

Mark Tuttle and

Hrishikesh ("Rishi") Pathak, Anirudh Ashok, Andrew King, Ritika Singh, Karen Harban, Balakumaran ("Bala") Gopalarethinam

> Mechanical Engineering Dept University of Washington

2017 Fall AMTAS Meeting UW Center for Urban Horticulture

Motivation and Key Issues:

 In-service bond failures between composite facesheets and honeycomb cores have been reported

X-33 Liquid Hydrogen Tank Failure Boeing 747 upper skin disbonds

Airbus A-310 Rudder Failure

approx. 24" x 60" upper skin disbond

(Photos courtesy of Ronald Krueger, National Institute of Aerospace

Motivation and Key Issues:

- Core-to-skin disbond initiation and growth are thought to occur due to combination of factors:
 - Water ingression into core volume, followed by freeze-thaw cycles....water ingression may occur due to:
 - Wicking of liquidous water through facesheet microcracks, along fiber/matrix interfaces, and/or through improper design of edge closeouts
 - Diffusion of water molecules through (otherwise undamaged) facesheets, resulting in increased core humidity levels
 - Pressure differences between inside and outside of unvented honeycomb cores (Ground-Air-Ground or 'GAG' pressure cycles)

 Pressure differences between inside and outside of unvented honeycomb structures (Ground-Air-Ground or 'GAG' pressure cycles)

Configuration at ground level P_o = 100 kPa = 14.7 psi

Configuration at 35,000 ft $P_0 = 24$ kPa = 3.5 psi

Overall Program Objectives:

- (Initial objective): Determine if the condense-freeze-thawevaporate cycle of humidity within core region impacts the interfacial fracture toughness, G_c, of sandwich structures
- (Objective added in 2016): Develop experimental techniques to study/evaluate the GAG phenomenon

- Principal Investigator
 - Mark Tuttle
- Students
 - <u>Current</u>: Hrishikesh ("Rishi") Pathak, Anirudh Ashok, Andrew King, Ritika Singh, Karen Harban, Balakumaran ("Bala") Gopalarethinam
 - <u>Graduated</u>: Will Smoot ('16), Sung Lin 'Jason' Tien ('16), Shuyu 'Frank' Xia ('17),

FAA Technical Monitor

- Lynn Pham, Zhi-Ming Chen
- Industry Participation
 - Bill Avery, Hamid Razi, and Adam Sawicki/The Boeing Company
 - Dan Holley and Chris Praggastis/3M
 - Bob Fagerlund/Bell Helicopter
 - Kevin Marshall/Hexcel Corporation
 - Shreeram Raj/Solvay Composites
- Study Initiated in September 2015

Outline of Presentation

- Measurement of G_c associated with facesheet/core bond failures in sandwich structures:
 - Summary of the Single-Cantilever Beam (SCB) test geometry
 - Results obtained during 1st year of study (Sept '15-Sept '16)
 - 2nd year of study:
 - Expanded test matrix
 - As-produced measurements (completed)
 - Humidity measurements (ongoing)
 - Thermal cycling (planned)
- Design and fabrication of GAG specimens
 - Initial measurements

Presented at Oct '16 AMTAS meeting

Outline of Presentation

- Measurement of G_c associated with facesheet/core bond failures in sandwich structures:
 - Summary of the Single-Cantilever Beam (SCB) test geometry
 - Results obtained during 1st year of study (Sept '15-Sept '16)
 - 2nd year of study:
 - Expanded test matrix
 - As-produced measurements (completed)
 - Humidity measurements (ongoing)
 - Thermal cycling (planned)
- Design and fabrication of GAG specimens
 - Initial measurements

Presented at Oct '16 AMTAS meeting

• The interfacial fracture toughness, *G_c*, was measured in accordance with the single-cantilever-beam (SCB) test standard being developed by a CMH-17 working group

Advanced Materials in Transport Aircraft Structures SCB Tests Conducted During 1st Year of Study

SCB specimens were machined from sandwich panels with 4-ply <u>woven</u> facesheets and $[45/0/0/45]_T$ stacking sequence:

