

Improving Adhesive Bonding of Composites Through Surface Characterization Using Inverse Gas Chromatography (IGC) Methods

Rita Taitano Johnson Brian Flinn University of Washington

Participants

Federal Aviation Administration David Westland, Curtis Davies Center of Excellence in Advance Materials in Transport Aircraft Structures

The Boeing Company Kay Blohowiak, John Osborne, Ryan Wilson, Gail Hahn

University of Washington Material Science Engr Dr. Brian Flinn

Outline

- Motivation & Key Issues
- Introduction
 - Measuring Surface Energy
 - Objective
 - Contact Angle Methodology
 - IGC Methodology
- Experimentation
- Results
 - Contact Angle Measurements
 - IGC Measurements
- Conclusions/Discussions
- Future Work

Motivation and Key Issues

- Most important step for bonding is surface preparation
- Inspect the surface prior to bonding to ensure proper surface preparation for high bond qualities
- Common surface energy measurement methods useful, but doesn't provide all answers
- Investigating new method to be able to discern between:
 - High and low energy site profiles/distributions
 - Different surface preparation techniques
 - 2hour and 6hour cure dwells

Measuring Surface Energy

- Contact angle measurements is a preferred method

Contact Angle	Inverse Gas Chromatography
Flat, smooth samples	powders, nano particles, films, semi-solids
Homogenous data	Heterogeneous data
Ambient test conditions	Varying test conditions
Quick Test Time: complete in minutes to hours	Long Test Time: complete in hours to days
Inexpensive, portable	Expensive, non-portable

Objective:

Investigate Inverse Gas Chromatography as a reliable, repeatable method to characterize various surface preparation methods with high fidelity

Peel Ply Surface Preparation

Peel Ply Surface Preparation

Heterogeneous surface created by peel ply removal

Contact Angle Methodology

- Adhesive must wet substrate for bonding
 – controlled by surface energy
- Surface energy calculated from Owens-Wendt model $(\gamma_{tot} = \gamma^p + \gamma^d)$
 - Four fluids: deionized water (DI H₂O), diiodomethane (DIM), ethylene glycol (EG), and glycerol (GLY)
- Wettability envelopes: 2D representation of surface energy

Drop application: dispense drop, raise surface

θ

Side-view of drop as viewed from goniometer camera

IGC Methodology

- Technique to characterize physicochemical properties of materials
- A carrier gas transports probe molecules over a surface
- Ideal for powders, fibers, nano particles, granules, films, semi-solids
- Displays heterogeneity of the surface

iGC Film Shell

IGC Methodology

INVERSE GAS CHROMATOGRAPHY (IGC)

- Sample is loaded into column/clamp
- Single probe gas is injected at specific concentrations → fractional surface coverage
- Time for probe to travel across surface gives retention time → thermodynamic properties

Retention time \rightarrow retention volume \rightarrow surface energy \rightarrow Thermodynamic work adhesion and cohesion

IGC Methodology

Probe Gases	Undecane, Decane, Nonane, Heptane, Dichloromethane, Ethyl Acetate, Acetonitrile, Acetone			
Targeted Fractional Surface Coverage	0.005, 0.01, 0.03, 0.05, 0.07, 0.1, 0.13, 0.16 n/nm			

Advanced Materials in Transport Aircraft Structures

IGC Surface Energy Profiles

Advanced Mater

IGC vs. Contact Angle Contact Angle (CA)

- Small drops (1 ml) of 3-5 known liquids placed on surface
- Surface energy calculated over small area (order of mm2)
- Can be affected by surface texture (non-circular drops)
- Quick, inexpensive, can be portable

Inverse Gas Chromatography (IGC)

- 8-10 Known gases flow over surface
- Larger area sampled (2"X8")
- More information obtained (higher fidelity data)
- Distribution of surface energy
- Greater sensitivity to subtle changes
- Expensive equipment, skilled operator

Experimentation

Test Specimens:

