

Failure of Notched Laminates Under Out-of-Plane Bending.

Fall 2017 Meeting Taylor Rawlings, Kevin Carpenter, Tim McKinley, & John P. Parmigiani, Oregon State University

Failure of Notched Laminates Under Out-of-Plane Bending.

Motivation and Key Issues

Evaluate and develop progressive-damage analysis techniques useful in design of carbon fiber laminate aircraft structures

- Objective
 - Determine failure modes and evaluate capabilities of current models to predict failure.
 - Currently investigating damage initiation and propagation for
 - Matrix compression (concluding in 2017-18)
 - Fiber tension (beginning in 2017-18)

Approach

Conduct experiments to characterize fundamental material behavior, create corresponding finite element models simulating this behavior, and compare to currently-used techniques.

Failure of Notched Laminates Under Out-of-Plane Bending.

- Principal Investigators & Researchers
 - John Parmigiani (PI); OSU faculty
 - T. Rawlings, K. Carpenter, T. McKinley; OSU grad students
- FAA Technical Monitor

Advanced Materials in Transport Aircraft Structures

- Ahmet Oztekin
- Lynn Pham

A Center of Excellence

- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Kazbek Karayev, Boeing
 - Gerry Mabson, Boeing
 - Tom Walker, NSE Composites

Failure of Notched Laminates Under Out-of-Plane Bending: Overview

- Four modes of damage in carbon fiber composites: Fiber tension, fiber compression, matrix tension, matrix compression
- Matrix compression (concluding in 2017-18)
 - Very little published literature exists for matrix compression damage initiation and propagation behavior
 - Currently simplifying assumptions based on studies of other modes are applied to matrix compression behavior
 - Our goal is to experimentally determine the damage initiation and propagation behavior for matrix compression loading and compare to what is currently used in the commercial finite element package Abaqus
 - Also we will examine the effect of variable notch length and mixed mode loading under matrix compression
- Fiber Tension (beginning in 2017-18)
 - Determine the effectiveness of Abaqus fiber-tension damage initiation and propagation model

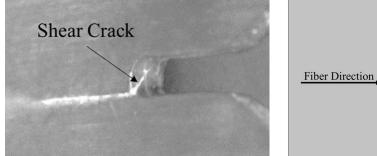
Today's Topics

- Experimental Specimens for Compressive Matrix Damage
 - Compact Compression Specimen
 - Bending Specimens
 - Center Notch Compression
 - Edge Notch Compression
- Fiber Tension Damage
 - Literature Review

xperimental Specimens for Compressiv

- Experimental Specimens for Compressive Matrix Damage
 - Compact Compression Specimen
 - Bending Specimens
 - Center Notch Compression
 - Edge Notch Compression
- Fiber Tension Damage
 - Literature Review

Compact Compression Specimens Advanced Materials in Transport Aircraft Structures

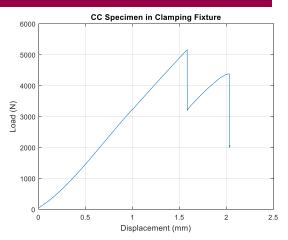

Commercial

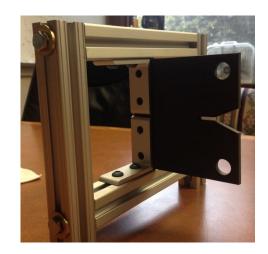
A Center of Excellence

- Mitsubishi Rayon TR50S/NB301 [90]₂₀
- Damage mechanisms ٠ primarily shear cracks through the thickness
- Shear cracks propagate ۲ parallel to the notch
- Shear cracks measured • between 47° and 54°
- Propagation limited by ٠ tensile failure of the opposite end

Sponsor

- Unable to produce compressive damage before tensile splitting
- Maximum failure ratio $\frac{\sigma_{Compression}}{\sigma_{Compression}} = 2$ $\sigma_{Tension}$
- Sponsor failure ratio $\frac{\sigma_{Compression}}{2} > 2$ $\sigma_{Tension}$

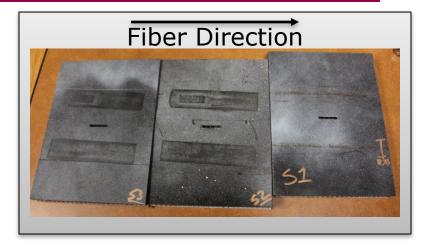

Commercial Compact Compression Specimen

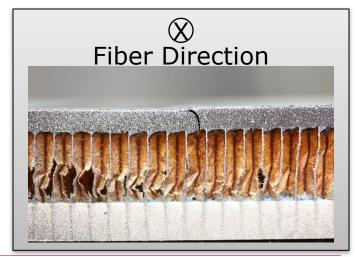


- Various fixtures tested to delay tensile failure in sponsor material
 - None delayed tensile failure long enough
- New specimen needed that can handle failure ratios above two

