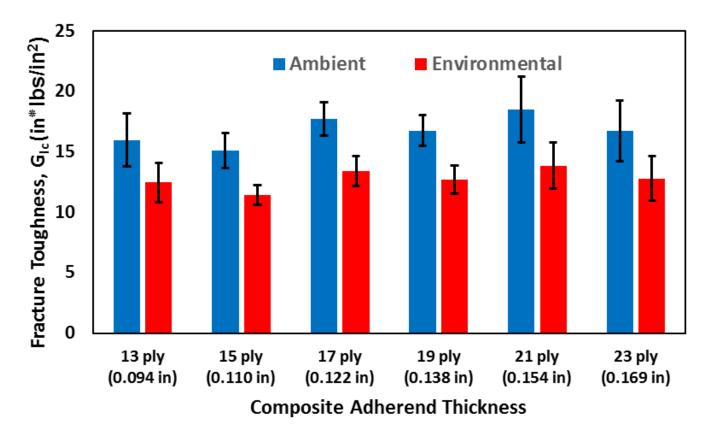
Correction factor for crack tip rotation

Experimental Investigation: Composite Wedge Test Development


- Unidirectional IM7/8552 carbon/epoxy adherends
- AF163-2K film adhesive
- "Ideal Bond": Grit-blast & acetone wipe bond surfaces
- Multiple adherend thicknesses to produce different flexural rigidities (E_f * I)
 - 13, 15, 17, 19, 21, 23 ply thicknesses
 - (0.10 to 0.17 in thick adherends)
- 122°F (50°C) and 95% humidity environment for 5 days

Effects of Composite Adherend Thickness: Crack Length and Growth Measurements

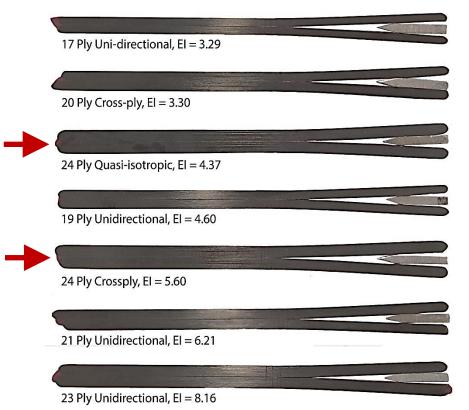
122°F (50°C) and 95% humidity environment



Increasing adherend thickness (and flexural stiffness)...

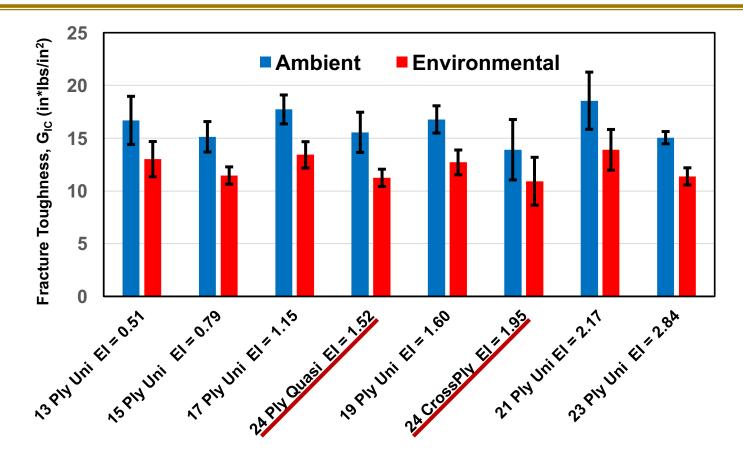
- Increases crack length, a
- Increases crack growth, Δa

Effects of Composite Adherend Thickness: Fracture Toughness Values



- Apparent facture toughness values remain relatively constant
- Provides estimate of fracture toughness at ambient conditions

