Durability of adhesive bonded joints in aerospace structures

Washington State University

Date: 11/08/2017

AMTAS Fall meeting Seattle, WA

Durability of Bonded Aircraft Structure

- Principal Investigators & Researchers
 - Lloyd Smith
 - Preetam Mohapatra, Yi Chen, Trevor Charest
- FAA Technical Monitor
 - Ahmet Oztekin
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Boeing: Will Grace, Peter VanVoast, Kay Blohowiak

Durability of adhesive bonded joints in aerospace structures

Primary Research Aim: Modeling of adhesive plasticity to describe nonlinear stress-strain response.

Sub Task:

- 1. Identify the influence of yield criterion and hardening rule on bonded joints (complete)
- 2. Characterizing hardening rule (complete Dec 2017)
- 3. Characterizing yield criterion (complete Dec 2017)
- 4. Numerically combining hardening rule and yield criterion (complete Feb 2017)

- 1. Identify yield criterion and hardening rule of bonded joints
- Input properties: Bulk and Thin film adhesive properties in Tension.

1. Identify the influence of yield criterion and hardening rule on bonded joints

- Background: Investigate yield criterion and hardening rule of bonded joints.
- Outcome type: Comparison of Test results vs different FEA models

- Validation of Material model: Isotropic vs Kinematic hardening
- Choice of Input property: Bulk vs. Thin film

- Status: Completed, Journal paper submitted
- Task outcome: Adhesive follows a von Mises yield criterion and kinematic hardening

- Validation of Material model: Isotropic vs Kinematic hardening
- Choice of input property: Bulk = thin film (for Standard adhesive)

1 Shear strain

Location of uniaxia

Axial strain

Bondline

load

- Status: Completed, Journal paper submitted
- Task outcome: Adhesive follows a von Mises yield criterion and kinematic hardening

2. Characterize hardening rule

- **Background**: Similar to metals, adhesives could follow isotropic, kinematic or combined hardening rule.
- Lot of research done with metals, but none with bonded joints.
- This has to be verified by studying the movement of the yield surface under cyclic tension compression loading in a biaxial stress space.

• **Outcome type**: Cyclic ten-comp tests for scarf joint. Plot of yield surface translation/expansion/both, Journal paper

• Outcome type: Cyclic ten-comp tests for scarf joint. Plot of yield surface translation/expansion/both, Journal paper

- **Status**: Documentation in progress
- Task outcome: Yield surface showed translation (kinematic hardening).

• Outcome type: Cyclic ten-comp tests for scarf joint. Plot of yield surface translation/expansion/both, Journal paper

• **Status**: Documentation in progress

• Task outcome: Yield surface showed translation after stabilizing cycles in a strain controlled/decreasing stress experiment (Kinematic hardening).

- 3. Characterizing yield criterion
- **Background**: Assumption of yield criteria to avoid complex characterization with thin bonded joints
- Test bonded joints with mixed mode Arcan fixture to plot yield surface in biaxial stress space to identify shape of yield surface.
- Outcome type: Test results, Journal paper

Normal component:
$$\sigma_V = \frac{F \cos \theta}{A}$$

Shear Component: $\sigma_U = \frac{F \sin \theta}{A}$

Assembly: fixture and coupon

- **Status**: Documentation in progress
- Task outcome: yield surface shape and size to be plotted from experimental data.

- Status: Documentation in progress
- **Task outcome**: yield surface shape and size to be plotted from experimental data.

- 4. Numerically modeling nonlinear hardening rule.
- **Background**: Modeling of nonlinear hardening is common in metals.
- Nonlinear hardening has not been characterized for bonded joints due to experimental complexities, assumed to be linear.
- To model nonlinear hardening by including possible effects form both Isotropic and or kinematic hardening.
- **Outcome type**: Numerical modeling, comparison of experiment and simulation, Journal paper
- Status: Identified the modeling technique to use cyclic scarf test data to extract nonlinear hardening parameters by separating isotropic and kinematic hardening components (estimated Feb 2018)
- Task outcome: Numerical modeling-FEA simulation of nonlinear hardening

Background

- The time-dependent behavior of adhesives is important for the durability
- Seldom accurate models for adhesives to predict the ratcheting
- The response of shear coupons is more complicated to test

Objectives

The final objective is to build a shear viscoelastic modeling on bonded joints for ratcheting.:

- Viscoelastic response of bulk resin, closed form model (complete)
- FEA Viscoelasticity model of bulk Resin (12/31/2017)
- FEA viscoelastic model of bonded joints in creep (05/31/2018)
- FEA viscoelastic model of bonded joints in ratcheting (12/31/2018)

•FM300-2

Cycles

Ratcheting Efforts (Extensometer)

- Extensometer can slip during ratcheting
- Used Digital Image Correlation to try to capture peak strains
 - DIC does not sample fast enough
- Shear strain gauge measurement will begin next week

Good ratcheting result from extensometer

Ratcheting result with suspected extensometer slippage

> Tensile Viscoelasticity Modeling on Bulk Resin

Material Type	Material Model	Components of Model	Nonlinear	Time- Dependent	Tried	Results
Elasticity	22.2 Linear Elasticity	Elastic				
	22.3 Porous Elasticity	Porous Elastic	•			
	22.4 Hypoelasticity	Hypoelastic	•			
	22.5 Hyperelasticity	Hyperelastic	•			
Plasticity	23.2.1 Classical Metal Plasticity	Plastic	•			
	23.2.4 Rate-Dependent Plasticity	Creep: time hardening	•	•	•	No viscoelastic strain in recovery stage.
	23.2.6 Anisotropic Yield/Creep	Plastic or Creep	•	•		
	23.2.11 Two-Layer Viscoplasticity	Elastic Plastic Viscous: time hardening	•	•	•	Difference in creep stage of 80% loading.
Viscoelasticity	22.7 Linear Viscoelasticity	Viscoelastic		•	•	No permanent strains in recovery.
	22.8.1 Hysteresis in Elastomers	Hysteresis Hyperelastic	•	•	•	Can not fit for three kinds loading simultaneously.
	22.8.2 Parallel Rheological Framework	Hyperelastic Viscous: strain hardening	•	•	•	Difference in creep and recovery stages of 80% loading.

