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Failure of Notched Laminates 
Under Out-of-Plane Bending. 
Phase X

• Motivation and Key Issues
• Need to better understand compressive damage mechanisms in 

carbon fiber matrices

• Objective
• Create a model that can be used to predict the material response 

to damage

• Approach
• Experimental tests to validate continuum damage mechanics 

model and classify damage behavior
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Failure of Notched Laminates 
Under Out-of-Plane Bending. 
Phase X

• Principal Investigators & Researchers
– John Parmigiani (PI); OSU faculty
– M. Daniels, T. Rawlings; OSU grad students

• FAA Technical Monitor
– Curt Davies
– Lynn Pham

• Other FAA Personnel Involved
– Larry Ilcewicz

• Industry Participation
– Gerry Mabson, Boeing (technical advisor)
– Kazbek Karayev, Boeing (technical advisor)
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Project Overview
Phase I (2007-08)

• Out-of-plane bending experiments w/composite plates
• Abaqus modeling with progressive damage

Phase II (2008-09)
• Abaqus modeling with buckling delamination added
• Sensitivity study of (generic) material property values  

Phase III (2009-10)
• Abaqus modeling w/ more delamination interfaces
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Project Overview

Phase IV (2010-11)
• Further study of additional delamination interfaces
• Sensitivity study using Boeing mat’l property values

Phase V (2011-12)
• Out-of-plane shear (mode III) experiments 
• Evaluate the Abaqus plug-in Helius for out-of-plane 

bending
Phase VI (2012-13)

• Out-of-plane shear modeling with Abaqus 
Standard/Explicit

• Evaluation of plug-in Helius: MCT for out-of-plane shear 
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Project Overview

Phase VII (2013-14)
• Improvement to Abaqus Explicit models
• Explore damage softening parameters in Helius: MCT
• Explore possible inaccuracies in material properties

Phase VIII (2014-15)
• Explore significance of damage propagation material 

properties, i.e. when do energy parameters matter?
• Begin work on modeling matrix compression damage 

Phase IX (2015-16)
• Mode III Wrap up
• Matrix compression damage modeling and testing
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Project Overview

Phase X (2016)
• Compression testing
• Energy dissipation calculations



Failure of Notched Laminates 
Under Out-of-Plane Bending: 
Phase X Overview

• Damage propagation in composites is broken up into four 
modes: Fiber tension, fiber compression, matrix tension, matrix 
compression

• Extensive experimental studies have been done to directly 
classify the propagation behavior of the former three modes 

• No experimental studies have focused purely on matrix 
compression propagation behavior

• Instead, simplifying assumptions based on initiation studies are 
applied to matrix compression propagation behavior

• The often complex behavior of composite materials makes 
direct experimental observation desirable

• Goal: Design and test specimens to determine the damaged 
material behavior due to matrix compression loading 
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Today’s Topics

Matrix Compression Specimens
• Uniform Compression Specimens

• Damage Mechanisms
• Stress Displacement

• Compact Compression Specimens
• Damage Mechanisms
• J-Integral
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Uniform Compression 
Specimens

• Measure the matrix compression stress-displacement behavior directly
• Rectangular specimens from commercial material (Mitsubishi Rayon 

TR50S/NB301, ~60% FV)
• Range of dimensions used

• Average dimensions shown in mm for general scale

• Dimensions selected to create matrix compression damage before 
buckling

• Monotonic and unloading tests to classify range of behavior
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Uniform Compression:
Damage Mechanisms

• Shear cracks through the thickness were observed 
• Large range of angles observed (52° to 73°)
• Trapped material is present in the wake of the crack
• Fiber bridging also present 
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Uniform Compression:
Stress Displacement

• Stress-Displacement Behavior 
can be split into three zones:
Zone 1 Elastic:

Unloading traces back over loading curve

Zone 2 Non-Visible Damage:
Nonlinearity caused by plasticity and 
possibly micro cracking

Zone 3 Visible Damage Progression:
Stiffness significantly degrades

• Figure shows slow propagation 
of damage

• Faster propagation shows more 
linear decrease

• Typically retains some stress 
after decrease
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Note: Curve is one trial that is representative of 
population failure.



Uniform Compression:
Nonvisible Damage Region

• Unloading tests used to 
determine behavior

• Hysteresis in unloading 
was observed

• Offset in displacement 
suggests plasticity

• Nonlinearity generally 
observed around a strain 
of 0.0125
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Note: Curve shows a few representative 
specimens. All other specimens tested showed 
similar behaviors



Uniform Compression:
Energy Dissipation

• Calculated energy 
dissipation from area under 
stress-displacement curve 

• Energy dissipation decr. w/ 
incr. fracture angle

• Larger angles correspond to 
more efficient fracture
• Less energy lost to mode I 

compression.