Туре	Manufacturer/Material Designation
Facesheet	Cytec T300/970 3k plain weave fabric
Core	Hexcel HRH-10 – 1/8 – 3.0 (0.50 in thick)
Adhesive	3M Scotch-Weld Structural Film AF 163-2K

A sawcut was used to initiate a "crack" between facesheet and core

SCB Tests Conducted Materials in Materials in During 1st Year of Study

- A typical SCB test involved six load cycles
- Crack length is measured after each cycle
- G_c can be calculated using data collected during any one of the six cycles (data from cycle 1 is normally discarded)

SCB Tests Conducted During 1st Year of Study

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Advanced Materials in Transport Aircraft Structures

A Center of Excellence

Advanced Materials in Transport Aircraft Structures SCB Tests Conducted During 1st Year of Study

Advanced Materials in Transport Aircraft Structures During 1st Year of Study

Preliminary Conclusions

- Although significant scatter was evident, it appears that environmental factors (i.e., thermal cycling and/or elevated humidity levels) have a modest but measureable impact on interfacial fracture toughness, G_c ,
- The most aggressive environmental conditions considered during this study (humid specimens exposed to 700 thermal cycles from RT to -50°C) resulted in about a 10% reduction in G_c.

Outline of Presentation

- Measurement of G_c associated with facesheet/core bond failures in sandwich structures:
 - Summary of the Single-Cantilever Beam (SCB) test geometry
 - Results obtained during 1st year of study (Sept '15-Sept '16)
 - 2nd year of study:
 - Expanded test matrix
 - As-produced measurements (completed)
 - Humidity measurements (ongoing)
 - Thermal cycling (planned)
- Design and fabrication of GAG specimens
 - Initial measurements

Presented at Oct '16 AMTAS meeting

Expanded Test Matrix

Component	Description	
Facesheet	Cytec T300/970 3k Plain Weave Fabric:	
	[0/45/0] _T	
	[0/90/90/0] _T	
	[0/45/90/45] _s	
Core Materials	Hexcel HRH-10-1/8-3.0 (0.50 in thick)	
	Hexcel HRH-10-1/8-3.0 (1.00 in thick)	
	Hexcel HRH-10-1/8-8.0 (0.50 in thick)	
	Hexcel HRH-36-1/8-3.0 (0.50 in thick)	
Adhesive	3M Scotch-Weld Structural Film AF 163-2K	

- Facesheets were cured in an autoclave
- Facesheets and core materials were machined to size and stored for 1 month at 50°C (122°F) at 8% RH in a humidity chamber, to insure components were as "dry" as possible

- Parent panels were then produced using the facesheets and core using a hot press
- SCB specimens were machined from the "parent" panels

Parent Panels Used to Produce SCB Specimens

Facesheet Stacking Sequence	Core Material	Core Thickness (in)
[0/45/0] _T	Nomex HRH-10, 3 lb ft ³	0.5
	Nomex HRH-10, 8 lb ft ³	0.5
	Nomex HRH-10, 3 lb ft ³	1
	Kevlar HRH-36, 3lb ft ³	0.5
[0/90/90/0] _T	Nomex HRH-10, 3 lb ft ³	0.5
	Nomex HRH-10, 8 lb ft ³	0.5
	Nomex HRH-10, 3 lb ft ³	1
	Kevlar HRH-36, 3lb ft ³	0.5
	Nomex HRH-10, 3 lb ft ³	0.5
[0/45/90/45]	Nomex HRH-10, 8 lb ft ³	0.5
[0/43/90/43]s	Nomex HRH-10, 3 lb ft ³	1
	Kevlar HRH-36, 3lb ft^3	0.5

- SCB specimens machined from these panels will be at tested at room temperature, for two conditions:
 - (a) As produced (48 specimens)
 (b) Following exposure to elevated humidity and thermal cycling
 (48 specimens)

- "Witness" panels were produced with an Ohmic Instruments Model HC-610 capacitive humidity sensors embedded within the core volume
- The humidity sensors are used to monitor core humidity levels during subsequent environmental exposures