Composite Wedge Test Development: Testing of Multidirectional Laminates


- Use of cross-ply and quasi-isotropic laminates
- Adherend thicknesses selected to fall within range of flexural rigidities (E_f*I) for unidirectional laminates
- Same adhesive and surface preparation conditions as for unidirectional laminates

8

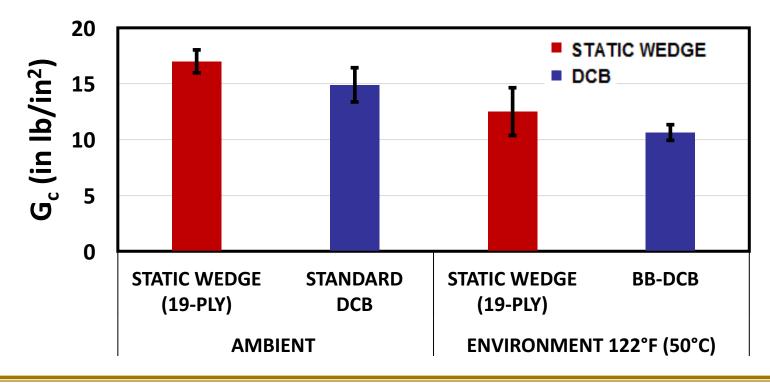
Wedge Testing of Multidirectional Laminates: Fracture Toughness Values

G_c values from quasi-isotropic and crossply laminates consistent with previous unidrectional laminates

Composite Wedge Test Development: Comparisons With DCB Test

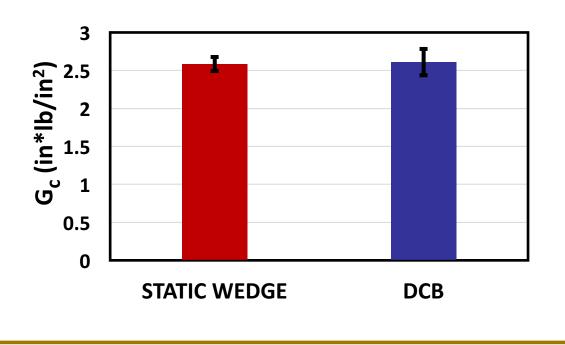
- Comparison of G_c values
 - Wedge test: Gc calculated based on crack length
 - DCB: Gc calculated following ASTM D5528
- IM7/8552 carbon/epoxy unidirectional laminates
- Two test environments
 - Room temperature/ambient
 - 122°F (50°C) and 95% humidity
- Two "bond" conditions
 - AF163-2K film adhesive
 - 8552 epoxy (no adhesive)

Composite Wedge Test



Double Cantilever Beam (DCB) Test

Wedge Test vs. DCB Test: Bonded Composite Specimens


- General agreement in testing to date between DCB and static wedge tests
- Further testing to be performed

Wedge Test vs. DCB Test: Composite Specimens – No Adhesive

- Results at RT/Ambient conditions
- Similar appearance on fracture surfaces

Double Cantilever Beam (DCB) Specimen

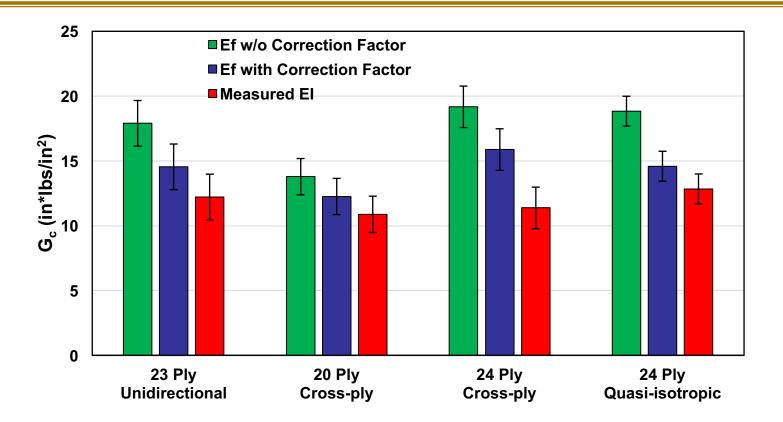
Rather Than Measuring E_f of the Composite Adherends... Why Not Measure E_f * I ?