Variable	Description	Panel	Adherend		Cure
	Toray's 3900/T800 6K		(Fabric,	Peel Ply	Dwell
Prepregs	Cytec Solvay's Cycom 970/T300	1		60001 Dolycostor	Ohr
	3K HyE 970/PWC		3900/1000		2111
	Precision Fabrics Group's		3900/T800	DIATEX 1500EV6 Polyester	2hr
	Polyester Peel Ply 60001	4	3900/T800	52006 Nylon	2hr
	Precision Fabrics Group's Nylon	5	3900/T800	SRB	2hr
	Peel Ply 52006	6	3900/T800	60001 Polvester	6hr
	Precision Fabrics Group's Super	7		DIATEX 1500EV6	6hr
Peel Plies	Release Blue (SRB) Peel Ply		3900/T800	Polvester	
Surface	DIATEX 1500EV6 Polyester Peel	11	3900/T800	FEP*	2hr
Preparation	Ply	12	970/T300	60001 Polvester	2hr
	Henkel EA9895 0.033psf Wet	13			2111
	Peel Ply (WPP)		970/T300	Polyester	2hr
	Cytec Solvay MXB-7668	14	970/T300	EA9895 Wet PP	2hr
	Fluorinated Ethylene Propylene	15	970/T300	MXB-7668	2hr
	(FEP) Release ply	16	970/T300	60001 Polyester	6hr
	2hr cure hold, 176 °C (350 °F), 85	17	970/T300	DIATEX 1500EV6	6hr
Cure Holds	psi			Polyester	
	6hr cure hold, 176 °C (350 °F), 85	19	970/T300	MXB-7668	6hr
	psi	22	970/T300	FEP*	2hr

Experimentation

Contact Angle:

- Probe Liquids: DI Water, Ethylene Glycol, Diiodomethane
- Average taken from 20 angle measurements from 1 μL drops of each liquid
- Peel ply orientation: 0/90 degree

Experimentation

IGC Test Method:

- Test area 2"x8" within the shell clamp
- Probe Molecules: undecane, decane, nonane, octane, heptane, dichloromethane, ethyl acetate, acetonitrile, acetone
- Target Fractional Coverages (n/nm):

0.005, 0.01, 0.03, 0.05, 0.07, 0.01, 0.13, and 0.16

IGC Repeatability

IGC Repeatability

Statistical T-testing confirms data sets are identical

Confirms IGC method repeatable

IGC and Contact Angle Comparison

Contact Angle Results

Contact angles converted into IGC comparable surface energy components using three known contact angle measurements A, B, C, with known LW, acidic and basic components can be used to calculate SE of the solid (Fowkes' Theory)

	60001 Polyester	52006 Nylon	Diatex Poly 1500EV6	Super Release Blue (SRB
γ^{B} , γ_{1} [mJ m-2]	4.56	23.01	37.22	0.10
γ^{A} , γ_{1+} [mJ m-2]	0.02	0.07	0.01	0.04
γ ^{LW} , γ _L d [mJ m- 2]	47.42	43.37	42.94	34.55
γ^{AB} [mJ m-2]	0.61	2.6	1.3	0.1
γ total [mJ m-2]	48.03	45.97	44.27	34.68

······ Contact Angle 1500EV6

$\frac{\gamma \text{ [mJ m}^{2} \text{]}}{\text{IGC Average SI}}$ $\frac{\gamma \text{ [mJ m}^{-2}\text{]}}{\text{CA SE Measurem}}$ $\gamma \text{ [mJ m}^{-2}\text{]}$	E 46.63 ent 48.03	47.04	44.61	13.61		is not nonally average
CA SE Measurem v [m.J m ⁻²]	ent 48.03			45.01		surface energy
		45.97	44.27	34.68	on 🔪	
						_
0.02 0.04	0.06 Fractional	0.08 Surface C	0.1 overage, n/n	0.12 m	0.14 0.10	5
•	50001 2Hr Nylon 2Hr		— #2] — #5]	[800/3900 & 1 [800/3900 & 2	1500EV6 2Hr	
	0.02 0.04 #1 T800/3900 & 6	0.02 0.04 0.06 Fractional #1 T800/3900 & 60001 2Hr	0.02 0.04 0.06 0.08 Fractional Surface C #1 T800/3900 & 60001 2Hr	0.02 0.04 0.06 0.08 0.1 Fractional Surface Coverage, n/n #1 T800/3900 & 60001 2Hr #2 T	0.02 0.04 0.06 0.08 0.1 0.12 Fractional Surface Coverage, n/nm #1 T800/3900 & 60001 2Hr	0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.10 Fractional Surface Coverage, n/nm #1 T800/3900 & 60001 2Hr → #2 T800/3900 & 1500EV6 2Hr

