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Durability	of	adhesive	bonded	joints	in	aerospace	structures

Nonlinearity	in	
Bonded	Joints

Time	Dependence

Tension	(closed	form)
2.	Ratcheting,	experiment

1.	Creep,	non-linear	response

Shear	(FEA)
3.	Creep,	model	development

4.	Ratcheting,	model	application

Plasticity

Yield	criterion
1.	Influence	of	yield	criteria

2.	Biaxial	tests	(Arcan)

Hardening	rule
3.	Cyclic	tests

4.	FEA	model



Approach:	Plasticity

vPrimary	Research	Aim:	Modeling	of	adhesive	plasticity	to	describe	nonlinear	stress-strain	response.

ØSub	Task:	

1. Identify the influence of yield criterion and hardening rule on bonded joints (complete)

2. Characterizing hardening rule (complete Dec 2017)

3. Characterizing yield criterion (complete Dec 2017)

4. Numerically combining hardening rule and yield criterion (complete Feb 2017)



Approach:	Plasticity
1. Identify yield criterion and hardening rule of bonded joints

• Input properties: Bulk and Thin film adhesive properties in Tension.
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Approach:	Plasticity
1. Identify the influence of yield criterion and hardening rule on bonded joints
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• Background: Investigate yield criterion and hardening rule of bonded joints.

• Outcome type: Comparison of Test results vs different FEA models
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Approach:	Plasticity

• Status: Completed, Journal paper submitted

• Task outcome: Adhesive follows a von Mises yield criterion and kinematic hardening
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• Choice of Input property: Bulk vs. Thin film



Approach:	Plasticity

• Status: Completed, Journal paper submitted

• Task outcome: Adhesive follows a von Mises yield criterion and kinematic hardening
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Approach:	Plasticity
2. Characterize hardening rule

• Background: Similar to metals, adhesives could follow isotropic, kinematic or combined hardening rule.

• Lot of research done with metals, but none with bonded joints.

• This has to be verified by studying the movement of the yield surface under cyclic tension compression loading in a biaxial stress space.

Ref:	Muransky O.	et	al	[Metal	Plasticity]



Approach:	Plasticity

• Scarf	joint	being	tested	in	ten-comp.	
• DIC	is	used	for	calculating	shear	

strain

• Outcome type: Cyclic ten-comp tests for scarf joint. Plot of yield surface translation/expansion/both, Journal paper

Scarf	Joint	in	cyclic	test	fixture
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Black	=	Original
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Orange	=	Combined



Approach:	Plasticity

• Status: Documentation in progress

• Task outcome: Yield surface showed translation (kinematic hardening).

• Outcome type: Cyclic ten-comp tests for scarf joint. Plot of yield surface translation/expansion/both, Journal paper
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Approach:	Plasticity

• Status: Documentation in progress

• Task outcome: Yield surface showed translation after stabilizing cycles in a strain controlled/decreasing stress experiment (Kinematic hardening).

• Outcome type: Cyclic ten-comp tests for scarf joint. Plot of yield surface translation/expansion/both, Journal paper
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Approach:	Plasticity
3. Characterizing yield criterion

• Background: Assumption of yield criteria to avoid complex characterization with thin bonded joints

• Test bonded joints with mixed mode Arcan fixture to plot yield surface in biaxial stress space to identify shape of yield surface.

• Outcome type: Test results, Journal paper

Shear	Component:	σ) =
+ ,-. /
0

Normal	component:	σ1 =
+ 23, /

0

Prospected	Test	set	up



Approach:	Plasticity
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Approach:	Plasticity

• Status: Documentation in progress

• Task outcome: yield surface shape and size to be plotted from experimental data.
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Approach:	Plasticity

• Status: Documentation in progress

• Task outcome: yield surface shape and size to be plotted from experimental data.
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Approach:	Plasticity

4. Numerically modeling nonlinear hardening rule.

• Background: Modeling of nonlinear hardening is common in metals.

• Nonlinear hardening has not been characterized for bonded joints due to experimental complexities, assumed to be linear.

• To model nonlinear hardening by including possible effects form both Isotropic and or kinematic hardening.