 $\frac{\sigma_{Compression}}{2} > 2$

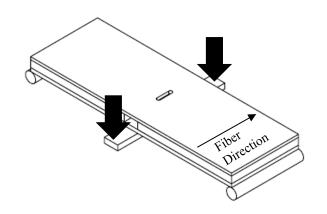
 $\sigma_{Tension}$

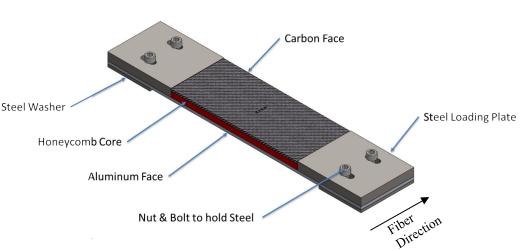


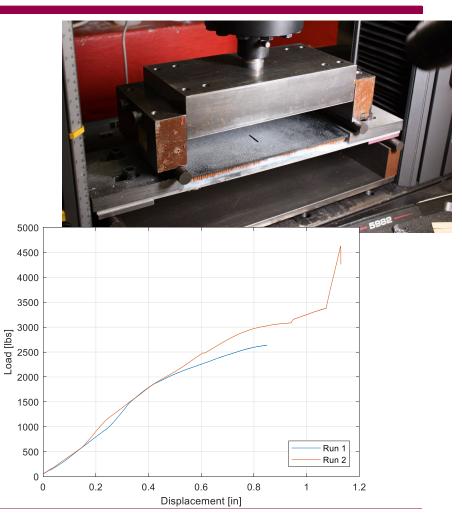

Today's Topics

- Experimental Specimens for Compressive Matrix Damage
 - Compact Compression Specimen
 - Bending Specimens
 - Center Notch Compression
 - Edge Notch Compression
- Fiber Tension Damage
 - Literature Review

- 4 Point bending specimens carbon face loading
 - Loaded with roller
 - Loaded with washer
 - To distribute load over larger area
- Both failed by cracking in the carbon face at the loading point
- Crushing in honeycomb below the loading application location
- No strain concentration around notch tip when face cracked



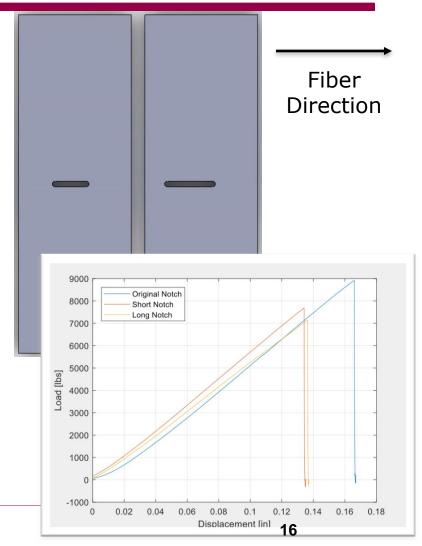

- 3-Point being specimen made from untested 4point specimens
 - Used to load the specimen through aluminum face rather than carbon face
- A crack in the carbon occurred from the notch
- Significant plastic deformation occurred
- Shear failure also occurred in the core



- Created new 4-point bend specimen to load the specimen without applying load to the carbon face
 - Steel washers used to prevent damage on the aluminum load application site
 - Also used to support the honeycomb and prevent shear failure

- Experienced significant deflection
- Cracks occurred at Carbon-Steel interface
- Aluminum experienced plastic deformation
- No crack occurred at the notch
- Large spike in loading occurred due to contact with test fixture after large deformation
- 4-PB specimens don produce necessary cracks

- Experimental Specimens for Compressive Matrix Damage
 - Compact Compression Specimen
 - Bending Specimens
 - Center Notch Compression
 - Edge Notch Compression
- Fiber Tension Damage
 - Literature Review

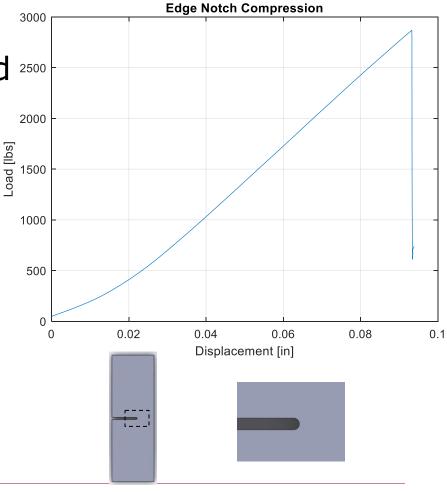


- Anti-buckling guard with a window to allow for DIC
- Strain gauges on specimens to ensure uniform compression loading
- Steel shims to align specimen
- Flat platen to apply load
- ¹/₄" x 1" slot in the center of the specimen (5"x15")
- Specimens failed suddenly
 - No crack progression