······ Contact Angle SRB

- 1. Nylon and Polyester have significantly different distributions according to IGC
- 2. Contact angle is controlled by complex wetting phenomena
- 3. Contact angle correlation to the IGC data is different for each peel ply type

IGC Prepreg Comparison

1. Peel ply surface preparation methods result in surface energies that remain consistent with the original prepreg material trends and are statistically unique

Conclusions/Discussion

IGC Repeatability:

- IGC statically replicated data over several tests of a given peel ply
 - Trials were statistically identical
- Highest energy sites are represented by fractional surface coverages under 0.05 n/nm
- Small variability likely from panel fabrication and actual versus target fractional surface coverage areas

Conclusions/Discussion

IGC Compared to Contact Angle Surface Energy Values:

- Contact angle measurements allow only a homogeneous representation
- Different interactions between fluids (contact angle) and gases (IGC) with textured surfaces
- IGC is able to show the heterogeneous nature of the surface
- Distribution of the surface energy measurements show the contact angles are within IGC measured ranges
- Distributions indicate the degree to which the panels are heterogeneous
- Suggests contact angles do not necessarily represent the average surface energy

Future Work

Continued research is recommended to study the applications of IGC:

- Understand the advance models of wetting versus gas interactions
- Characterize additional surface preparation methods with IGC
- Relate surface preparation to bond quality types
- Additional statistical data and material coupon testing for a more complete representation of the bonding surface
 - X-ray photoelectron spectroscopy (XPS)
 - Scanning electron microscopy (SEM)
 - Double cantilever beam (DCB)

Although IGC is able to provide more information on surface energies related to various surface preparations techniques, other components contributing to the quality of the bonding surface need to be investigated.

Questions?

References

1.Satterwhite, J., J. Aubin, and B.D. Flinn. "Partial Laminate Curing for use in Peel Ply- Prepared Adhesive Bonding." SAMPE 2009 – Baltimore, MD May 18 – 21, 2009.

2.Burnett, Dan. "Surface Characterization of Nanomaterials by Inverse Gas Chromatography -Surface Measurement Systems." Surface Measurement Systems. Surface Measurement Systems, 7 Oct. 2015. Web. 17 Apr. 2016.

3.Van Oss, C.J., et al., Interfacial Lifshitz-van der Waal and polar interactions in macroscopic systems. Chemical Reviews., 1988. 88 p. 927-941

4.Fowkes, F.M., Acid-base interactions in polymer adhesion, in Physicochemical Aspects of Polymer Surfaces, K.L. Mittal, Editor. 1981, Plenum Press: New York. P 583-603

5.Cognard, Philippe. Adhesives and Sealants: General Knowledge, Application Techniques, New Curing Techniques. Amsterdam: Elsevier, 2006. N. pag. Print.

6.Lee, Lieng-Huang. Fundamentals of Adhesion. New York: Plenum, 1991. Print.

7.Tracey, Ashley C., and Brian D. Flinn. IMPROVING ADHESIVE BONDING OF COMPOSITES THROUGH SURFACE CHARACTERIZATION - Variables That Affect Contact Angle Measurements on Peel Ply Surfaces. Thesis. U. Washington - Seattle, 2014. Seattle: JAMS, 2014. Print.