• Outcome type: Numerical modeling, comparison of experiment and simulation, Journal paper

• Status: Identified the modeling technique to use cyclic scarf test data to extract nonlinear hardening parameters by

separating isotropic and kinematic hardening components (estimated Feb 2018)

• Task outcome: Numerical modeling-FEA simulation of nonlinear hardening



Background

• The	time-dependent	behavior	of	adhesives	is	important	for	the	durability

• Seldom	accurate	models	for	adhesives	to	predict	the	ratcheting

• The	response	of	shear	coupons	is	more	complicated	to	test

Objectives

The	final	objective	is	to	build	a	shear	viscoelastic	modeling	on	bonded	joints	for	ratcheting.:

• Viscoelastic	response	of	bulk	resin,	closed	form	model	(complete)

• FEA	Viscoelasticity	model	of	bulk	Resin	(12/31/2017)

• FEA	viscoelastic	model	of	bonded	joints	in	creep (05/31/2018)

• FEA viscoelastic	model	of	bonded	joints	in	ratcheting (12/31/2018)

Approach:	Time	dependence	(viscoelasticity/viscoplasticity)



Approach:	Time	dependence	(viscoelasticity/viscoplasticity)
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Ratcheting	Efforts	(Extensometer)

Good	ratcheting	result	from	extensometer	 Ratcheting	result	with	suspected	extensometer	slippage

• Extensometer	can	slip	during	ratcheting
• Used	Digital	Image	Correlation	to	try	to	capture	peak	strains
• DIC	does	not	sample	fast	enough

• Shear	strain	gauge	measurement	will	begin	next	week



ØTensile	Viscoelasticity	Modeling	on	Bulk	Resin

Material	Type Material	Model Components	of	Model Nonlinear Time-
Dependent

Tried Results

Elasticity 22.2 Linear Elasticity Elastic
22.3 Porous Elasticity Porous Elastic ●
22.4 Hypoelasticity Hypoelastic ●
22.5 Hyperelasticity Hyperelastic ●

Plasticity 23.2.1 Classical Metal Plasticity Plastic ●
23.2.4 Rate-Dependent Plasticity Creep: time hardening ● ● ● No	viscoelastic	strain	in	

recovery	stage.
23.2.6 Anisotropic Yield/Creep Plastic or Creep ● ●
23.2.11 Two-Layer Viscoplasticity Elastic

Plastic
Viscous: time hardening

● ● ●
Difference	in	creep	stage	of	

80%	loading.

Viscoelasticity 22.7 Linear Viscoelasticity Viscoelastic ● ● No	permanent	strains	in	
recovery.

22.8.1 Hysteresis in Elastomers Hysteresis
Hyperelastic

● ● ● Can	not	fit	for	three	kinds	
loading	simultaneously.

22.8.2	Parallel	Rheological	Framework Hyperelastic
Viscous:
strain hardening

● ● ● Difference	in	creep	and
recovery stages	of	80%	

loading.

Simulate	the	tensile	creep-recovery	behaviors	of	EA9696	bulk	coupons	under	loading	of	20%	UTS,	50%UTS	and	80%	UTS.	

Approach:	Time	dependence	(viscoelasticity/viscoplasticity)



• 23.2.4	Rate	Dependent	Plasticity

Parameter 20% 50% 80%
E0(MSI) 283842.8 269043.2 234234.2

A 3.8e-8 3.8e-8 2.8e-8
n 1 1 1.17
m -0.92 -0.92 -0.92

Fig.1	comparison	between	simulation	and	test
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• Time	hardening:	
𝜀̇67 = 𝐴𝜎: ; 𝑡=

Approach:	Time	dependence	(viscoelasticity/viscoplasticity)



• 23.2.11	Two-Layer	Viscoplasticity

Fig.2	comparison	between	simulation	and	test

Parameter Value

A 2.496e-7

n 1.1809

m -0.12968

• Viscous	part:	𝜀>̇?? = 𝐴 ; 𝜎>?:; 𝑡=

Fig.3	Model	Sketch
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Approach:	Time	dependence	(viscoelasticity/viscoplasticity)



• 22.7	Linear	Viscoelasticity

• 2-branch	Prony series

Parameter 20% 50% 80%
E0(MSI) 283842.8 269043.2 234234.2
G1 0.0398 0.0511 0.0487
τ1(S) 13.228 20.654 16.6
G2 0.057 0.0733 0.0758
τ2(S) 306.47 318.44 308

Fig.4	comparison	between	simulation	and	test
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Approach:	Time	dependence	(viscoelasticity/viscoplasticity)