• Express fracture toughness written in terms of E_f I:

$$G_c = \frac{9(\boldsymbol{E_f}\boldsymbol{I}) t^2}{4b a^4}$$

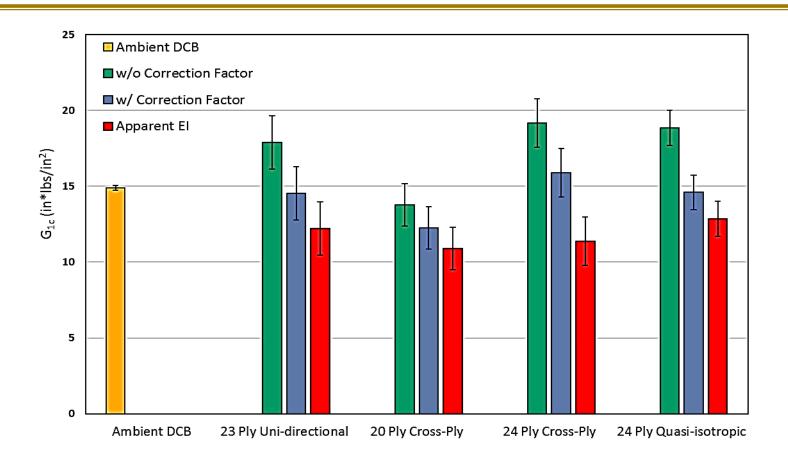
 Measure E_f I directly using post-tested wedge specimen under DCB type loading

$$\boldsymbol{E_f I} = \frac{2L^3}{3} \left(\frac{\Delta P}{\Delta \delta} \right)$$


Correction for crack tip rotation
"built-in" to in-situ E_f I measurement

L = beam span (crack length)

- **P** = applied force
- δ = crosshead displacement
- *t* = wedge thickness
- *E*_f = flexural modulus
- *I* = moment of inertia


Comparison of Methods for G_c Determination: RT/Ambient Conditions

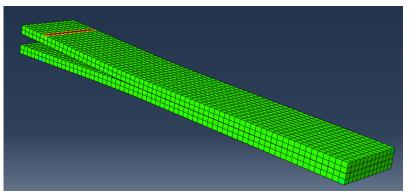
- Reduced values of Gc using E_f*I from DCB loading
- Which method is most accurate?

Comparison of Wedge Test and DCB Test Results: RT/Ambient Conditions

Gc values using correction factor (blue) and with measured E_f^*I (red) in general agreement with DCB data

THE **15** UNIVERSITY OF UTAH

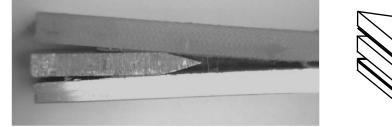
Current Focus:

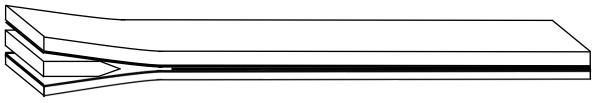

Numerical Simulation To Investigate Correction Factor

- Composite adherends with adhesive layer
- Prescribe displacement and crack length simulating wedge loading
- Determining the effective flexural rigidity using beam theory

$$\delta = \frac{t_{wedge}}{2} = \frac{P l^3}{3 (E_f I)_{effective}}$$

- Comparison of input value of $E_f I$ and calculated $(E_f I)_{effective}$ provides correction factor
- Comparison with closed-form correction factor:


$$G_{c} = \frac{3 Ef t^{2} h^{3}}{16 a^{4}} \left[\frac{1}{(1+0.64 \frac{h}{a})^{4}} \right]$$