- Variable notch length to use short side as a method to slow the crack propagation
 - Break the short side first then break the long side
- Failure occurred suddenly with no crack propagation

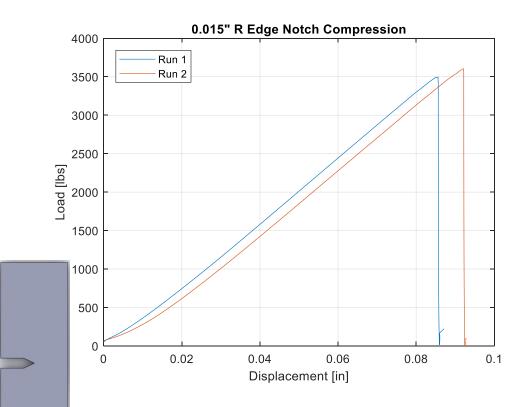
Experimental Specimens for Compressive Matrix Damage

- Compact Compression Specimen
- Bending Specimens
- Center Notch Compression
- Edge Notch Compression
- Fiber Tension Damage
 - Literature Review

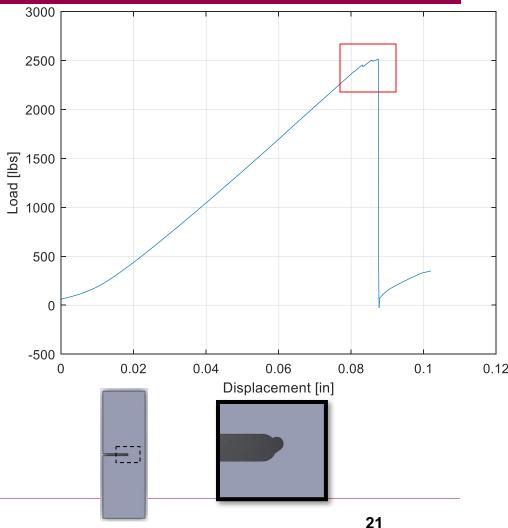

- An extension of the Center notch compression specimens
- Notch starts from the edge
- Three different geometries tested

Fiber Direction

¹/₄" Notch 0.015″ R ¹/₄" Notch With 1/16" Notch Notch



- Failure occurred
 suddenly at a lower load ²⁵
 than the side notch
 specimens
- Straight load drop, indicating no crack propagation before specimen failure
- Failure method was consistent with center notch compression specimens


- Designed to have a high stress intensity factor to produce a small stable crack prior to specimen failure
 - 1/16" radius produced a small crack propagation
- Failure occurred suddenly at a load higher than the ¼" edge notch compression specimen

Edge Notch (1/16")

- Increase the stress intensity factor
- Non-linearity before drop suggests crack propagation
- DIC showed some crack growth
- Continued experimentation on edge notch specimens to increase crack propagation prior to specimen failure

- Experimental Specimens for Compressive
 Matrix Damage
 - Compact Compression Specimen
 - Bending Specimens
 - Center Notch Compression
 - Edge Notch Compression
- Fiber Tension Damage
 - Literature Review

The fiber-tension-damage study will consist of:

- I. A thorough literature review to determine the current practice
- II. Developing, as needed, suitable testing fixtures, specimens, and procedures to identify an effective fiber-tension-damage model
- III. Measuring the associated material properties for both Boeing and commercial materials

Investigation into currently available fiber tension damage models included the following commercial software companies:

Advanced Materials in Transport Aircraft Structures Tensile Fiber Failure

 13 failure theories were identified for the <u>onset</u> of fiber tension damage.

A Center of Excellence

- A lot of failure theories, all boil down to two parameters. Either the tensile stress or strain limit are needed to establish the onset of fiber tension damage.
- ASTM-D3039¹ was occasionally cited as the testing procedure to obtain these tensile parameters.

- Maximum Stress
- Tsai-Hill
- Tsi-Wu
- Azzi-Tsai-Hill
- Maximum Strain
- Hashin
- Puck
- LaRc02
- LaRc03
- ・LaRc04
- Christensen
- Modified Distortion Energy
- Von Mises

1: Tensile Properties of Polymer Matrix Composite Materials

Tensile Fiber Failure Progression Advanced Materials in Transport Aircraft Structures

Most software packages use one of two failure theories for the progression of fiber tension damage.

A Center of Excellence

- These failure theories require the fracture toughness in the progression of fiber tensile damage.
- ASTM-D5528² was cited as the testing procedure to obtain the fracture toughness parameter.

Energy dissipation with material softening

• Energy based cohesive law with material softening

2: Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites

Questions?