• 22.8.1	Hysteresis	in	Elastomers	

Fig.7	comparison	between	simulation	and	test

Parameter Value

A 3.8969e-3

m 3

c -0.082312

• Network	B:	𝜖Ȧ67 = 𝐴 ; (𝜖67)D; 𝜎A=
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Approach:	Time	dependence	(viscoelasticity/viscoplasticity)



• 22.8.1	Hysteresis	in	Elastomers	

Fig.9	comparison	between	simulation	and	test
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• Network	B:	𝜖Ȧ67 = 𝐴 ; (𝜖67)D; 𝜎A=

Fig.10	Model	Sketch

Approach:	Time	dependence	(viscoelasticity/viscoplasticity)



• 22.8.2	Parallel	Rheological	Framework

Fig.5	comparison	between	simulation	and	test

Parameter Branch-1 Branch-2 Branch-3

A 2.01e-12 9.7e-14 2.94e-11

n 3.1284 1.4683 1.6875

m -0.04 -0.09 -0.007

• Viscous	part:

𝜖̇67 = 𝐴𝑞: 𝑚 + 1 𝜖67 =
I

JKI

Fig.6	Model	Sketch

Approach:	Time	dependence	(viscoelasticity/viscoplasticity)
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• 22.8.2	Parallel	Rheological	Framework-Ratcheting

Fig.5	comparison	between	simulation	and	test

Parameter Branch-1 Branch-2 Branch-3

A 2.01e-12 9.7e-14 2.94E-11

n 3.1284 1.4683 1.6875

m -0.04 -0.09 -0.007

• Viscous	part:

𝜖̇67 = 𝐴𝑞: 𝑚 + 1 𝜖67 =
I

JKI

Fig.6	Model	Sketch

Approach:	Time	dependence	(viscoelasticity/viscoplasticity)
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• 22.8.2	Parallel	Rheological	Framework-Ratcheting

Fig.5	comparison	between	simulation	and	test

Parameter Branch-1 Branch-2 Branch-3

A 2.01e-12 9.7e-14 2.94E-11

n 3.1284 1.4683 1.6875

m -0.04 -0.09 -0.007

• Viscous	part:

𝜖̇67 = 𝐴𝑞: 𝑚 + 1 𝜖67 =
I

JKI

Fig.6	Model	Sketch

Approach:	Time	dependence	(viscoelasticity/viscoplasticity)
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• Further Work

Ø Tensile	Viscoelasticity	Modeling	on	Bulk	Resin	(12/31/2017)

• Optimize	parameters	in	mentioned	Parallel	Rheological	Framework	Model	and	Two-Layer	Viscoplasticity Model

• Modify	the	viscous	equations(exponents	expression)	in	PRF	and	Two-Layer	Viscoplasticity Models	which	have	effect	on	the	slope	
of	creep	curve	and	permanent	strain

• A	model	with	higher	strain	rate	for	80%	loading

• UMAT

Ø Shear	Viscoelastic	Modeling	on	Bonded	Joints	for	Creep (05/31/2018)

• Simulate	the	creep/recovery	behavior	of	WALS	coupons,	scarf	joints.

• Verify	the	linear/	nonlinear	model	by	comparison	with	the	test	data.	

Ø Shear	Viscoelastic	Modeling	on	Bonded	Joints	for	Ratcheting (12/31/2018)

• Simulate	the	ratcheting/recovery	behavior	of	WALS	coupons,	scarf	joints.

• Verify	this	model	by	comparison	with	the	test	data.

Approach:	Time	dependence	(viscoelasticity/viscoplasticity)



Summary

• Plasticity
• Adhesives	we’ve	tested	follow	a	von	Mises	yield	criterion
• Adhesives	we’ve	tested	follow	a	kinematic	hardening	rule

• Viscoelasticity
• Adhesives	become	non-linear	about	50%	UTS
• Ratcheting	response	is	greater	in	shear	than	in	normal	stress



Future	work

• Plasticity
• Complete	yield	and	hardening	tests
• Incorporate	yield	and	hardening	results	in	a	predictive	FEA	model

• Viscoelasticity
• Complete	ratcheting	experimental	tests

• Include	strength	and	fracture	toughness	changes	with	ratcheting
• Develop	FEA	model	of	non-linear	viscoelastic	response	under	creep
• Apply	model	to	shear	and	ratcheting	loading	environments