Simulate the tensile creep-recovery behaviors of EA9696 bulk coupons under loading of 20% UTS, 50% UTS and 80% UTS.

• 23.2.4 Rate Dependent Plasticity

• Time hardening: $\dot{\varepsilon}^{cr} = A\sigma^n \cdot t^m$

Parameter	20%	50%	80%
EO(MSI)	283842.8	269043.2	234234.2
А	3.8e-8	3.8e-8	2.8e-8
n	1	1	1.17
m	-0.92	-0.92	-0.92

Fig.1 comparison between simulation and test

• 23.2.11 Two-Layer Viscoplasticity

Fig.3 Model Sketch

• Viscous part: $\dot{\varepsilon}_{ev}^{v} = A \cdot \sigma_{ev}^{n} \cdot t^{m}$

Parameter	Value
А	2.496e-7
n	1.1809
m	-0.12968

• 22.7 Linear Viscoelasticity

• 2-branch Prony series

Parameter	20%	50%	80%
EO(MSI)	283842.8	269043.2	234234.2
G1	0.0398	0.0511	0.0487
τ1(S)	13.228	20.654	16.6
G2	0.057	0.0733	0.0758
τ2(S)	306.47	318.44	308

• 22.8.1 Hysteresis in Elastomers

• Network B:
$$\dot{\epsilon}_B^{cr} = A \cdot (\epsilon^{cr})^C \cdot \sigma_B^m$$

Parameter	Value
А	3.8969e-3
m	3
с	-0.082312

• 22.8.1 Hysteresis in Elastomers

• Network B:
$$\dot{\epsilon}_B^{cr} = A \cdot (\epsilon^{cr})^C \cdot \sigma_B^{m}$$

Parameter	Value
А	3.8696e-3
m	8.4
с	-0.02312

• 22.8.2 Parallel Rheological Framework

• Viscous part:

$$\dot{\epsilon}^{cr} = (Aq^n[(m+1)\epsilon^{cr}]^m)^{\frac{1}{m+1}}$$

Parameter	Branch-1	Branch-2	Branch-3
А	2.01e-12	9.7e-14	2.94e-11
n	3.1284	1.4683	1.6875
m	-0.04	-0.09	-0.007

Fig.5 comparison between simulation and test

• 22.8.2 Parallel Rheological Framework-Ratcheting

• Viscous part:

$$\dot{\epsilon}^{cr} = (Aq^n[(m+1)\epsilon^{cr}]^m)^{\frac{1}{m+1}}$$

Parameter	Branch-1	Branch-2	Branch-3
А	2.01e-12	9.7e-14	2.94E-11
n	3.1284	1.4683	1.6875
m	-0.04	-0.09	-0.007

• 22.8.2 Parallel Rheological Framework-Ratcheting

1000 cycle ratcheting-recovery

• Viscous part:

$$\dot{\epsilon}^{cr} = (Aq^n[(m+1)\epsilon^{cr}]^m)^{\frac{1}{m+1}}$$

Parameter	Branch-1	Branch-2	Branch-3
А	2.01e-12	9.7e-14	2.94E-11
n	3.1284	1.4683	1.6875
m	-0.04	-0.09	-0.007

Fig.5 comparison between simulation and test

• Further Work

- Tensile Viscoelasticity Modeling on Bulk Resin (12/31/2017)
- Optimize parameters in mentioned Parallel Rheological Framework Model and Two-Layer Viscoplasticity Model
- Modify the viscous equations(exponents expression) in PRF and Two-Layer Viscoplasticity Models which have effect on the slope of creep curve and permanent strain
- A model with higher strain rate for 80% loading
- UMAT
- Shear Viscoelastic Modeling on Bonded Joints for Creep (05/31/2018)
- Simulate the creep/recovery behavior of WALS coupons, scarf joints.
- Verify the linear/ nonlinear model by comparison with the test data.
- Shear Viscoelastic Modeling on Bonded Joints for Ratcheting (12/31/2018)
- Simulate the ratcheting/recovery behavior of WALS coupons, scarf joints.
- Verify this model by comparison with the test data.

Summary

- Plasticity
 - Adhesives we've tested follow a von Mises yield criterion
 - Adhesives we've tested follow a kinematic hardening rule
- Viscoelasticity
 - Adhesives become non-linear about 50% UTS
 - Ratcheting response is greater in shear than in normal stress

Future work

- Plasticity
 - Complete yield and hardening tests
 - Incorporate yield and hardening results in a predictive FEA model
- Viscoelasticity
 - Complete ratcheting experimental tests
 - Include strength and fracture toughness changes with ratcheting
 - Develop FEA model of non-linear viscoelastic response under creep
 - Apply model to shear and ratcheting loading environments