NOTCH SENSITIVITY OF COMPOSITE SANDWICH STRUCTURES

Dan Adams Marcus Stanfield Brad Kuramoto Martin Raming Department of Mechanical Engineering University of Utah Salt Lake City, UT

AMTAS Autumn 2017 Meeting VA November 8, 2017

Seattle, WA

FAA Sponsored Project Information

- Principal Investigators: Dr. Dan Adams
 Dr. Mike Czabaj
- Graduate Student Researchers:

Marcus Stanfield

Brad Kuramoto

Martin Raming

- FAA Technical Monitor: Zhi-Ming Chen
- Collaborators:

Materials Sciences Corporation

Boeing (Charles Park)

ASTM D30 (Composites)

Status Update:

Mode I Sandwich Fracture Mechanics Test Method

3

- Initial subcommittee ballot by ASTM subcommittee D30.09
- Negative votes discussed at recent ASTM D30 meeting
- Follow-on testing underway to address concerns
 - Disbond initiation toughness procedure
 - Suitable loading rates, data acquisition rates
- Reballoting scheduled for Spring 2018

Status Update:

Further Sandwich Disbond Related Activities

- SCB fatigue test method development
- Further Mixed-Mode & Mode II test method development and evaluation
- Follow-on U.S. Led Building Block exercise
 - Same sandwich configurations as previous coupon-level testing
 - Sub-element level testing
 - Analysis round-robin

• New content for upcoming revision of CMH-17 Handbook

Status Update: Sandwich Damage Tolerance

- Draft standard of Sandwich composite Compression After Impact (SCAI) competed
 - Balloting before next Spring ASTM D30 meeting
- Draft practice of 4-Point Flexure After Impact (4-FAI) in progress

5

Research Objectives: Notch Sensitivity of Sandwich Composites

- Initial development of notched test methods and associated analysis methodologies for composite sandwich panels
- Documentation notched testing and analysis protocols in Composites Materials Handbook (CMH-17)
- Explore development of new ASTM standards for notch sensitivity of sandwich composites

Sandwich Open Hole Compression A Center of Excellence Compression Advanced Materials in Transport Aircraft Structures

Sandwich Open Hole Flexure

6

Notched Core Shear Beam Flexure

Testing Considerations: Sandwich Open Hole Compression

- Test fixture/Specimen support
 - End supports
 - Clamping top and bottom
 - Potting
 - Side supports
 - Knife edge
- Specimen size
 - Separation of central hole and boundary effects
 - Production of acceptable strength reductions
- Strain measurement
- Specimen alignment

Open hole compression fixture for monolithic composites

Previous Work: Specimen Size

8

- Hole Diameter (W/D)
 - Legacy: W/D = 6
 - Acceptable strength reduction
 - Minimal finite width effects
- Aspect Ratio (H/W)
 - H/W = 2
 - Acceptable strength reduction
- Standard Configuration
 - Width: 4 in.
 - Height: 8 in.
 - Hole Diameter: 0.67 in.

Sandwich Open Hole Compression Aspect Ratio Comparison

THE

UNIVERSITY

OF UTAH

Testing Considerations: Sandwich Open Hole Flexure

9

- Test fixture/specimen support
 - Inner span
 - Separation of notch and loading boundary effects
 - Outer span
 - Develop sufficient bending moment
 - Ensure failure in inner span
- Required specimen width
 - Separation of central hole and specimen edges
 - Production of acceptable strength reduction

Previous Work: Specimen Size

- Current configuration
 - Specimen width W = 3 in.
 - Hole diameter D = 0.5 in.
 - Inner span L = 4 in.
 - Outer span sized to ensure inner span failure
- No inner span aspect ratio sensitivity (L/W)
 - Inner span can be increased for measurement purposes

Current Focus: Minimum Width

- Investigating width to thickness (W/C)
- Sandwich configurations:
 - W = 3 in. D = 0.5 in. C = 1 in.
 (W/D=6, W/C=3)
 - W=1.5 in. D = 0.25 in. C = 1 in. (W/D=6, W/C=1.5)
- Similar strengths and notch reductions produced

Notch Reduction Factors		
W = 3 in.	0.60	
W = 1.5 in.	0.58	

Third Loading Configuration: Core Damage and Notch Effects

- Effects of core notch or core damage on material response
 - Notched core shear
 - Circular centered thru holes
 - Beam flexure
 - Sandwich disbond after core crush
 - Quasi-static indentation
 - Multiple crush geometries
 - SCB Mode I fracture testing

Notched Core Shear by Beam Flexure

Disbond after Core Crush

Testing Considerations: Notched Core Shear by Beam Flexure

- Investigating notch effects in Nomex honeycomb core
- Three-point flexure loading
- Sandwich configurations:
 - W = 3 in. L = 8 in. C = 0.5 in.
 - 3 pcf 1/8 in. cell Nomex
 - Notched & Unnotched
- Through hole, 0.5 in. dia (W/D=6)
- L and W core directions tested

UNIVERSITY

OF UTAH

Current Focus: Notched Core Shear Results

- Similar behavior between L and W core orientations
- Net section shear failure
- No significant notch effect observed