Backup Slides

IGC Repeatability

	IGC Trial 1 & 2		IGC Trial 2 & 3		IGC Trial 3 & 4	
	γt Comparision		γt Comparision		γt Comparision	
	Trial 1 yt	Trial 2 yt	Trial 2 yt	Trial 3 yt	Trial 3 yt	Trial 4 yt
Mean	45.62	44.78	44.78	44.78	44.78	44.58
Variance	3.39	4.03	4.03	2.35	2.35	1.86
Observations	7	8	8	8 8	8	8
Pooled Variance	3.7353		3.1900)	2.1062	
Hypothesized Mean Difference	0		C)	0	
df	13		14		14	
t Stat	0.8421		-0.0042		0.2705	
P(T<=t) one-tail	0.2075		0.4984		0.3954	
t Critical one-tail	1.7709		1.7613		1.7613	
P(T<=t) two-tail	0.4150		0.9967	,	0.7908	
t Critical two-tail	2.1604		2.1448	}	2.1448	
	Equal		Equal		Equal	
			Good Rer	peatability		

Contact Angle Methodology

Contact angles converted into IGC comparable surface energy components using three known contact angle measurements A, B, C, with known LW, acidic and basic components can be used to calculate SE of the solid (Fowkes' Theory)

$$\begin{split} W_{12A} &= \gamma_{1A} (1 + \cos \theta_A) = 2 \left(\gamma_{1A}^{LW} \gamma_{2}^{LW} \right)^{1/2} + 2 \left(\gamma_{1A}^{+} \gamma_{2}^{-} \right)^{1/2} + 2 \left(\gamma_{1A}^{-} \gamma_{2}^{+} \right)^{1/2} \\ W_{12B} &= \gamma_{1B} (1 + \cos \theta_B) = 2 \left(\gamma_{1B}^{LW} \gamma_{2}^{LW} \right)^{1/2} + 2 \left(\gamma_{1B}^{+} \gamma_{2}^{-} \right)^{1/2} + 2 \left(\gamma_{1B}^{-} \gamma_{2}^{+} \right)^{1/2} \\ W_{12C} &= \gamma_{1C} (1 + \cos \theta_C) = 2 \left(\gamma_{1C}^{LW} \gamma_{2}^{LW} \right)^{1/2} + 2 \left(\gamma_{1C}^{+} \gamma_{2}^{-} \right)^{1/2} + 2 \left(\gamma_{1C}^{-} \gamma_{2}^{+} \right)^{1/2} \end{split}$$

$$\begin{array}{c} (\gamma_{2}^{LW})^{1/2} \\ a = (\gamma_{2}^{-})^{1/2} \\ (\gamma_{2}^{+})^{1/2} \end{array} \begin{array}{c} \frac{(\gamma_{1A}^{UW})^{1/2}}{\gamma_{1A}} & \frac{(\gamma_{1A}^{+})^{1/2}}{\gamma_{1A}} & \frac{(\gamma_{1A}^{-})^{1/2}}{\gamma_{1A}} \\ \alpha = \frac{(\gamma_{1B}^{UW})^{1/2}}{\gamma_{1B}} & \frac{(\gamma_{1B}^{+})^{1/2}}{\gamma_{1B}} & \frac{(\gamma_{1B}^{-})^{1/2}}{\gamma_{1B}} \\ \frac{(\gamma_{1C}^{UW})^{1/2}}{\gamma_{1C}} & \frac{(\gamma_{1C}^{+})^{1/2}}{\gamma_{1C}} & \frac{(\gamma_{1C}^{-})^{1/2}}{\gamma_{1C}} \end{array} \end{array} \begin{array}{c} \beta = \frac{(1+\cos\theta_{A})}{2} \\ \beta = \frac{(1+\cos\theta_{B})}{2} \\ \frac{(1+\cos\theta_{C})}{2} \\ \frac{(1+\cos\theta_{C})}{2} \end{array} \end{array}$$

Contact Angle Results

Advanced Materials in Transport Aircraft Structures

- 1. Contact angle represents homogeneous approximation of the higher surface energy sites
- 2. IGC with lower fractional coverage shows the highest surface energy sites, and an estimated average at higher fractional surface coverages

- 1. Contact angle is homogeneous approximation of the lowest surface energy sites
- 2. IGC with lower fractional coverage shows the highest surface energy sites, and an estimated average at higher fractional surface coverages

- 1. Nylon and Polyester have significantly different distributions according to IGC
- 2. Contact angle is controlled by complex wetting phenomena
- 3. Contact angle correlation to the IGC data is different for each peel ply type