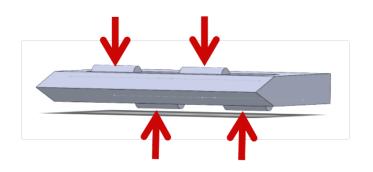


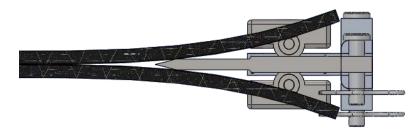
Current Focus:

Investigating Wedge Testing of Hybrid Specimens

 Assessing environmental durability of bonded joints using dissimilar adherend materials, different adherend thicknesses

- Require that E_f * I of two adherends be the same
- Currently investigating carbon/epoxy to glass/epoxy and carbon/epoxy to carbon/epoxy with dissimilar layup bonded specimens

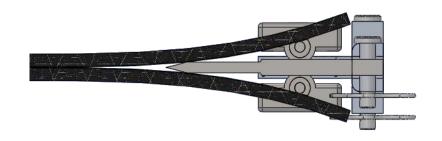


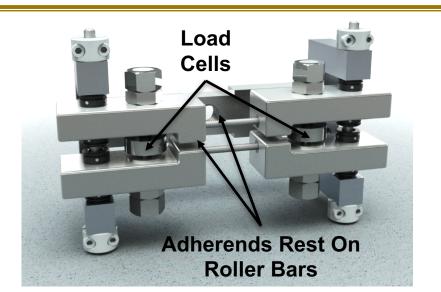

"Smart Wedge" Concept:

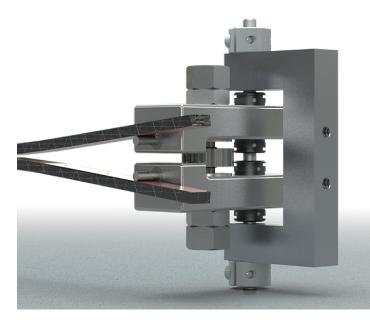
What if Wedge Measured Opening Force During Testing?

- G_c written in terms of E_f I: $G_c = \frac{9(E_f I) t^2}{4 b a^4}$
- From beam theory, solving for crack length, *a*
- Can calculate G_c knowing:
 - P (measured force)
 - δ (wedge thickness)
 - Flexural rigidity, E_f I (measured)

Do not need crack length measurement!

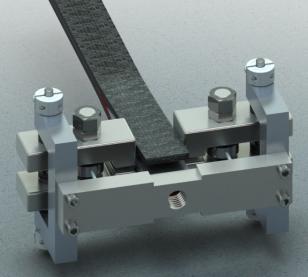

18


 $3 EfI \delta$


3

"Smart Wedge" Concept

- Two compression load cells to measure opening force
- Adherends supported by roller bars
- Linear bearings allow for vertical displacement
- Wedge driven through bondline or held in place

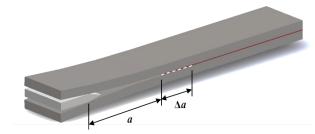


Smart Wedge Testing: Proposed Procedure


- Open specimen using oversized installation wedge
- Fit smart wedge onto specimen, remove installation wedge
- Take initial load reading and measure crack length (calculate Ef I)
- Calculate Gc while driving wedge through specimen
- Hold smart wedge in place during environmental exposure for durability assessment

Update: ASTM D3762 Metal Wedge Test Revision

- Major revision of ASTM standard completed
- Distributed to Boeing and AFRL collaborators for comprehensive review


 To be submitted for ASTM subcommittee D14.80 balloting in January

ASTM D3762 Metal Wedge Test Revision: Measurement of Percent Cohesion Failure

- Included as part of acceptance criteria
- Examine region (Δa) of crack extension under environmental exposure
- Estimate percent cohesion failure on adherends
- Recommended procedure: rectangular "grid method"
- Will require a round-robin investigation to evaluate written procedure

Thank you for your attention!

Questions?