Direction	L	W
Notched Shear Strength Ratio	0.84	0.82
Notched Area Ratio (W-D)/W	0.83	

Testing Considerations: Disbond after Core Crush

- Quasi-static indentation
 - Minimize facesheet damage
 - Produce region of crushed core
- Indenter geometries
 - Flat plate (uniform crush)
 - Wedge (tapered crush)
 - Cylinder (discreet crush region)
- Mode I facesheet disbond testing following indentation
 - Single Cantilever Beam (SCB) test
 - Fracture toughness reductions due to core crush
 - Thru-thickness failure locations and fracture surfaces

Initial Test Results: Disbond After Indentation Testing

- Increased fracture toughness in regions of crushed core
- Highest G_{IC} obtained in central region of core crushing

Disbond After Indentation Testing: Fracture Path Through Core Crush Region

- Fracture at core/facesheet interface for undamaged core
- Fracture propagates along crushed core boundary in region of indentation
- Further testing underway

Undamaged 8 pcf Nomex core

Advanced Materials in

Transport Aircraft Structures

Analysis of Notched Sandwich Specimens ABAQUS with NDBILIN:

- User-defined nonlinear material model (UMAT) for ABAQUS
- Developed by Materials Sciences Corp.
- Stiffness degradation based progressive damage model
 - Bilinear stiffness response used to model material damaged state
 - "Built in" laminated plate theory for elements
 - Lamina level stiffness degradation
 - Max. stress, max. strain or Hashin failure criteria for damage onset

Failure Analysis of Notched Sandwich Specimens Development of Modeling Approach

19

- Modeling of damage progression in facesheets
 - Analysis of delamination (Mode I and Mode II)
 - Cohesive Surfaces
 - Analysis of +/-45 laminate tension test
 - Analysis of laminate open-hole <u>tension</u> test
 - Analysis of laminate open-hole <u>compression</u> test
- Modeling of damage progression in sandwich composites
 - Sandwich interface disbond (Mode I and II)
 - Cohesive Elements
 - Sandwich flexure test
 - Sandwich open hole compression test

Damage Progression in Facesheets: Analysis of Delamination

- Calibration of cohesive surfaces
 - Mode I DCB using ASTM D5528
 - Mode II ENF using ASTM D7905

Analysis of Facesheet Delaminations: Mixed-Mode Delamination Growth

Calibration of cohesive surfaces

- Mixed Mode Bend (MMB) using ASTM D6671
- Fit using Benzeggagh-Kenane (B-K) criterion

21

TH

UNIVERSITY

OF UTAH

Damage Progression in Facesheets: Analysis of +/-45 Laminates

- Simulation of un-notched and open-hole tension testing
- IM7/8552 carbon/epoxy, [45/-45]₂₈ laminates
- Matrix shear strength and damage parameters calibrated using measured stress-strain behavior

Damage Progression in Facesheets: Current Focus

 Revisit open hole results with updated cohesive surface parameters and matrix damage parameters

Damage Progression in Sandwich Composites: Analysis of Interfacial Disbond

- Calibration of interfacial cohesive elements
 - Mode I Sandwich SCB

Single Cantilever Beam Test

Single Cantilever Model Displacements

Load vs Displacement Data

Damage Progression in Sandwich Composites: Current Focus

- Calibration of interfacial cohesive elements
 - Mode II and MMB
 - In progress

Mode II Sandwich ENF Test

Sandwich Mixed Mode Bend Test

Damage Progression in Sandwich Composites: Analysis of Sandwich Open-Hole Flexure Tests

- 90% load X-ray CT shows minimal damage progression
- Model over predicting damage and failure load

Compression Strength Comparison

DIC Strain

26

NDBILIN Damage Prediction

Damage Progression in Sandwich Composites: Analysis of Sandwich Open-Hole Compression Tests

- Out-of-plane displacements observed in DIC measurements
- First mode facesheet buckling observed
- Investigating facesheet buckling using ABAQUS
- Starting with buckling observed in modified IITRI OHC tests

Sandwich OHC out-of-plane deformation

IITRI displacement results FEM vs DIC

A Center of Excellence Advanced Materials in Transport Aircraft Structures

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Damage Progression in Sandwich Composites: Facesheet Buckling

- Buckling behavior modeled using ABAQUS Riks
- Incorporating cohesive properties and NDBILIN
- Slightly over predicting stiffness and failure load

DIC Out-of-Plane

THE

UNIVERSITY

OF UTAH

ABAQUS Riks

 $\mathbf{28}$

A Center of Excellence A Cent

Upcoming Work:

Notch Sensitivity of Composite Sandwich Structures

- Development of sizing guidelines for sandwich open-hole compression and flexure tests
- Further investigate notched core shear and disbondafter-indentation test configurations
- Explore best practices for modeling core damage
- Incorporate updated material/model parameters in laminate open hole tension/compression simulations
- Investigate buckling solution for facesheet delamination compression tests

Thank you for your attention!

Questions?

A part of the FAA Joint Advanced Materials & Structures Center of Excellence