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

<u>8 Witness Panels Used to Monitor Core Humidity Levels</u>

Panel No	Facesheet	Core
1	[90/45/90/45] _s	HRH-10-3-0.5
2	[0/45/0] _T	HRH-10-3-0.5
3	[0/90/90/0] _T	HRH-10-3-1.0
4	[90/45/90/45] _s	HRH-10-3-1.0
5	[0/90/90/0] _T	HRH-10-8-0.5
6	[0/90/90/0] _T	HRH-36-3-0.5
7	[0/45/0] _T	HRH-36-3-0.5
8	[0/90/90/0] _T	HRH-10-3-0.5

• 48 tests of "as-produced" SCB specimens performed without mishap during June 2017

- 48 tests of "as-produced" SCB specimens performed without mishap during June 2017
- Murphy's law re-discovered:
 - Remaining 48 SCB Specimens and 8 witness panels were placed in the humidity chamber on 29 June
 - Initial panel core humidity ~9%RH
 - Elevated environmental conditions imposed on 3 July: 65°C and 90%RH
 - Sometime over the weekend of 4-6 August (about 4 weeks later) the control system of the humidity chamber failed, flooding the SCB specimens and witness panels....
 - SCB specimens and witness panels were placed in a separate test oven with desiccant and "dried out" for ~ 6 weeks while the humidity chamber was repaired (humidity levels within witness panels reduced to 10-15% RH)
 - Exposure to 65°C and 90%RH re-started on 21 September

- 3-ply laminates approaching 80%RH; thermal cycling will begin soon.
- Thermal cycling of 4- and 8-ply laminates will begin when core humidity ~80%RH
- SCB tests of environmentally-conditioned specimens performed after ~100 thermal cycles

Outline of Presentation

- Measurement of G_c associated with facesheet/core bond failures in sandwich structures:
 - Summary of the Single-Cantilever Beam (SCB) test geometry
 - Results obtained during 1st year of study (Sept '15-Sept '16)
 - 2nd year of study:
 - Expanded test matrix
 - As-produced measurements (completed)
 - Humidity measurements (ongoing)
 - Thermal cycling (planned)
- Design and fabrication of GAG specimens
 - Initial measurements

Presented at Oct '16 AMTAS meeting

GAG Specimen:

GAG Specimen:

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

External pressure = 14.7 psi Core pressure = 14.8 psi

External pressure = 14.7 psi Core pressure = 14.8 psi

External pressure = 12.4 psi Core pressure = 14.3 psi

External pressure = 14.7 psi Core pressure = 14.8 psi

External pressure = 12.4 psi Core pressure = 14.3 psi

External pressure = 9.6 psi Core pressure = 13.4 psi

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

External pressure = 14.7 psi Core pressure = 14.8 psi

External pressure = 12.4 psi Core pressure = 14.3 psi

External pressure = 9.6 psi Core pressure = 13.4 psi

External pressure = 6.7 psi Core pressure = 12.2 psi

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

External pressure = 14.7 psi Core pressure = 14.8 psi

External pressure = 12.4 psi Core pressure = 14.3 psi

External pressure = 9.6 psi Core pressure = 13.4 psi

External pressure = 6.7 psi Core pressure = 12.2 psi

External pressure = 2.9 psi Core pressure = 9.7 psi

External pressure = 14.7 psi Core pressure = 14.8 psi

External pressure = 12.4 psi Core pressure = 14.3 psi

External pressure = 6.7 psi Core pressure = 12.2 psi

External pressure = 2.9 psi Core pressure = 9.7 psi

External pressure = 9.6 psi Core pressure = 13.4 psi

External pressure = 0.96 psi Core pressure = 8.2 psi

<u>Summary</u>

- This study has two overall objectives:
 - Determine if the condense-freeze-thaw-evaporate cycle of core humidity impacts the interfacial fracture toughness, *G_c*, of sandwich structures
 - Develop experimental techniques to study/evaluate the GAG phenomenon, and the impact of condense-freeze-thawevaporate cycle
- Substantial progress has been made:
 - 48 SCB tests of as-produced specimens completed
 - Testing of 48 environmentally-conditioned specimens will be completed by \sim 1 January
 - GAG tests ongoing

Thank You!

Questions, Comments, Suggestions?