• Energy dissipation much 
higher than single mode II 
crack assumption
• Due to bridging, friction, and 

other mechanisms
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Compression Specimens

• Compact compression (CC) 
specimens to propagate 
compression damage in a 
controlled way
• Crack propagates further than 

UC

• Presents a more complex 
case for comparison of 
models

• J-integral used to calculate 
strain energy release rate
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Compression Specimens:
Damage Mechanisms

• Damage mechanisms 
primarily shear cracks 
through the thickness
• Same as UC Specimens

• Shear cracks propagate 
parallel to the notch

• Shear cracks measured 
between 47° and 54°
• UC showed 52° to 73°

• Propagation limited by 
tensile failure of the 
opposite end
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Uniform Compression 
Specimen

Compact Compression 
Specimen
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Compression Specimens:
J-Integral Validity

• J-integral derived from energy balance and damage extension
• Valid with plasticity (damage) if confined to a small region and 

contour does not cross plastic zone
• In our work with the compact compression specimens

• Plastic zone is order of magnitude smaller than ligament size
• Contour was selected to avoid plastic zone
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Compression Specimens:
J-Integral Results

• Same initial 
values as UC 
specimens

• Rising trends in 
J-integral 
• Due to additional 

cracks, contact 
stresses, 
increased 
plasticity and 
friction

• J-integral may 
be invalid after 
damage 
advances
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Compression Specimens:
Energy Dissipation Agreement 

• Energy dissipation rate at 
initiation agrees with UC

• Calculated J-integral values 
using CC ranged from 33.6 
kJ/m2 to 45.6 kJ/m2

• UC energy dissipation 
ranged from 36.6 kJ/m2 to 
45.69 kJ/m2 for similar 
angles



Conclusions

• Damage propagates as shear cracks
• Plasticity occurs before visible damage
• Energy dissipation rate dependent on fracture angle
• J-integral in CC specimens and area under stress-displacement show fairly good 

agreement for similar fracture angles
• Energy dissipation much higher than is commonly reported based on simple mode 

II crack assumption (1 kJ/m2 for similar materials)
• J-integral becomes inaccurate during damage growth as evidenced by the rising 

energy dissipation values
• Single strain energy release rate not capable of fully capturing the damage 

behavior as it would need to be adjusted for fracture angle, plastic nonlinearity, 
and residual stiffness
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Next Steps

1. Implement the new matrix-compression damage model 
into Abaqus. 

2. Determine the effect of the new matrix compression 
material model using a Design-of-Experiments sensitivity 
study. 

3. Determine the role of matrix compressive loading in 
mixed-mode damage and failure.

4. Create a written report, to be submitted to the FAA, 
describing the work completed in this project.
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Uniform Compression:
Stress Displacement

• Faster propagation is 
more linear

• Has residual stress 
carrying with continued 
displacement



Uniform Compression:
Visible Damage Reloading

• Specimen reloaded after 
fracture occurred

• Linear stress increase to 
stress value after 
monotonic test

• Slow degradation of 
stress with continued 
displacement.



Propagation vs 
Initiation Energy

• Initiation energy is defined as the 
energy dissipated when damage first 
occurs

• Used because it represents the 
dissipation due to damage without 
other cracks or other dissipation 
mechanisms

• After once damage begins to 
advance crack face contact and 
additional damage in the crack wake 
may invalidate J-integral calculation

• Evidenced by rising trend
• Initiation energy from J-integral and 

Stress-Displacement curves still 
represent damage propagation as it 
provides information of behavior 
after damage occurs



Propagation vs 
Initiation Energy

• Energy dissipation governs the 
propagation of damage by 
reducing the stiffness

• The energy dissipated due to 
onset of damage is applied to 
the elements

• Propagation of damage is 
modeled by initiating and 
degrading element properties in 
damage advancement direction

• Elements can be thought of as 
region of undamaged material 
where damage initiates

• Therefore initiation energy can 
be used to model damage 
propagation



Uniform Compression:
Through Thickness Stack

• Tested stacks of one, two, and 
three 20 ply specimens

• Crushed specimens by loading 
through the thickness

• Displayed matrix compression 
failure mechanisms (shear 
cracks)

• Crushing caused several 
additional cracks as undamaged 
material was loaded leading to:
• Many shear cracks in series
• Network of small cracks at 

varying angles, i.e. crushed 
material



Uniform Compression:
Through Thickness Stack

• Load-Displacement behavior 
determined by stack size

• 2-3 specimen stack:
• Load drops due to initial crack
• Load continues to drop as more material 

is crushed
• Load increases due to loading crushed 

material and interaction with grips

• 4+ specimen stacks:
• Load decreases due to initial cracks
• Load increases and decreases around a 

roughly constant value as material is 
crushed and loaded

• Similar to uniform compression tests 
where a relatively constant stress was 
observed before the crack faces slipped 
past each other


